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LOCALIZATION PRINCIPLES FOR SCHRÖDINGER OPERATOR

WITH A SINGULAR MATRIX POTENTIAL

VLADIMIR MIKHAILETS, ALEKSANDR MURACH, AND VIKTOR NOVIKOV

Abstract. We study the spectrum of the one-dimensional Schrödinger operator H0

with a matrix singular distributional potential q = Q′ where Q ∈ L2

loc
(R,Cm). We

obtain generalizations of Ismagilov’s localization principles, which give necessary and
sufficient conditions for the spectrum of H0 to be bounded below and discrete.

1. Introduction

Schrödinger operators occupy a special position in the modern mathematical physics
because they have numerous applications to physical problems and other branches of
mathematics; see, e.g., [2]. Nowadays the spectral theory of these operators has de-
veloped very profoundly and contains a number of fundamental results. Specifically,
this concerns the questions about self-adjointness, semiboundedness, and discreteness of
the spectrum. These questions are studied in the greatest detail for one-dimensional
Schrödinger operators [3, 7, 10, 13, 18], with local integrability being a standard condi-
tion on the regularity of the potential. Moreover, in last years of growing interest are
problems in which the potential is singular and contains delta-functions supported on
a discrete set or contains more general Radon measures [1, 17]. A direct generaliza-
tion of classical theorems to such operators is associated with serious difficulties. These
difficulties become greater if the potentials are matrix-valued and the operator acts on
vector-valued functions [8].

The main purpose of our paper is to ground the fundamental localization principles
for the most general operators of the mentioned type. In next papers this will allow us
to obtain necessary and/or sufficient constructive conditions for these operators to be
semibounded and for their spectrum to be discrete provided that we impose additional
restrictions on the matrix potential. The proofs of the results given below is based on
the regularization of the differential expression with the help of quasiderivatives [4, 5, 6,
9, 12, 14, 16].

The paper consists of five sections and Appendix. Section 1 is an introduction. Sec-
tion 2 contains the statement of the problem and formulation of our main results, The-
orems 1 and 2. They are generalizations of the localization principles of Ismagilov [7] to
the case of a matrix distributional potential. These theorems are proved in Section 5.
Their proofs are based on the basic Lemma 2 established in Section 4. Beforehand we
will obtain some auxiliary results in Section 3.

2. Statement of the problem and main results

We consider a linear differential expression

(1) h(y) := −y′′ + qy
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in the complex separable Hilbert space L2(R,Cm), with m ≥ 1. Here, y := (y1, . . . , ym) ∈
L2(R,Cm), and q := (qi,j)

m
i,j=1 is a matrix potential such that each

qi,j = Q′

i,j for a certain Qi,j ∈ L2
loc(R,C).

Throughout the paper, derivatives are understood in the sense of the theory of distri-
butions. Put Q := (Qi,j)

m
i,j=1. In the sequel, the matrix potential Q is supposed to be

Hermitian-symmetric, i.e., Q = Q∗.
Using the quasiderivatives

y[1] := y′ −Qy and y[2] :=
(

y[1]
)

′

+Qy[1] +Q2y

(see, e.g., [12]), we write the differential expression (1) in the form h(y) = −y[2]. Following
[12, Section 1], we associate the maximal, preminimal, and minimal operators with this
expression in the following way: the maximal operator

(2) Hy := −y[2]

is defined on the natural widest domain

D(H) :=
{

y ∈ L2(R,Cm) : y, y[1] ∈ ACloc(R,C
m), y[2] ∈ L2(R,Cm)

}

.

Here, as usual, ACloc(R,C
m) denotes the set of all vector-valued functions y : R → C

m

that are absolutely continuous on every compact interval [a, b] ⊂ R. By definition, the
preminimal operator H ′

0 is the restriction of the maximal operator (2) to the set of all
compactly supported functions y ∈ D(H), and the minimal operator H0 is the closure
of H ′

0. It is known [12, Corollary 2 and Proposition 7] that the domains of H, H ′

0, and
H0 are dense in the Hilbert space L2(R,Cm) and that the operators H ′

0 and H0 are
symmetric and

H = (H ′

0)
∗ = H∗

0 .

The main results of the paper are generalizations of the localization principles by
Ismagilov [7] to the case of a matrix distributional potential.

Let us introduce some designations. Given a nonempty open set Ω ⊆ R, we put

λ(Ω) := inf

{

〈H0y, y〉

〈y, y〉
: y ∈ D(H ′

0) \ {0}, supp y ⊂ Ω

}

.

Here and below, 〈·, ·〉 is the inner product in the Hilbert space L2(R,Cm). Since the
operatorH ′

0 is symmetric, the inclusion 〈H ′

0y, y〉 ∈ R holds; therefore λ(Ω) is well defined.
We choose a number ℓ > 0 arbitrarily and put

ωℓ
n :=

(nℓ

2
,
nℓ

2
+ ℓ

)

for every n ∈ Z.

As in the case of a locally integrable scalar potential, each number λ(ωℓ
n) coincides

with the smallest eigenvalue of the bounded below selfadjoint operator HD(ωℓ
n) generated

by the differential expression (1) and the homogeneous boundary conditions y(nℓ/2) =
y(nℓ/2 + ℓ) = 0 in the Hilbert space L2(ωℓ

n,C
m) (see Appendix below). Therefore these

numbers make physical sense.

Theorem 1 (the first localization principle). The minimal operator H0 is bounded below

and selfadjoint if and only if the sequence of numbers (λ(ωℓ
n))

+∞

n=−∞
is bounded below.

Theorem 2 (the second localization principle). The operator H0 is a bounded below

selfadjoint operator with discrete spectrum if and only if

(3) λ(ωℓ
n) → +∞ as |n| → ∞.

Remark 1. It follows from Theorems 1 and 2 that if for a certain ℓ > 0 the sequence
(λ(ωℓ

n))
+∞

n=−∞
is bounded below or satisfies (3), this sequence will have the same property

for every ℓ > 0.
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Remark 2. In Theorems 1 and 2 it is possible to replace all the intervals ωℓ
n, where n ∈ Z,

with their shifts at an arbitrarily chosen number a ∈ R.

Remark 3. Analogs of Theorems 1 and 2 are true in the case where the differential
expression (1) is given on a semiaxis.

Remark 4. Theorem 1 somewhat generalizes and together with Lemma 2 for Ω := R

supplements the known statement [12] about the self-adjointness of the bounded below
operator H0. Specifically, it follows from Theorem 1 that the operator H0 with the
periodic matrix potential Q is bounded below and selfadjoint; cf. [11], where the case of
m = 1 is examined.

3. Auxiliary results

Given vector-valued functions y, z : R → C
m, we let (y, z) denote the scalar complex-

valued function defined by the formula (y, z) := y1z1 + · · ·+ ymzm on R. Note that

〈y, z〉 =

∞
∫

−∞

(y, z) dx

if y, z ∈ L2(R,Cm). Throughout the paper all integrals are understood in the sense of
Lebesgue, and dx denotes the Lebesgue measure on R, we omitting the argument x of
functions under the integral sign.

We choose a real-valued function θ ∈ C∞(R) such that supp θ = [0, ℓ] and

θ2(x) + θ2(x− ℓ/2) = 1 for every x ∈ [ℓ/2, ℓ].(4)

An example of this function will be given at the end of the present section. Given k ∈ Z

and y ∈ D(H ′

0), we introduce the functions

θk(x) := θ(x− kℓ/2), uk(x) := θ2k(x)y(x), and vk(x) := θk(x)θk+1(x)y(x)

of x ∈ R.

Lemma 1. Let y ∈ D(H ′

0). Then uk, vk ∈ D(H ′

0) for every k ∈ Z, and we have the

equality

(5)

〈H0y, y〉 =
∞
∑

k=−∞

〈H0uk, uk〉+ 2
∞
∑

k=−∞

〈H0vk, vk〉

− 2

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θ′kθk+1 − θkθ
′

k+1)
2 (y, y) dx.

Proof. We choose k ∈ Z arbitrarily and will show that uk, vk ∈ D(H ′

0). Since the func-
tions y ∈ ACloc(R,C

m) and θk, θk+1 ∈ C∞(R,R) are compactly supported, the functions
uk and vk are also compactly supported and belong to both the spaces ACloc(R,C

m) and
L2(R,Cm). Besides,

u
[1]
k = u′

k −Quk = (θ2ky)
′ −Qθ2ky = (θ2k)

′y + θ2ky
′ −Qθ2ky

= (θ2k)
′y + θ2ky

[1] ∈ ACloc(R,C
m)

and

u
[2]
k =

(

u
[1]
k

)

′

+Qu
[1]
k +Q2uk =

(

(θ2k)
′y + θ2ky

[1]
)

′

+Q
(

(θ2k)
′y + θ2ky

[1]
)

+Q2θ2ky

= (θ2k)
′′y + (θ2k)

′y′ + (θ2k)
′y[1] + θ2k

(

y[1]
)

′

+ (θ2k)
′Qy + θ2kQy[1] + θ2kQ

2y

= θ2ky
[2] + (θ2k)

′
(

y′ + y[1] +Qy
)

+ (θ2k)
′′y

= θ2ky
[2] + 2(θ2k)

′
(

y[1] +Qy
)

+ (θ2k)
′′y ∈ L2(R,C

m).
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Here, we use the fact that y[1] ∈ ACloc(R,C
m), y[2] ∈ L2(R,Cm), andQ ∈ L2

loc(R,C
m×m).

Replacing uk with vk and θ2k with θkθk+1 in the above equalities, we obtain the inclusions

v
[1]
k ∈ ACloc(R,C

m) and v
[2]
k ∈ L2(R,C

m). Thus, uk, vk ∈ D(H ′

0) by the definition of
D(H ′

0).
Let us now prove equality (5). Integrating by parts, we write

(6)

〈H0y, y〉 = 〈y[2], y〉 = −

∞
∫

−∞

(

(y[1])′ +Q(y′ −Qy) +Q2y, y
)

dx

=

∞
∫

−∞

(

(y[1], y′)− (Qy′, y)
)

dx.

Equality (6) holds true for every function y ∈ D(H ′

0). Since uk, vk ∈ D(H ′

0), we may put
y := uk or y := vk in this equality and write

〈H0uk, uk〉 =

kℓ/2+ℓ
∫

kℓ/2

(

(u
[1]
k , u′

k)− (Qu′

k, uk)
)

dx,(7)

〈H0vk, vk〉 =

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(v
[1]
k , v′k)− (Qv′k, vk)

)

dx.(8)

Here, we use the fact that suppuk ⊆ [kℓ/2, kℓ/2+ ℓ] and supp vk ⊆ [kℓ/2+ ℓ/2, kℓ/2+ ℓ].
Owing to (7) we write

∞
∑

k=−∞

〈H0uk, uk〉

=
∞
∑

k=−∞

kℓ/2+ℓ/2
∫

kℓ/2

(

(u
[1]
k , u′

k)− (Qu′

k, uk)
)

dx

+

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(u
[1]
k , u′

k)− (Qu′

k, uk)
)

dx

=

∞
∑

j=−∞

jℓ/2+ℓ
∫

jℓ/2+ℓ/2

(

(u
[1]
j+1, u

′

j+1)− (Qu′

j+1, uj+1)
)

dx

+
∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(u
[1]
k , u′

k)− (Qu′

k, uk)
)

dx

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(u
[1]
k , u′

k) + (u
[1]
k+1, u

′

k+1)− (Qu′

k, uk)− (Qu′

k+1, uk+1)
)

dx.
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By virtue of this formula and (8), we obtain the equalities

(9)

∞
∑

k=−∞

〈H0uk, uk〉+ 2
∞
∑

k=−∞

〈H0vk, vk〉

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(u
[1]
k , u′

k) + (u
[1]
k+1, u

′

k+1) + 2(v
[1]
k , v′k)

− (Qu′

k, uk)− (Qu′

k+1, uk+1)− 2(Qv′k, vk)
)

dx

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(u′

k, u
′

k) + 2(v′k, v
′

k) + (u′

k+1, u
′

k+1)

− (Quk, u
′

k)− 2(Qvk, v
′

k)− (Quk+1, u
′

k+1)

− (Qu′

k, uk)− 2(Qv′k, vk)− (Qu′

k+1, uk+1)
)

dx.

Let us show that for every k ∈ Z the last integrand is equal to

(10) (y′, y′) + 2(θ′kθk+1 − θkθ
′

k+1)
2(y, y)− (Qy, y′)− (Qy′, y).

We note beforehand that

(u′

k, u
′

k) =
(

(θ2ky)
′, (θ2ky)

′
)

=
(

(2θkθ
′

ky + θ2ky
′), (2θkθ

′

ky + θ2ky
′)
)

= 4θ2k(θ
′

k)
2(y, y) + 2θ3kθ

′

k

(

(y, y′) + (y′, y)
)

+ θ4k(y
′, y′)

and

(v′k, v
′

k) =
(

(θkθk+1y)
′, (θkθk+1y)

′
)

=
(

(θkθk+1)
′y + θkθk+1y

′, (θkθk+1)
′y + θkθk+1y

′
)

= ((θkθk+1)
′)2(y, y) + θkθk+1(θkθk+1)

′
(

(y, y′) + (y′, y)
)

+ θ2kθ
2
k+1(y

′, y′).

It follows directly from formula (4) and the definition of θk that

(11)
θ2k(x) + θ2k+1(x) = 1 and θk(x)θ

′

k(x) + θk+1(x)θ
′

k+1(x) = 0

for every x ∈ [kℓ/2 + ℓ/2, kℓ/2 + ℓ].

Therefore we have the following equalities on [kℓ/2 + ℓ/2, kℓ/2 + ℓ]:

(u′

k, u
′

k) + 2(v′k, v
′

k) + (u′

k+1, u
′

k+1)

=2(y, y)
(

2θ2k(θ
′

k)
2 + ((θkθk+1)

′)2 + 2θ2k+1(θ
′

k+1)
2
)

+ 2
(

(y, y′) + (y′, y)
)

(θ3kθ
′

k + θkθk+1(θkθk+1)
′ + θ3k+1θ

′

k+1)

+ (y′, y′)(θ4k + 2θ2kθ
2
k+1 + θ4k+1)

=2(y, y)
(

2θ2k(θ
′

k)
2 + (θ′k)

2θ2k+1 + 2θkθ
′

kθk+1θ
′

k+1 + θ2k(θ
′

k+1)
2 + 2θ2k+1(θ

′

k+1)
2
)

+ 2
(

(y, y′) + (y′, y)
)

(θ3kθ
′

k + θkθ
′

kθ
2
k+1 + θ2kθk+1θ

′

k+1 + θ3k+1θ
′

k+1)

+ (y′, y′)(θ2k + θ2k+1)
2

=2(y, y)
(

2θ2k(θ
′

k)
2 + 4θkθ

′

kθk+1θ
′

k+1 + 2θ2k+1(θ
′

k+1)
2

+ (θ′k)
2θ2k+1 − 2θkθ

′

kθk+1θ
′

k+1 + θ2k(θ
′

k+1)
2
)

+ 2
(

(y, y′) + (y′, y)
)(

θ2k(θkθ
′

k + θk+1θ
′

k+1) + θ2k+1(θkθ
′

k + θk+1θ
′

k+1)
)

+ (y′, y′)

=2(y, y)
(

2(θkθ
′

k + θk+1θ
′

k+1)
2) + (θ′kθk+1 − θkθ

′

k+1)
2
)

+ (y′, y′)

=2(y, y)(θ′kθk+1 − θkθ
′

k+1)
2 + (y′, y′),
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i.e.,

(12) (u′

k, u
′

k) + 2(v′k, v
′

k) + (u′

k+1, u
′

k+1) = (y′, y′) + 2(θ′kθk+1 − θkθ
′

k+1)
2(y, y).

Besides,

(Quk, u
′

k) =
(

Q(θ2ky), (θ
2
ky)

′
)

= θ2k(Qy, 2θkθ
′

ky + θ2ky
′) = 2θ3kθ

′

k(Qy, y) + θ4k(Qy, y′)

and

(Qvk, v
′

k) =
(

Q(θkθk+1y), (θkθk+1y)
′
)

= θkθk+1

(

Qy, (θkθk+1)
′y + θkθk+1y

′
)

= θkθk+1(θkθk+1)
′(Qy, y) + θ2kθ

2
k+1(Qy, y′).

Hence, in view of (11), we have the following equalities on the compact interval [kℓ/2+
ℓ/2, kℓ/2 + ℓ]:

(Quk, u
′

k) + 2(Qvk, v
′

k) + (Quk+1, u
′

k+1)

=2(Qy, y)(θ3kθ
′

k + θkθ
′

kθ
2
k+1 + θ2kθk+1θ

′

k+1 + θ3k+1θ
′

k+1)

+ (Qy, y′)(θ4k + 2θ2kθ
2
k+1 + θ4k+1)

=2(Qy, y)
(

θ2k(θkθ
′

k + θk+1θ
′

k+1) + θ2k+1(θkθ
′

k + θk+1θ
′

k+1)
)

+ (Qy, y′)(θ2k + θ2k+1)
2

=(Qy, y′),

i.e.,

(13) (Quk, u
′

k) + 2(Qvk, v
′

k) + (Quk+1, u
′

k+1) = (Qy, y′).

Since Q = Q∗, the equalities

(14)

(Qu′

k, uk) + 2(Qv′k, vk) + (Qu′

k+1, uk+1)

=(u′

k, Quk) + 2(v′k, Qvk) + (u′

k+1, Quk+1)

=(Qy, y′) = (Qy′, y)

hold on the same interval.
Owing to (12)–(14) we conclude that the last integrand in (9) equals (10) for every

k ∈ Z. Hence, according to (9) and (6), we have the equalities

∞
∑

k=−∞

〈H0uk, uk〉+ 2
∞
∑

k=−∞

〈H0vk, vk〉

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(

(y′, y′) + 2(θ′kθk+1 − θkθ
′

k+1)
2(y, y)− (Qy, y′)− (Qy′, y)

)

dx

=

∞
∫

−∞

(

(y′ −Qy, y′)− (Qy′, y)
)

dx+ 2

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θ′kθk+1 − θkθ
′

k+1)
2 (y, y) dx

=〈H0y, y〉+ 2
∞
∑

k=−∞

ℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θ′kθk+1 − θkθ
′

k+1)
2 (y, y) dx.

This immediately implies the required formula (5). �

Example. Let us give an example of a real-valued function θ ∈ C∞(R) that satisfies the
equality supp θ = [0, ℓ] and condition (4). Recall that this function is used in Lemma 1.
We choose a function η0 ∈ C∞(R) such that supp η0 = [0, ℓ] and η0(x) > 0 for every
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x ∈ (0, ℓ). Let η denote the ℓ-periodic extension of the function η20 over the whole R. We
introduce the real-valued function

θ(x) :=
η0(x)

√

η(x) + η(x− h/2)
of x ∈ R.

Since η(x)+η(x−h/2) > 0 for every x ∈ R, this function is well defined and satisfies the
conditions θ ∈ C∞(R) and supp θ = [0, ℓ]. It also satisfies condition (4). Indeed, given
x ∈ [ℓ/2, ℓ], we obtain the equalities

θ2(x) + θ2(x− ℓ/2) =
η20(x)

η(x) + η(x− ℓ/2)
+

η20(x− ℓ/2)

η(x− ℓ/2) + η(x− ℓ)

=
η20(x) + η20(x− ℓ/2)

η(x) + η(x− ℓ/2)
= 1

in view of the definition of η.

4. Basic Lemma

We put

κ := max
{

|θ′(x)| : 0 ≤ x ≤ ℓ
}

.

Lemma 2. Let Ω be an nonempty open subset of R. Then there exists n ∈ Z such that

ωℓ
n ∩ Ω 6= ∅ and

(15) ν(ωℓ
n) ≤ λ(Ω) + 8κ2.

Proof. It follows from property (4) and the definition of κ that 0 ≤ θk(x) ≤ 1 and
|θ′k(x)| ≤ κ for arbitrary k ∈ Z and x ∈ R. Therefore (θ′kθk+1 − θkθ

′

k+1)
2(x) ≤ 4κ2;

hence, owing to Lemma 1, the inequality

(16) 〈H0y, y〉 ≥
∞
∑

k=−∞

〈H0uk, uk〉+ 2

∞
∑

k=−∞

〈H0vk, vk〉 − 8κ2〈y, y〉

holds true for every y ∈ D(H ′

0).
Note that the equality

(17) 〈y, y〉 =
∞
∑

k=−∞

〈uk, uk〉+ 2

∞
∑

k=−∞

〈vk, vk〉

is valid for every y ∈ D(H ′

0). Indeed,

∞
∑

k=−∞

〈uk, uk〉 =
∞
∑

k=−∞

〈θ2ky, θ
2
ky〉 =

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2

(θ2ky, θ
2
ky)dx

=

∞
∑

k=−∞

kℓ/2+ℓ/2
∫

kℓ/2

θ4k(y, y)dx+

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

θ4k(y, y)dx

=
∞
∑

j=−∞

jℓ/2+ℓ
∫

jℓ/2+ℓ/2

θ4j+1(y, y)dx+
∞
∑

k=−∞

ℓ/2+ℓ
∫

kℓ/2+ℓ/2

θ4k(y, y)dx

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θ4k+1 + θ4k)(y, y)dx.
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Besides,
∞
∑

k=−∞

〈vk, vk〉 =
∞
∑

k=−∞

〈θkθk+1y, θkθk+1y〉

=

∞
∑

k=−∞

ℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θkθk+1y, θkθk+1y)dx

=
∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

θ2kθ
2
k+1(y, y)dx.

Therefore

∞
∑

k=−∞

〈uk, uk〉+ 2
∞
∑

k=−∞

〈vk, vk〉 =
∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(θ2k + θ2k+1)
2 (y, y)dx

=

∞
∑

k=−∞

kℓ/2+ℓ
∫

kℓ/2+ℓ/2

(y, y)dx = 〈y, y〉.

It follows from the definition of λ(Ω) that for every number δ > 0 there exists a
function y ∈ D(H ′

0) such that supp y ⊂ Ω and

〈H0y, y〉 < (λ(Ω) + δ)〈y, y〉.

Applying (16) and (17) to the last formula, we obtain the inequality

∞
∑

k=−∞

〈H0uk, uk〉+ 2

∞
∑

k=−∞

〈H0vk, vk〉

− (8κ2 + λ(Ω) + δ)

( ∞
∑

k=−∞

〈uk, uk〉+ 2
∞
∑

k=−∞

〈vk, vk〉

)

< 0.

Grouping summands, we write this inequality in the form
∞
∑

k=−∞

(

〈H0uk, uk〉 − (λ(Ω) + 8κ2 + δ)〈uk, uk〉
)

+2
∞
∑

k=−∞

(

〈H0vk, vk〉 − (λ(Ω) + 8κ2 + δ)〈vk, vk〉
)

< 0.

Here, at least one of the summands is less than zero. Let a negative summand have an
index k = k0. Then uk0

6≡ 0 or vk0
6≡ 0 for otherwise this summand would equal to zero.

Hence,

∅ 6= (suppuk0
) ∪ (supp vk0

) ⊂ Ω ∩ ωℓ
k0
,

i.e., ωℓ
k0

∩ Ω 6= ∅. Besides,

〈H0wk0
, wk0

〉

〈wk0
, wk0

〉
< λ(Ω) + 8κ2 + δ,

with wk0
:= uk0

or wk0
:= vk0

. It follows from this inequality and the inclusion
suppwk0

⊂ ωℓ
k0

that

λ(ωℓ
k0
) < λ(Ω) + 8κ2 + δ.

Passing here to the limit as δ → 0+, we obtain the required inequality (15). �
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5. Proofs of the main results

We will prove Theorems 1 and 2 with the help of Lemma 2.

Proof of Theorem 1. Sufficiency. Assume that there exists a number α ∈ R such that
λ(ωℓ

n) ≥ α for every n ∈ Z. Then, according to Lemma 2 for Ω := R, we have the
inequalities

λ(R) ≥ λ(ωℓ
n)− 8κ2 ≥ α− 8κ2.

Hence, H ′

0 ≥ (α− 8κ2)I, where I is the identity operator. Then the operator H0 is also
bounded below so that it is selfadjoint due to [12, Corollary 2]. Sufficiency is proved.

Necessity is obvious. Indeed, if H0 ≥ βI for certain β ∈ R, then ν(ωℓ
n) ≥ β for every

n ∈ Z. �

Proof of Theorem 2. Sufficiency. Assume that λ(ωℓ
n) → +∞ as |n| → ∞. Then, owing

to Theorem 1, the operator H0 is bounded below and selfadjoint; hence, H0 = H. Let
us prove that its spectrum is discrete, i.e., σess(H0) = ∅. We arbitrarily choose a number
r > 0. By our assumption, there exists a number nr ∈ N such that

λ(ωℓ
n) > r whenever |n| ≥ nr.

Let us use Lemma 2 for the open set

Ω :=
(

−∞,−
nrℓ

2
− ℓ

)

∪
(nrℓ

2
+ ℓ,∞

)

.

Observe that ωℓ
n ∩ Ω 6= ∅ ⇒ |n| ≥ nr. Therefore it follows from this lemma that

(18) 〈H0y, y〉 ≥ (r − 8κ2)〈y, y〉 whenever y ∈ D(H ′

0) and supp y ⊂ Ω.

We put γ := nrℓ/2+2ℓ and consider the decomposition of the Hilbert space L2(R,Cm)
in the orthogonal sum of its subspaces

L2(R) = L2(−∞,−γ]⊕ L2[−γ, γ]⊕ L2[γ,∞).

For the sake of brevity of formulas in the proof, we omit the expression C
m and ex-

terior parentheses in designations of spaces of vector-valued functions. For example,
L2(−∞,−γ] stands for the space L2((−∞,−γ],Cm). Besides, we identify vector-valued
functions given on an interval G ⊂ R with their extensions by zero over the whole R. In
this sense, L2(G) is considered as a subspace of L2(R). With the operator H0 and this
decomposition we associate three unbounded operators Hjy := −y[2], where j ∈ {1, 2, 3}.
They are defined respectively on the linear manifolds

D(H1) :=
{

y ∈ L2(−∞,−γ] : y, y[1] ∈ ACloc(−∞,−γ],

y(−γ) = y[1](−γ) = 0, y[2] ∈ L2(−∞,−γ]
}

,

D(H2) :=
{

y ∈ L2[−γ, γ] : y, y[1] ∈ AC[−γ, γ],

y(−γ) = y[1](−γ) = y(γ) = y[1](γ) = 0, y[2] ∈ L2[−γ, γ]
}

,

D(H3) :=
{

y ∈ L2[γ,∞) : y, y[1] ∈ ACloc[γ,∞),

y(γ) = y[1](γ) = 0, y[2] ∈ L2[γ,∞)
}

.

Each operator Hj is closed and a restriction of H0. This follows from the fact that

(Ojy)
[1] = Oj(y

[1]) and (Ojy)
[2] = Oj(y

[2]) for every y ∈ D(Hj), where Oj is the operator
of the extension of a function by zero from the corresponding set onto the whole R. Hence,
H0 is an extension of the orthogonal sum H1 ⊕H2 ⊕H3 of these operators. Since H0 is
bounded below, all H1, H2, H3 are also bounded below.

We let HF
j denote the selfadjoint Friedrichs extension of the semibounded operator

Hj , with j ∈ {1, 2, 3}. The spectrum of HF
2 is discrete [16]. Owing to property (18) and

the definition of γ, the operators HF
1 and HF

3 are bounded below by the number r−8κ2.
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The resolvents of the selfadjoint operators H0 and HF
1 ⊕HF

2 ⊕HF
3 in L2(R) differ in an

operator with finite rank. Hence,

σess(H0) = σess(H
F
1 ) ∪ σess(H

F
3 ),

which yields the equality

σess(H0) ∩ (−∞, r − 8κ2) = ∅.

Thus, σess(H0) = ∅ because the number r > 0 is arbitrarily chosen. Sufficiency is proved.
Necessity. Assume that H0 is a bounded below selfadjoint operator with discrete

spectrum. Let us deduce property (3) by means of proof by contradiction. Suppose
the contrary, i.e., there exists a number r > 0 and sequence (nk)

∞

k=1 ⊂ Z such that
|nk| → ∞ as k → ∞ and that λ(ωℓ

nk
) < r. Passing to a subsequence, we may suppose

that ωℓ
nk

∩ ωℓ
np

= ∅ whenever k 6= p. It follows from the definition of λ(ωℓ
nk
) that for

every integer k ≥ 1 there exists a vector-valued function yk ∈ D(H ′

0) \ {0} such that
supp yk ⊂ ωℓ

nk
and 〈H ′

0yk − ryk, yk〉 < 0. Let G be a linear span of {yk : 1 ≤ k ∈ Z}.
Since supp yk ∩ supp yp = ∅ whenever k 6= p, we deduce the properties dimG = ∞ and

〈H0y − ry, y〉 < 0 for every y ∈ G \ {0}.

Therefore, applying [3, Chapter 1, Theorem 13] to the selfadjoint operator H0, we con-
clude that the set σ(H0)∩(−∞, r) is infinite. This contradicts our assumption, according
to which the spectrum of H0 is bounded below and does not contain any limit points.
Necessity is proved. �

Appendix

Let n ∈ Z. In the complex separable Hilbert space L2(ωℓ
n,C

m) we consider the
operator HD(ωℓ

n) which is the restriction of the maximal operator H on the set of all
vector-valued functions y ∈ D(H) that satisfy the boundary conditions y(nℓ/2) = 0 and
y(nℓ/2 + ℓ) = 0. The operator HD(ωℓ

n) is selfadjoint and bounded below [9].

Theorem A. The operator HD(ωℓ
n) is the Friedrichs extension of the minimal operator

H0(ω
ℓ
n) generated by the differential expression (1) on the interval ωℓ

n.

Since the spectrum of HD(ωℓ
n) is discrete [16], it follows from Theorem A and prop-

erties of the Friedrichs extension that the first eigenvalue of HD(ωℓ
n) coincides with the

number λ(ωℓ
n) introduced in Section 2.

Let us outline the proof of Theorem A. This theorem is known in the case where q = 0
and m = 1. If q = 0 and m ≥ 2, the minimal operator H0(ω

ℓ
n) is the orthogonal sum

of m scalar minimal operators. It follows then from the construction of the Friedrichs
extension (see, e.g., [15, Section 124]) that the operator HD(ωℓ

n) is the orthogonal sum
of m Friedrichs extensions of the scalar minimal operators. If q 6= 0 and m ≥ 1, then,
using the reasoning from [14], we may show that the operator HD(ωℓ

n) is the form-sum
of the free Hamiltonian (q ≡ 0) and the quadratic form corresponding to the singular
potential. The latter is zero relative form-bounded. This implies Theorem A in view of
KLMN theorem.
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