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WEAK AND VAGUE CONVERGENCE OF SPECTRAL SHIFT

FUNCTIONS OF ONE-DIMENSIONAL SCHRÖDINGER OPERATORS

WITH COUPLED BOUNDARY CONDITIONS

JOHN MURPHY AND ROGER NICHOLS

Dedicated with great pleasure to Konstantin Makarov on the occasion of his 60th birthday

Abstract. We prove weak and vague convergence results for spectral shift functions

associated with self-adjoint one-dimensional Schrödinger operators on intervals of the
form (−ℓ, ℓ) to the full-line spectral shift function in the limit ℓ → ∞ for a class
of coupled boundary conditions. The boundary conditions considered here include
periodic boundary conditions as a special case.

1. Introduction

We consider the limit ℓ→ ∞ of spectral shift functions corresponding to restrictions of
pairs of one-dimensional Schrödinger operators to intervals (−ℓ, ℓ) with coupled boundary
conditions at the endpoints of the form

(1.1)

(

u(ℓ)
u′(ℓ)

)

= eiφ
(

a 0
b a−1

)(

u(−ℓ)
u′(−ℓ)

)

,

where φ ∈ [0, 2π), a ∈ R\{0}, and b ∈ R are fixed, and obtain weak and vague convergence
results for the corresponding sequence of spectral shift functions. The class of coupled
boundary conditions considered here includes periodic boundary conditions (viz., φ = 0,
a = 1, and b = 0) and, more generally, quasi-periodic boundary conditions (viz., φ ∈
[0, 2π), a = 1, b = 0) as special cases.

The infinite volume limit of spectral shift functions of pairs of Schrödinger opera-
tors has been studied by many authors (e.g., [3], [4], [7], [12], [13], [17], [8], [9]). Simply

stated, the problem is this: consider two Schrödinger operatorsHℓ andH
(0)
ℓ in the Hilbert

space L2((−ℓ, ℓ)n; dnx) which are self-adjoint realizations of the differential expressions
−∆+V and −∆, respectively, with appropriate fixed boundary conditions on the bound-
ary ∂(−ℓ, ℓ)n and a measurable function V : Rn → R which decays in some appropri-

ate sense at infinity. If ξ( · ;Hℓ, H
(0)
ℓ ) denotes the spectral shift function for the pair

(Hℓ, H
(0)
ℓ ), ℓ ∈ N, normalized to vanish identically in a neighborhood of −∞, in what

manner does the sequence {ξ( · ;Hℓ, H
(0)
ℓ )}∞ℓ=1 converge to the normalized spectral shift

function ξ( · ;H,H(0)) for the pair H and H(0), the self-adjoint realizations of −∆ + V
and −∆ in L2(Rn; dx)?

We refer to [8] for a detailed history of work on the problem up to about 2012, and
recall here only those results pertaining to the one-dimensional context, n = 1. First,
it is known that one cannot expect pointwise convergence of spectral shift functions in
the infinite volume limit for the following simple reason. The spectral shift function

2010 Mathematics Subject Classification. Primary 34L05, 34L25, 34L40; Secondary 34B24, 34B27,

47E05.
Key words and phrases. Coupled boundary conditions, Schrödinger operator, spectral shift function,

vague convergence, weak convergence.

378



INFINITE VOLUME LIMITS OF SPECTRAL SHIFT FUNCTIONS 379

ξ( · ;Hℓ, H
(0)
ℓ ) is the difference of the eigenvalue counting functions for Hℓ and H

(0)
ℓ

(cf., e.g., the remarks following [25, Theorem 8.7.2]), so it is necessarily integer-valued
almost everywhere. On the other hand, ξ( · ;H,H(0)), which coincides with the scattering
phase for H and H(0) up to a constant multiple (cf., e.g., the remark following [26,
Theorem 5.4.3]), is a continuous function of λ > 0 which goes to zero as λ→ ∞. Clearly,

the sequence of integer valued functions ξ( · ;Hℓ, H
(0)
ℓ ) will not converge pointwise to a

function that is non-constant and continuous on (0,∞).
In the context of spectral shift functions, vague convergence has proven to be a more

suitable mode of convergence. One recalls that a sequence {fℓ}
∞
ℓ=1 of locally integrable

functions on R is said to converge vaguely to the locally integrable function f if for every
g ∈ C0(R), with C0(R) denoting the set of all compactly supported continuous functions
on R, one has

(1.2) lim
ℓ→∞

∫

R

fℓ(λ) g(λ) dλ =

∫

R

f(λ) g(λ) dλ.

Borovyk and Makarov ([4], see also [3]) investigated the infinite volume limit problem for
spectral shift functions with the half-line (0,∞) playing the role of the infinite volume and
finite intervals of the form (0, r), with V ∈ L1((0,∞); (1+x) dx) and Dirichlet boundary

conditions at the endpoints of (0, r). They proved vague convergence of ξ( · ;Hr, H
(0)
r )

to ξ( · ;H,H(0)) as the right endpoint r tends to ∞,

(1.3) lim
r→∞

∫

R

ξ(λ;Hr, H
(0)
r ) g(λ) dλ =

∫

R

ξ(λ;H,H(0)) g(λ) dλ, g ∈ C0(R),

as well as the interesting assertion that the half-line spectral shift function may be re-
covered pointwise in terms of the following Cesáro limit:

(1.4) lim
R→∞

1

R

∫ R

0

ξ(λ;Hr, H
(0)
r ) dr = ξ(λ;H,H(0)), λ ∈ R\(σp(H) ∪ {0}),

where σp(H) denotes the point spectrum of H. In [8], Gesztesy and one of the present
authors extended the vague convergence result in (1.3) to all separated self-adjoint bound-
ary conditions,

(1.5) cos(α)u(0) + sin(α)u′(0) = 0, cos(β)u(r) + sin(β)u′(r) = 0,

where α, β ∈ [0, π) are fixed, under the slightly weaker assumption that the potential V
belongs to L1((0,∞); dx). Actually, convergence is strengthened in [8] to the result that

(1.6) lim
r→∞

∫

R

ξ(λ;Hr, H
(0)
r )

1 + λ2
f(λ) dλ =

∫

R

ξ(λ;H,H(0))

1 + λ2
f(λ) dλ

for every bounded continuous function f on R and any set of separated self-adjoint
boundary conditions at the endpoints of (0, r). The statement in (1.6) means that

(1 + | · |2)−1ξ( · ;Hr, H
(0)
r ) converges weakly to (1 + | · |2)−1ξ( · ;H,H(0)) as r → ∞. Note

that (1.6) immediately implies (1.3) by choosing f(λ) = (1 + λ2)g(λ) in (1.6). Also, the
inclusion of the weight (1 + λ2)−1 in (1.6) is crucial; otherwise, the integrals may be
divergent.

A closer look at [8] reveals that the arguments presented there extend to the case where
the infinite volume is R, and the finite intervals take the form (−ℓ, ℓ), with separated
self-adjoint boundary conditions at the endpoints (cf. [9, § 4(I)]),

(1.7) cos(α)u(−ℓ) + sin(α)u′(−ℓ) = 0, cos(β)u(ℓ) + sin(β)u′(ℓ) = 0.

Infinite Fredholm determinants and convergence properties of resolvents of the finite in-
terval Schrödinger operators as r → ∞ (or ℓ → ∞) play a central role in [8]. This
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determinant approach led to the development of abstract criteria in [9] for vague con-
vergence of spectral shift functions in terms of the convergence properties of associated
sequences of Birman–Schwinger-type operators (i.e., resolvents conjugated from the left
and/or right with suitable factors of the potential) in the Hilbert–Schmidt or trace classes.

Although the question of vague convergence of spectral shift functions is answered in
[8] for all separated self-adjoint boundary conditions (1.7), which includes both Dirichlet
(viz., α = β = 0) and Neumann (viz., α = β = π/2) boundary conditions as special cases,
the analogous problem for coupled self-adjoint boundary conditions, which include peri-
odic boundary conditions as a special case, is not treated. Moreover, coupled boundary
conditions are not discussed in the applications in [9].

In this paper, we extend (1.6) to all coupled boundary conditions of the form (1.1) and
for V ∈ L1(R; dx) by employing Krein-type resolvent identities, in particular their precise
form for regular Sturm–Liouville operators developed recently in [6], in order to verify
and apply the abstract convergence criteria from [9]. A Krein-type resolvent identity
relates the resolvent operators of two self-adjoint extensions of a symmetric operator
with equal deficiency indices, and abstract identities of this type have been presented in
various sources (cf., e.g., [1, § VII.84], [20, § 14.6], and [22, Lemma 2.30]) and studied in
both abstract and concrete applications by a number of authors (e.g., [2], [5], [6], [10],
[15], [16], [18], and [19]).

In general, coupled self-adjoint boundary conditions for a regular Sturm–Liouville
operator on the interval (−ℓ, ℓ) are of the form (cf., e.g., [6, Theorem 2.5], [24, Theo-
rem 13.15])

(1.8)

(

u(ℓ)
u′(ℓ)

)

= eiφ
(

R1,1 R1,2

R2,1 R2,2

)(

u(−ℓ)
u′(−ℓ)

)

,

where φ ∈ [0, 2π) and the matrix R = [Rj,k]16j,k62 belongs to SL2(R), that is R ∈
R

2×2 and det(R) = 1. Now, if W ∈ L1((−ℓ, ℓ); dx) and Hℓ,R,φ denotes the self-adjoint
realization of the differential expression

(1.9) τ = −
d2

dx2
+W

in L2((−ℓ, ℓ); dx) with the boundary conditions in (1.8) and Hℓ,D denotes the self-adjoint
realization of τ in L2((−ℓ, ℓ); dx) with Dirichlet boundary conditions, then the difference
of the resolvents of Hℓ,R,φ and Hℓ,D is finite rank with rank at most equal to two. In
fact, if R1,2 = 0, then the difference is precisely rank one, owing to the fact that Hℓ,R,φ

and Hℓ,D are not relatively prime (see [1, § 84]) with respect to the underlying minimal
operator when R1,2 = 0, and (cf. [6])

(1.10)

(

Hℓ,D − zIL2((−ℓ,ℓ);dx)

)−1
−
(

Hℓ,R,φ − zIL2((−ℓ,ℓ);dx)

)−1

= qℓ,R,φ(z)
−1(uR,φ(z, · ), · )L2((−ℓ,ℓ);dx)uR,φ(z, · ), z ∈ ρ(Hℓ,D) ∩ ρ(Hℓ,R,φ),

where uR,φ(z, · ) is an spanning vector for ker(Hℓ,max − zIL2((−ℓ,ℓ);dx)) (the operator

Hℓ,max is the maximal operator associated to τ in L2((−ℓ, ℓ); dx) and is defined precisely
in Section 2) and qℓ,R,φ( · ) is a nonvanishing complex-valued function on ρ(Hℓ,D) ∩
ρ(Hℓ,R,φ).

In order to apply the abstract convergence criteria of [9], it is necessary to prove
appropriate convergence results for Birman–Schwinger-type operators for the finite in-
terval Schrödinger operator with coupled boundary conditions in the limit ℓ → ∞.
To do this, we make use of the Krein identity in (1.10) to relate the corresponding
Birman–Schwinger-type operators for the finite interval Schrödinger operators with cou-
pled boundary conditions to the Birman–Schwinger-type operators for the finite-interval
Schrödinger operators with Dirichlet boundary conditions, plus a rank one term. The
required convergence properties of the Dirichlet Birman–Schwinger-type operators as
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ℓ→ ∞ are known from [8], so we are left to analyze the limiting behavior as ℓ→ ∞ of the
remaining rank one term. A precise knowledge, in particular the explicit ℓ-dependence,
of the factor qℓ,R,φ(z) and the function uℓ,R,φ(z, · ) is essential to this approach.

We should note that if R1,2 6= 0, then the resolvent difference on the left-hand side in
(1.10) is precisely rank two, and

(

Hℓ,D − zIL2((−ℓ,ℓ);dx)

)−1
−

(

Hℓ,R,φ − zIL2((−ℓ,ℓ);dx)

)−1

=

2
∑

j,k=1

[

Qℓ,R,φ(z)
−1

]

j,k
(uk(z, · ), · )L2((−ℓ,ℓ);dx)uj(z, · ),(1.11)

z ∈ ρ(Hℓ,D) ∩ ρ(Hℓ,R,φ),

where {uj,R,φ(z, · )}j=1,2 is an appropriate basis for ker(Hℓ,max − zIL2((−ℓ,ℓ);dx)) and

Qℓ,R,φ( · ) is a nonsingular C
2×2-valued function on ρ(Hℓ,D) ∩ ρ(Hℓ,R,φ). In this case,

the problem of vague convergence of spectral shift functions is slightly more delicate due
to the complicated nature of the coefficients in the rank two term of the Krein formula
(1.11) and we will return to this elsewhere.

Next, we briefly summarize the organization and contents of each section of this pa-
per: In Section 2, we rigorously define the self-adjoint Schrödinger operators H, H(0)

in L2(R; dx) acting formally as −d2/dx2 + V and −d2/dx2, respectively, and their re-

strictions Hℓ, H
(0)
ℓ to (−ℓ, ℓ) with coupled self-adjoint boundary conditions of the form

(1.1). We also introduce the restrictions Hℓ,D, H
(0)
ℓ,D to (−ℓ, ℓ) with Dirichlet boundary

conditions. We discuss their basic properties and recall Krein’s resolvent identity which
relates the resolvents of Hℓ and Hℓ,D via a rank one term. In Section 3, which contains
the bulk of our major analysis, we use the Krein resolvent identity to study convergence
properties in the limit ℓ→ ∞ of the Birman–Schwinger-type operators associated to Hℓ

and H
(0)
ℓ . The results in Lemmata 3.3, 3.4, and 3.5 are fundamental to our approach,

and they are precisely the results that ultimately yield vague convergence of spectral
shift functions and the analogue of (1.6). In Section 4, we combine the convergence
results from Section 3 with the abstract convergence criteria from [9] to obtain weak and
vague convergence of spectral shift functions in the limit ℓ→ ∞ for the class of coupled
boundary conditions in (1.1). To our knowledge, these are the first results of their type
for classes of coupled boundary conditions. Appendix A recalls some basic convergence
results for trace ideals that are used throughout this paper. For completeness, Appen-
dix B contains a summary of the convergence criteria from [9], suitably tailored for the
applications to Schrödinger operators in L2(R; dx) and L2((−ℓ, ℓ); dx) to be studied.

Finally, we comment on some of the basic notation used throughout this paper. Let
H be a separable complex Hilbert space, (·, ·)H the scalar product in H (linear in the
second argument), and IH the identity operator in H.

If T is a linear operator mapping (a subspace of) a Hilbert space into another, then
dom(T ) and ker(T ) denote the domain and kernel (i.e., null space) of T . The closure
of a closable operator S is denoted by S. The spectrum and resolvent set of a closed
linear operator in a Hilbert space will be denoted by σ(·) and ρ(·), respectively. The
point spectrum (i.e., the set of eigenvalues) of a linear operator T will be denoted by
σp(T ). The quadratic form sum of two self-adjoint operators A and W will be denoted
by A+q W .

The convergence of bounded operators in the strong operator topology (i.e., pointwise
limits) will be denoted throughout by s-lim. The Banach spaces of bounded and com-
pact linear operators on a separable complex Hilbert space H are denoted by B(H) and
B∞(H), respectively; the corresponding ℓp-based trace ideals will be denoted by Bp(H),
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their norms are abbreviated by ‖ · ‖Bp(H), p ∈ [1,∞). Moreover, trH(A) denotes the
corresponding trace of a trace class operator A ∈ B1(H).

For any closed finite interval [a, b] ⊂ R, AC([a, b]) denotes the set of absolutely con-
tinuous functions defined on [a, b]. The symbol sgn(·) denotes the signum function on R,

(1.12) sgn(x) =







x

|x|
, x ∈ R\{0},

0, x = 0.

We denote by C(R) the space of continuous functions on R, by C0(R) the continuous
functions on R with compact support, and by Cb(R) the bounded continuous functions on
R. L1

loc(R; dx) denotes the set of (equivalence classes of) locally integrable (with respect
to Lebesgue measure) functions on R, and H1(R) (resp., H1(a, b)) is the Sobolev space
of order one on R (resp., (a, b) ⊂ R) (cf., e.g., [20, Appendix E]). If u is a function on a
set Σ, then the restriction of u to a subset Ω ⊂ Σ will be denoted by u|Ω. Finally, “resp.”
is used as an abbreviation for “respectively,” and “a.e” is used as an abbreviation for
“almost everywhere” and “almost every.”

2. One-dimensional Schrödinger operators, their properties, and Krein’s

formula

In this preparatory section, we rigorously define the one-dimensional Schrödinger ope-
rators and their restrictions to finite intervals of the form (−ℓ, ℓ), ℓ ∈ N, to be studied
in the sequel and recall some of their basic properties. In particular, we recall a spe-
cial case of Krein’s resolvent identity which relates the resolvent of Schrödinger-type
operators on (−ℓ, ℓ) with the coupled boundary conditions in (1.1) to the resolvent of
the Schrödinger-type operator with Dirichlet boundary conditions at the endpoints. We
begin by introducing the following set of hypotheses which also introduce much of the
notation to be employed in the sequel.

Hypothesis 2.1. (i) Suppose

(2.1) V ∈ L1(R; dx) is real-valued a.e.,

and

(2.2) M :=

∫ ∞

−∞

|V (x)| dx.

For each ℓ ∈ N, let Vℓ denote the restriction of V to (−ℓ, ℓ) so that

(2.3) Vℓ(x) = V |(−ℓ,ℓ)(x) for a.e. x ∈ (−ℓ, ℓ),

and define

Dℓ = {f ∈ L2((−ℓ, ℓ); dx) | f, f ′ ∈ AC([−ℓ, ℓ]), −f ′′ + Vℓf ∈ L2((−ℓ, ℓ); dx)}.(2.4)

Introduce the differential expression τ by

(2.5) τ = −
d2

dx2
+ V (x),

and let Hℓ,max denote the maximal operator associated to τ in L2((−ℓ, ℓ); dx) so that

(Hℓ,maxf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (−ℓ, ℓ),

f ∈ dom(Hℓ,max) = Dℓ, ℓ ∈ N.
(2.6)

(ii) Let V (x) and Vℓ(x), ℓ ∈ N, be factored according to

V (x) = u(x)v(x), v(x) = |V (x)|1/2, u(x) = v(x) sgn(V (x)),

for a.e. x ∈ R,
(2.7)
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and

Vℓ(x) = V |(−ℓ,ℓ)(x), vℓ(x) = v|(−ℓ,ℓ)(x), uℓ(x) = u|(−ℓ,ℓ)(x),

for a.e. x ∈ (−ℓ, ℓ), ℓ ∈ N.
(2.8)

(iii) For each ℓ ∈ N, let Hℓ,D denote the self-adjoint Dirichlet operator defined in
L2((−ℓ, ℓ); dx) by

(2.9)
(Hℓ,Df)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (−ℓ, ℓ),

f ∈ dom(Hℓ,D) = {g ∈ Dℓ | g(−ℓ) = g(ℓ) = 0}.

(iv) Fix a ∈ R\{0}, b ∈ R, and φ ∈ [0, 2π). For each ℓ ∈ N, let Hℓ denote the self-adjoint
operator defined in L2((−ℓ, ℓ); dx) by

(2.10)

(Hℓf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (−ℓ, ℓ),

f ∈ dom(Hℓ) =

{

g ∈ Dℓ

∣

∣

∣

∣

(

g(ℓ)
g′(ℓ)

)

= eiφ
(

a 0
b a−1

)(

g(−ℓ)
g′(−ℓ)

)}

, ℓ ∈ N.

Moreover, let

(2.11) λ(0)∞ := −|b(a−1 + a)|
[

1 + 2|b(a−1 + a)|
]

.

(v) Let H denote the self-adjoint operator defined in L2(R; dx) by

(2.12)

(Hf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ R,

f ∈ dom(H) =
{

g ∈ L2(R; dx)
∣

∣ g, g′ ∈ AC([−R,R]) for all R > 0,

−g′′ + V g ∈ L2(R; dx)
}

.

Assuming Hypothesis 2.1, we introduce the following notation for the resolvent
operators of Hℓ,D and Hℓ:

Rℓ,D(z) =
(

Hℓ,D − zIL2((−ℓ,ℓ);dx)

)−1
, z ∈ ρ(Hℓ,D),(2.13)

Rℓ(z) =
(

Hℓ − zIL2((−ℓ,ℓ);dx)

)−1
, z ∈ ρ(Hℓ), ℓ ∈ N,(2.14)

and for the full-line Schrödinger operator H:

R(z) =
(

H − zIL2(R;dx)

)−1
, z ∈ ρ(H).(2.15)

In the special case when V (x) = 0 for a.e. x ∈ R, we append the superscript (0), and

write H
(0)
ℓ,D, H

(0)
ℓ , H(0), R

(0)
ℓ,D(·), R

(0)
ℓ (·), R(0)(·) for the corresponding “free” Schrödinger

operators and their resolvents.
In light of the assumption in (2.1), one immediately infers that

(2.16) u, v ∈ L2(R; dx), uℓ, vℓ ∈ L2((−ℓ, ℓ); dx), ℓ ∈ N.

Note that Hℓ (resp., Hℓ,D) is the self-adjoint restriction of Hℓ,max with coupled (resp.,
Dirichlet) boundary conditions at the endpoints of (−ℓ, ℓ). Alternatively, Hℓ (resp., Hℓ,D)
is the unique semibounded (from below) self-adjoint operator associated via the KLMN
Theorem (cf., e.g., [22, Theorem 6.24 & Corollary 9.36]) with the closed, semibounded
symmetric sesquilinear form qℓ (resp., qℓ,D) defined by (cf., e.g., [6, (5.3)] and [20, § 10.2])

qℓ[f, g] =

∫ ℓ

−ℓ

[

f ′(x)g′(x) + V (x)f(x)g(x)
]

dx− b(a−1 + a)f(−ℓ)g(−ℓ),(2.17)

f, g ∈ dom(qℓ) =
{

h ∈ H1(−ℓ, ℓ)
∣

∣h(ℓ) = aeiφh(−ℓ)
}

, ℓ ∈ N,
(

resp., qℓ,D[f, g] =

∫ ℓ

−ℓ

[

f ′(x)g′(x) + V (x)f(x)g(x)
]

dx,(2.18)

f, g ∈ dom(qℓ,D) =
{

h ∈ H1(−ℓ, ℓ) |h(−ℓ) = h(ℓ) = 0
}

, ℓ ∈ N

)

.
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In particular, Hℓ is the quadratic form sum of H
(0)
ℓ and the operator of multiplication

by Vℓ,

(2.19) Hℓ = H
(0)
ℓ +q Vℓ, ℓ ∈ N.

Similarly, H is the unique semibounded self-adjoint operator associated via the KLMN
Theorem with the closed, semibounded symmetric sesquilinear form q given by

q[f, g] =

∫ ∞

−∞

[

f ′(x)g′(x) + f(x)V (x)g(x)
]

dx, f, g ∈ dom(q) = H1(R).(2.20)

In fact, H is actually the quadratic form sum of H(0) and the operator of multiplication
by V ,

(2.21) H = H(0) +q V.

A close look at the quadratic forms q, qℓ, and qℓ,D, combined with well-known esti-
mates, reveals that H, Hℓ, and Hℓ,D are bounded from below uniformly in ℓ ∈ N.

Theorem 2.2. Assume Hypothesis 2.1. If qℓ, qℓ,D, and q are defined by (2.17), (2.18),
and (2.20), respectively, then

qℓ,D[f, f ] > −M(M + 1)‖f‖2L2((−ℓ,ℓ);dx), f ∈ dom(qℓ,D), ℓ ∈ N,(2.22)

q[g, g] > −M(M + 1)‖g‖2L2(R;dx), g ∈ dom(q),(2.23)

and

qℓ[h, h] >
(

−M(1 + 2M) + λ(0)∞

)

‖h‖2L2((−ℓ,ℓ);dx), h ∈ dom(qℓ), ℓ ∈ N.(2.24)

In particular, Hℓ and Hℓ,D are uniformly bounded from below in ℓ ∈ N by the constant

(2.25) λ∞ := −M(1 + 2M) + λ(0)∞ .

Proof. Fix ℓ ∈ N, and let us consider qℓ,D first. The result is obvious if M = 0, so we
may assume without loss that M > 0. The explicit form of qℓ,D implies

(2.26) qℓ,D[f, f ] > ‖f ′‖2L2((−ℓ,ℓ);dx) −

∫ ℓ

−ℓ

|V (x)||f(x)|2 dx, f ∈ dom(qℓ,D).

By [22, Lemma 9.32], one has

sup
x∈[n,n+1]

|f(x)|2 6 ε

∫ n+1

n

|f ′(x′)|2 dx′ +

(

1 +
1

ε

)
∫ n+1

n

|f(x′)|2 dx′,

n ∈ Z, −ℓ 6 n 6 ℓ− 1, f ∈ H1((−ℓ, ℓ)), ε > 0.

(2.27)

Choosing ε = M−1 and splitting the interval [−ℓ, ℓ] into intervals of unit length, one
obtains

(2.28)

∫ ℓ

−ℓ

|V (x)||f(x)|2 dx

=

ℓ−1
∑

n=−ℓ

∫ n+1

n

|V (x)||f(x)|2 dx

6

ℓ−1
∑

n=−ℓ

{

M−1

∫ n+1

n

|f ′(x′)|2 dx′ + (1 +M)

∫ n+1

n

|f(x′)|2 dx′
}
∫ n+1

n

|V (x)| dx

6M
ℓ−1
∑

n=−ℓ

{

M−1

∫ n+1

n

|f ′(x′)|2 dx′ + (1 +M)

∫ n+1

n

|f(x′)|2 dx′
}

= ‖f ′‖2L2((−ℓ,ℓ);dx) +M(M + 1)‖f‖2L2((−ℓ,ℓ);dx), f ∈ dom(qℓ,D).



INFINITE VOLUME LIMITS OF SPECTRAL SHIFT FUNCTIONS 385

Thus, upon combining (2.26) and (2.28),

(2.29) qℓ,D[f, f ] > −M(M + 1)‖f‖2L2((−ℓ,ℓ);dx), f ∈ dom(qℓ,D).

Since ℓ ∈ N was arbitrary, (2.22) follows. A similar argument yields (2.23). The operators
Hℓ,D are bounded from below by −M(M + 1) by [14, Theorem VI.2.6].

Next, we consider qℓ with ℓ ∈ N fixed. If b = 0, then the same argument in (2.26)–
(2.29) shows that qℓ[f, f ] > −M(1+M)‖f‖2L2((−ℓ,ℓ);dx), f ∈ dom(qℓ), and (2.24) follows.

Therefore, we may assume without loss that b 6= 0. We will also assume M > 0, the case
M = 0 being slightly simpler. Then

qℓ[f, f ] > ‖f ′‖2L2((−ℓ,ℓ);dx) −

∫ ℓ

−ℓ

|V (x)||f(x)|2 dx− |b(a−1 + a)||f(−ℓ)|2,

f ∈ dom(qℓ).

(2.30)

Proceeding similar to (2.28), but choosing ε = (2M)−1 in (2.27) instead, we obtain

∫ ℓ

−ℓ

|V (x)||f(x)|2 dx 6
1

2
‖f ′‖2L2((−ℓ,ℓ);dx) +M(1 + 2M)‖f‖2L2((−ℓ,ℓ);dx),

f ∈ dom(qℓ).

(2.31)

On the other hand, choosing ε = (2|b(a−1 + a)|)−1 in (2.27) yields

−|b(a−1 + a)||f(−ℓ)|2 > −
1

2
‖f ′‖2L2((−ℓ,ℓ);dx) + λ(0)∞ ‖f‖2L2((−ℓ,ℓ);dx),

f ∈ dom(qℓ).
(2.32)

Finally, combining (2.30), (2.31), (2.32), one obtains

qℓ[f, f ] > λ∞‖f‖2L2((−ℓ,ℓ);dx), f ∈ dom(qℓ).(2.33)

�

Remark 2.3. Of course, for each ℓ ∈ N, the operators H
(0)
ℓ,D and H

(0)
ℓ are bounded below

(uniformly in ℓ ∈ N) by λ
(0)
∞ .

Using a Krein-type resolvent identity, for each fixed ℓ ∈ N, one may relate Rℓ(z) to
Rℓ,D(z) for z ∈ ρ(Hℓ)∩ρ(Hℓ,D). The precise form of these resolvent identities was worked
out in detail in [6] for all self-adjoint restrictions of the maximal operator associated
to τ , that is, for all separated and non-separated (i.e., coupled) self-adjoint boundary
conditions. In the case of a general self-adjoint restriction of Hℓ,max with the coupled
boundary conditions in (1.8), the resolvent difference Rℓ(z) − Rℓ,D(z) is at most rank
two. However, when R1,2 = 0, which is precisely the case for Hℓ, the difference is actually
rank one, owing to the fact that Hℓ and Hℓ,D are not relatively prime (see [1, § 84]) with
respect to the underlying minimal symmetric operator. For completeness, we recall the
result for the special case of the coupled boundary conditions considered in this paper.

In order to state Krein’s identity, one introduces for each z ∈ ρ(Hℓ,D) a distinguished
basis for ker(Hℓ,max − zIL2((−ℓ,ℓ);dx)), denoted by {ψj,ℓ(z, · )}j=1,2, by specifying the
boundary values

ψ1,ℓ(z,−ℓ) = 0, ψ1,ℓ(z, ℓ) = 1,

ψ2,ℓ(z,−ℓ) = 1, ψ2,ℓ(z, ℓ) = 0,
(2.34)

in addition to the requirement

(2.35) Hℓ,maxψj,ℓ(z, · ) = zψj,ℓ(z, · ), j ∈ {1, 2}.
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Of course, (2.35) implies that ψj,ℓ(z, · ) ∈ dom(Hℓ,max) satisfies the ordinary differential
equation

−ψ′′
j,ℓ(z, x) + V (x)ψj,ℓ(z, x) = zψj,ℓ(z, x), x ∈ (−ℓ, ℓ), j ∈ {1, 2},

z ∈ ρ(Hℓ,D), ℓ ∈ N.
(2.36)

In the special case when V (x) = 0 for a.e. x ∈ R, we will follow our previously adopted
convention (of appending the superscript “(0)”) and denote the maximal operator by

H
(0)
ℓ,max and the distinguished basis for ker

(

H
(0)
ℓ,max − zIL2((−ℓ,ℓ);dx)

)

by {ψ
(0)
j,ℓ (z, · )}j=1,2.

Actually, {ψ
(0)
j,ℓ (z, · )}j=1,2 may be computed explicitly, and one finds for each ℓ ∈ N,

(2.37)

ψ
(0)
1,ℓ (z, x) =

1

2

[

cos(z1/2x)

cos(z1/2ℓ)
+

sin(z1/2x)

sin(z1/2ℓ)

]

,

ψ
(0)
2,ℓ (z, x) =

1

2

[

cos(z1/2x)

cos(z1/2ℓ)
−

sin(z1/2x)

sin(z1/2ℓ)

]

,

x ∈ [−ℓ, ℓ], Im(z1/2) > 0, z ∈ ρ(Hℓ,D).

Returning to the case of general V , and with the basis {ψj,ℓ(z, · )}j=1,2 in hand, we now
recall Krein’s resolvent identity for Rℓ(z) to Rℓ,D(z).

Lemma 2.4. (Krein’s resolvent formula, [6]). Assume items (i), (iii), and (iv) in Hy-
pothesis 2.1. If {ψj,ℓ(z, · )}j=1,2 denotes the basis of ker(Hℓ,max − zIL2((−ℓ,ℓ);dx)) which
satisfies (2.34) for z ∈ ρ(Hℓ,D), then

(2.38)
qℓ(z) := a−1b+ a−2ψ′

2,ℓ(z,−ℓ) + eiφa−1ψ′
1,ℓ(z,−ℓ)

− e−iφa−1ψ′
2,ℓ(z, ℓ)− ψ′

1,ℓ(z, ℓ), z ∈ ρ(Hℓ) ∩ ρ(Hℓ,D), ℓ ∈ N,

is nonzero and

Rℓ(z) = Rℓ,D(z) + Pℓ(z), z ∈ ρ(Hℓ) ∩ ρ(Hℓ,D), ℓ ∈ N,(2.39)

where Pℓ(z) ∈ B(L2((−ℓ, ℓ); dx)) is the rank one operator defined by

(2.40) Pℓ(z) := −qℓ(z)
−1(ψℓ(z, · ), · )L2((−ℓ,ℓ);dx)ψℓ(z, · ), z ∈ ρ(Hℓ)∩ ρ(Hℓ,D), ℓ ∈ N,

with

(2.41) ψℓ(z, x) :=e
−iφa−1ψ2,ℓ(z, x) + ψ1,ℓ(z, x), x ∈ [−ℓ, ℓ], z ∈ ρ(Hℓ,D), ℓ ∈ N.

Of course, in the free case, Vℓ(x) ≡ 0, the terms in the Krein formula (2.38)–(2.41)
may be computed explicitly.

Example 2.5. In the special case when V (x) = 0 for a.e. x ∈ (−ℓ, ℓ), the terms in
(2.40), (2.38), and (2.41) may be computed explicitly, and one obtains

(2.42) R
(0)
ℓ (z) = R

(0)
ℓ,D(z) + P

(0)
ℓ (z), z ∈ ρ(H

(0)
ℓ ) ∩ ρ(H

(0)
ℓ,D), ℓ ∈ N,

where

P
(0)
ℓ (z) := −q

(0)
ℓ (z)−1

(

ψ
(0)
ℓ (z, · ), ·

)

L2((−ℓ,ℓ);dx)
ψ
(0)
ℓ (z, · ),

z ∈ ρ(H
(0)
ℓ ) ∩ ρ(H

(0)
ℓ,D), Im(z1/2) > 0, ℓ ∈ N,

(2.43)

with

q
(0)
ℓ (z) :=

b

a
+

1 + a−2

2
z1/2[tan(z1/2ℓ)− cot(z1/2ℓ)]

+
cos(φ)

a
z1/2[cot(z1/2ℓ) + tan(z1/2ℓ)], z ∈ ρ(H

(0)
ℓ ) ∩ ρ(H

(0)
ℓ,D),(2.44)

Im(z1/2) > 0, ℓ ∈ N,
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and

ψ
(0)
ℓ (z, x) := c+

cos(z1/2x)

cos(z1/2ℓ)
+ c−

sin(z1/2x)

sin(z1/2ℓ)
, x ∈ [−ℓ, ℓ],

z ∈ ρ(H
(0)
ℓ ) ∩ ρ(H

(0)
ℓ,D), Im(z1/2) > 0, ℓ ∈ N,

(2.45)

with

(2.46) c± :=
1± e−iφa−1

2
.

The assumptions on V in Hypothesis 2.1(i) (in particular, the fact that the conditions

in (2.16) hold) imply that R
(0)
ℓ,D(z)vℓ and uℓR

(0)
ℓ,Dvℓ, defined initially only on the dense

subspace dom(vℓ), extend by continuity to bounded operators on all of L2((−ℓ, ℓ); dx)
(i.e., their closures belong to B(L2((−ℓ, ℓ); dx))). In fact, one has the following Hilbert–
Schmidt and trace class containments (cf., e.g. [8, (2.69), (3.12), and (3.14)]):

uℓR
(0)
ℓ,D(z), R

(0)
ℓ,D(z)vℓ ∈ B2(L

2((−ℓ, ℓ); dx)),

uℓR
(0)
ℓ,D(z)vℓ ∈ B1(L

2((−ℓ, ℓ); dx)), z ∈ C\σ(H
(0)
ℓ,D), ℓ ∈ N,

(2.47)

and there exist ℓ-independent constants ED < 0 and CD > 0 such that

(2.48)
∥

∥

∥
uℓR

(0)
ℓ,D(z)vℓ

∥

∥

∥

B1(L2((−ℓ,ℓ);dx))
6 CD|z|−1/2, z ∈ (−∞, ED), ℓ ∈ N.

Analogous statements hold true for R(0)(z)v and uR(0)(z)v with

uR(0)(z), R(0)(z)v ∈ B2(L
2(R; dx)),

uR(0)(z)v ∈ B1(L
2(R; dx)), z ∈ C\[0,∞),

(2.49)

and

(2.50)
∥

∥

∥
uR(0)(z)v

∥

∥

∥

B1(L2(R;dx))
6 C∞|z|−1/2, z ∈ (−∞, E∞),

for suitable constants E∞ < 0 and C∞ > 0. An application of (2.42), combined with

(2.47), yields immediate analogues of (2.47) and (2.48) for H
(0)
ℓ .

Lemma 2.6. Assume items (i), (iii) and (iv) in Hypothesis 2.1 hold. If z ∈ ρ(H
(0)
ℓ ),

then R
(0)
ℓ (z)vℓ and uℓR

(0)
ℓ (z)vℓ defined on dom(vℓ) extend by continuity to bounded linear

operators on L2((−ℓ, ℓ); dx). Moreover,

uℓR
(0)
ℓ (z), R

(0)
ℓ (z)vℓ ∈ B2(L

2((−ℓ, ℓ); dx)),(2.51)

uℓR
(0)
ℓ (z)vℓ ∈ B1(L

2((−ℓ, ℓ); dx)), z ∈ ρ(H
(0)
ℓ ), ℓ ∈ N,(2.52)

and

(2.53)
∥

∥

∥
uℓR

(0)
ℓ (z)vℓ

∥

∥

∥

B1(L2((−ℓ,ℓ);dx))
6 C|z|−1/2, z ∈ (−∞, E), ℓ ∈ N,

for suitable ℓ-independent constants E < 0 and C > 0.

Proof. Let ℓ ∈ N be fixed for the remainder of this proof. Suppose z ∈ ρ(H
(0)
ℓ ). Since uℓ ∈

L2((−ℓ, ℓ); dx) and R
(0)
ℓ (z) is an integral operator with an integral kernel which is contin-

uous (hence, bounded) on [−ℓ, ℓ] × [−ℓ, ℓ], the inclusion uℓR
(0)
ℓ (z) ∈ B2(L

2((−ℓ, ℓ); dx))
holds by [23, Theorem 6.11]. Then

(2.54) R
(0)
ℓ (z)vℓ =

[

R
(0)
ℓ (z)vℓ

]∗∗
=

[

vℓR
(0)
ℓ (z)

]∗
∈ B2(L

2((−ℓ, ℓ); dx)),
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since vℓ ∈ L2((−ℓ, ℓ); dx) and R
(0)
ℓ (z) has a continuous (hence, bounded) integral kernel

on [−ℓ, ℓ]× [−ℓ, ℓ].

It suffices to prove (2.52) for one z ∈ ρ(H
(0)
ℓ ) which we take to be z = −k2 for some

fixed k > |λ∞|1/2 which guarantees −k2 < λ∞. The desired containment then extends to

all z ∈ ρ(H
(0)
ℓ ) by the first resolvent identity combined with (2.51). By Krein’s resolvent

formula (2.42),

uℓR
(0)
ℓ (−k2)vℓ = uℓ

[

R
(0)
ℓ,D(−k2) + P

(0)
ℓ (−k2)

]

vℓ

= uℓR
(0)
ℓ,D(−k2)vℓ + uℓP

(0)
ℓ (−k2)vℓ.(2.55)

The splitting of the closure in (2.55) is justified by the fact that uℓR
(0)
ℓ,D(−k2)vℓ and

uℓP
(0)
ℓ (−k2)vℓ are both bounded on the dense subspace dom(vℓ), so the closures appear-

ing on the right-hand sides in (2.55) are simply the continuous extensions of the under-
lying densely defined operators to all of L2((−ℓ, ℓ); dx). Moreover, for f ∈ dom(vℓ), one
computes

(2.56)

uℓP
(0)
ℓ (−k2)vℓf

= −q
(0)
ℓ (−k2)−1

(

vℓψ
(0)
ℓ (−k2, · ), f

)

L2((−ℓ,ℓ);dx)

[

uℓψ
(0)
ℓ (−k2, · )

]

= −q
(0)
ℓ (−k2)−1

(

Ψ(−k2, · ), f
)

L2((−ℓ,ℓ);dx)
Φ(−k2, · ),

where

Ψ(−k2, x) = vℓ(x)ψ
(0)
ℓ (−k2, x) and Φ(−k2, x) = uℓ(x)ψ

(0)
ℓ (−k2, x)

for a.e. x ∈ (−ℓ, ℓ).(2.57)

Thus, uℓP
(0)
ℓ (−k2)vℓ is the restriction of the bounded rank one operator

− q
(0)
ℓ (−k2)−1

(

Ψℓ(−k
2, · ), ·

)

L2((−ℓ,ℓ);dx)
Φℓ(−k

2, · ) ∈ B1(L
2((−ℓ, ℓ); dx))(2.58)

to the dense subspace dom(vℓ). Therefore, by continuity,

uℓP
(0)
ℓ (−k2)vℓ = −q

(0)
ℓ (−k2)−1

(

Ψℓ(−k
2, · ), ·

)

L2((−ℓ,ℓ);dx)
Φℓ(−k

2, · ).(2.59)

Applying (2.55) with (2.47), (2.58), and (2.59), one arrives at

(2.60) uℓR
(0)
ℓ (−k2)vℓ ∈ B1(L

2((−ℓ, ℓ); dx)),

and (2.52) follows.
In order to prove (2.53), let z = −k2 with k > |λ∞|1/2. Applying the simple estimate

(2.61)
|Ψ(−k2, x)|2 = |Φ(−k2, x)|2 6 (|c+|+ |c−|)

2|Vℓ(x)|

for a.e. x ∈ (−ℓ, ℓ) and all k > |λ∞|1/2,

in conjunction with (2.59) and Proposition A.1, one infers

(2.62)

∥

∥

∥
uℓP

(0)
ℓ (−k2)vℓ

∥

∥

∥

B1(L2((−ℓ,ℓ);dx))

= |q
(0)
ℓ (−k2)|−1‖Ψ(−k2, · )‖L2((−ℓ,ℓ);dx)‖Φ(−k

2, · )‖L2((−ℓ,ℓ);dx)

6 (|c+|+ |c−|)
2M |q

(0)
ℓ (−k2)|−1, k > |λ∞|1/2.
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On the other hand,

(2.63)

q
(0)
ℓ (−k2) = k

{

a−1b

k
−

1 + a−2

2
[tanh(kℓ) + coth(kℓ)]

+
cos(φ)

2
[coth(kℓ)− tanh(kℓ)]

}

, k > |λ∞|1/2,

and since the expression in braces converges to −(1 + a−2) and k → ∞, and the conver-
gence is uniform with respect to ℓ ∈ N, there exist ℓ-independent constants C0 > 0 and
k0 > |λ∞|1/2 such that

|q
(0)
ℓ (−k2)|−1

6 C0k
−1, k > k0, ℓ ∈ N.(2.64)

Thus, (2.55), (2.62), and (2.64) imply
∥

∥

∥
uℓR

(0)
ℓ (−k2)vℓ

∥

∥

∥

B1(L2((−ℓ,ℓ);dx))
6 CDk

−1 + (|c+|+ |c−|)
2C0Mk−1,

k > max
{

|ED|1/2, k0
}

.

(2.65)

Therefore, (2.53) follows with E = min{ED,−k
2
0} and C = CD +(|c+|+ |c−|)

2C0M . �

3. Convergence properties of resolvents

In this section, we study various convergence properties of the resolvents of the periodic

restrictionsH
(0)
ℓ andHℓ introduced in the previous section. Ultimately, the results of this

section will combine to yield vague convergence for spectral shift functions in the limit,
ℓ → ∞. In order to recall the corresponding known results for the Dirichlet restrictions

H
(0)
ℓ,D andHℓ,D, and state our new results forH

(0)
ℓ andHℓ, we first introduce the following

ℓ-dependent direct sum decomposition of L2(R; dx).
Let ℓ ∈ N. If f ∈ L2((−ℓ, ℓ); dx) and g ∈ L2(R\(−ℓ, ℓ); dx), then we define (f ⊕ℓ g) ∈

L2(R; dx) by

(3.1) (f ⊕ℓ g)(x) =

{

f(x), for a.e. x ∈ (−ℓ, ℓ),

g(x), for a.e. x ∈ R\(−ℓ, ℓ).

From the properties of the Lebesgue integral, it is clear that (f ⊕ℓ g) ∈ L2(R; dx) and
that

(3.2) ‖f ⊕ℓ g‖
2
L2(R;dx) = ‖f‖2L2((−ℓ,ℓ);dx) + ‖g‖2L2(R\(−ℓ,ℓ);dx),

for all f ∈ L2((−ℓ, ℓ); dx) and all g ∈ L2(R\(−ℓ, ℓ); dx). In addition, every function
u ∈ L2(R; dx) may be expressed in the form (3.1):

u = f ⊕ℓ g with f = u|(−ℓ,ℓ) and g = u|R\(−ℓ,ℓ).(3.3)

Thus, for each ℓ ∈ N, L2(R; dx) may be expressed as a direct sum of L2((−ℓ, ℓ); dx) and
L2(R\(−ℓ, ℓ); dx):

(3.4) L2(R; dx) = L2((−ℓ, ℓ); dx)⊕ℓ L
2(R\(−ℓ, ℓ); dx).

By the additivity property of the Lebesgue integral, the inner product of two functions in
L2(R; dx) may be expressed as a sum of individual inner products of their corresponding
components: if u, v ∈ L2(R; dx) are given by

(3.5) u = f1 ⊕ℓ g1 and v = f2 ⊕ℓ g2,

for some fj ∈ L2((−ℓ, ℓ); dx) and gj ∈ L2(R\(−ℓ, ℓ); dx), j ∈ {1, 2}, then evidently

(3.6) (u, v)L2(R;dx) = (f1, f2)L2((−ℓ,ℓ);dx) + (g1, g2)L2(R\(−ℓ,ℓ);dx).

In the sequel, we shall make use of the fact that a function u ∈ L2(R; dx) may be
decomposed according to (3.3). Since the decomposition obviously depends on the value
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of ℓ ∈ N, and we intend to study various limiting phenomena as ℓ→ ∞, we insist on the
notation “⊕ℓ” to bring out the explicit ℓ-dependence of the decomposition in (3.3).

If

(3.7) A : dom(A) ⊆ L2((−ℓ, ℓ); dx) → L2((−ℓ, ℓ); dx)

and

(3.8) B : dom(B) ⊆ L2(R\(−ℓ, ℓ); dx) → L2(R\(−ℓ, ℓ); dx)

are linear operators, then their direct sum A ⊕ℓ B is defined in L2(R; dx) according to
the direct sum decomposition in (3.4) in the standard way by setting

(3.9) (A⊕ℓB)f = (Af1)⊕ℓ (Bf2), f = f1⊕ℓ f2 ∈ dom(A⊕ℓB) = dom(A)⊕ℓdom(B).

Next, we recall two important convergence results for the free Dirichlet restrictions

H
(0)
ℓ,D that are proved in [8]. Actually, these results are proved in [8] for intervals of the

form (0, ℓ), but as noted in [8], the situation for intervals of the form (−ℓ, ℓ) is completely

analogous. The first result is that H
(0)
ℓ,D ⊕ℓ 0 converges to H(0) in the strong resolvent

sense as ℓ→ ∞.

Lemma 3.1. (Lemma 3.1 in [8]). Assume items (i)–(iii) in Hypothesis 2.1 hold. Then

the sequence
{

H
(0)
ℓ,D⊕ℓ 0

}∞

ℓ=1
converges to H(0) in the strong resolvent sense. That is, for

each fixed z ∈ C\[0,∞),

s-lim
ℓ→∞

([

H
(0)
ℓ,D ⊕ℓ 0

]

− zIL2(R;dx)

)−1

= R(0)(z).(3.10)

Lemma 3.2. (Lemmata 3.1 and 3.2 in [8]). Assume items (i)–(iii) in Hypothesis 2.1
hold. For each fixed z ∈ C\[0,∞), the following convergence results hold in B2(L

2(R; dx)):

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ,D(z)⊕ℓ 0

]

− uR(0)(z)
∥

∥

∥

B2(L2(R;dx))
= 0,(3.11)

lim
ℓ→∞

∥

∥

∥

[

R
(0)
ℓ,D(z)vℓ ⊕ℓ 0

]

−R(0)(z)v
∥

∥

∥

B2(L2(R;dx))
= 0,(3.12)

and the following convergence result holds in B1(L
2(R; dx)):

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ,D(z)vℓ ⊕ℓ 0

]

− uR(0)(z)v
∥

∥

∥

B1(L2(R;dx))
= 0.(3.13)

By applying Krein’s resolvent identity (2.42), we obtain the following extension of
Lemma 3.1 to the case of the coupled boundary conditions at the endpoints of [−ℓ, ℓ]
in (2.10).

Lemma 3.3. Assume Hypothesis 2.1. The sequence
{

H
(0)
ℓ ⊕ℓ 0

}∞

ℓ=1
converges to H(0)

in the strong resolvent sense. That is, for each fixed z ∈ C\[λ
(0)
∞ ,∞),

s-lim
ℓ→∞

([

H
(0)
ℓ ⊕ℓ 0

]

− zIL2(R;dx)

)−1

= R(0)(z).(3.14)

Proof. We begin by introducing some notation. For each f ∈ L2(R; dx) and ℓ ∈ N, we
define the function f

<ℓ
∈ L2((−ℓ, ℓ); dx) by the requirement that

(3.15) f
<ℓ
(x) = f(x) for a.e. x ∈ (−ℓ, ℓ).

It suffices to prove (3.14) for just one z ∈ C\[λ
(0)
∞ ,∞), which we take to be z = −k2 with

k > k0 fixed, where k0 is the constant from (2.64). The result then follows for arbitrary
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z ∈ C\[λ
(0)
∞ ,∞) by the application of a standard resolvent identity (cf., e.g., [23, Exercise

7.8]). Therefore, we will show

lim
ℓ→0

∥

∥

∥

([

H
(0)
ℓ ⊕ℓ 0

]

+ k2IL2(R;dx)

)−1

f −R(0)(−k2)f
∥

∥

∥

L2(R;dx)
= 0,

f ∈ L2(R; dx).

(3.16)

For each f ∈ L2(R; dx), we use various properties of the direct sum and (2.42) to compute

(3.17)

∥

∥

∥

([

H
(0)
ℓ ⊕ℓ 0

]

+ k2IL2(R;dx)

)−1

f −R(0)(−k2)f
∥

∥

∥

L2(R;dx)

=
∥

∥

∥

[(

H
(0)
ℓ + k2IL2((−ℓ,ℓ);dx)

)−1

⊕ℓ −k
−2IL2(R\(−ℓ,ℓ);dx)

]

f

−R(0)(−k2)f
∥

∥

∥

L2(R;dx)

=
∥

∥

∥

{[(

H
(0)
ℓ,D + k2IL2((−ℓ,ℓ);dx)

)−1

+ P
(0)
ℓ (−k2)

]

⊕ℓ −k
−2IL2(R\(−ℓ,ℓ);dx)

}

f

−R(0)(−k2)f
∥

∥

∥

L2(R;dx)

6

∥

∥

∥

([

H
(0)
ℓ,D ⊕ℓ 0

]

+ k2IL2(R;dx)

)−1

f −R(0)(−k2)f
∥

∥

∥

L2(R;dx)

+
∥

∥

∥

[

P
(0)
ℓ (−k2)⊕ℓ 0

]

f
∥

∥

∥

L2(R;dx)
, ℓ ∈ N.

By Lemma 3.1,

lim
ℓ→0

∥

∥

∥

([

H
(0)
ℓ,D ⊕ℓ 0

]

+ k2IL2(R;dx)

)−1

f −R(0)(−k2)f
∥

∥

∥

L2(R;dx)
= 0,(3.18)

so in view of the inequality in (3.17), the claim in (3.16) reduces to showing that

(3.19) lim
ℓ→∞

∥

∥

∥

[

P
(0)
ℓ (−k2)⊕ℓ 0

]

f
∥

∥

∥

L2(R;dx)
= 0, f ∈ L2(R; dx),

that is, that the sequence of operators
{

P
(0)
ℓ (−k2)⊕ℓ0

}∞

ℓ=1
converges strongly to the zero

operator in L2(R; dx). To this end, we claim that the sequence of operators
{

P
(0)
ℓ (−k2)⊕ℓ

0
}∞

ℓ=1
is uniformly bounded in B(L2(R; dx)). Indeed, by (2.43), and (2.45), with C0 the

constant from (2.64),

(3.20)

∥

∥

∥
P

(0)
ℓ (−k2)⊕ℓ 0

∥

∥

∥

B(L2(R;dx))

=
∥

∥

∥
P

(0)
ℓ (−k2)

∥

∥

∥

B(L2((−ℓ,ℓ);dx))

=
∣

∣q
(0)
ℓ (−k2)−1

∣

∣

∥

∥ψ
(0)
ℓ (−k2, · )

∥

∥

2

L2((−ℓ,ℓ);dx)

6 2C0k
−1

[

|c+|
2

∫ ℓ

−ℓ

cosh2(kx)

cosh2(kℓ)
dx+ |c−|

2

∫ ℓ

−ℓ

sinh2(kx)

sinh2(kℓ)
dx

]

= 2C0k
−1

{

|c+|
2
[

k−1 tanh(kℓ) + ℓ sech2(kℓ)
]

+ |c−|
2
[

k−1 coth(kℓ)− ℓ csch2(kℓ)
]}

, ℓ ∈ N,

which is clearly bounded by a constant, say C1 > 0, uniformly in ℓ ∈ N. Therefore, by [23,
Exercise 4.28], it suffices to prove the convergence in (3.19) for all f from a dense subspace
of L2(R; dx), which we take to be L2(R; dx) ∩ L1(R; dx). Let f ∈ L2(R; dx) ∩ L1(R; dx)
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and note that

(3.21)

∥

∥

∥

[

P
(0)
ℓ (−k2)⊕ℓ 0

]

f
∥

∥

∥

2

L2(R;dx)

=
∥

∥

∥
P

(0)
ℓ (−k2)f

<ℓ

∥

∥

∥

2

L2((−ℓ,ℓ);dx)

6 C2
0k

−2
∣

∣

∣

(

ψ
(0)
ℓ (−k2, · ), f

<ℓ

)

L2((−ℓ,ℓ);dx)

∣

∣

∣

2
∥

∥ψ
(0)
ℓ (−k2, · )

∥

∥

2

L2((−ℓ,ℓ);dx)

6 2C2
0k

−2
{

|c+|
2
[

k−1 tanh(kℓ) + ℓ sech2(kℓ)
]

+ |c−|
2
[

k−1 coth(kℓ)− ℓ csch2(kℓ)
]}

∣

∣

∣

(

ψ
(0)
ℓ (−k2, · ), f

<ℓ

)

L2((−ℓ,ℓ);dx)

∣

∣

∣

2

6 C0C1k
−1

∣

∣

∣

(

ψ
(0)
ℓ (−k2, · ), f

<ℓ

)

L2((−ℓ,ℓ);dx)

∣

∣

∣

2

, ℓ ∈ N.

Clearly

(3.22)

∣

∣

∣

∣

χ(−ℓ,ℓ)(x)

[

c+
cosh(kx)

cosh(kℓ)
+ c−

sinh(kx)

sinh(kℓ)

]

f(x)

∣

∣

∣

∣

6 (|c+|+ |c−|)|f(x)| for a.e. x ∈ R, ℓ ∈ N,

and

(3.23) lim
ℓ→∞

χ(−ℓ,ℓ)(x)

[

c+
cosh(kx)

cosh(kℓ)
+ c−

sinh(kx)

sinh(kℓ)

]

f(x) = 0 for a.e. x ∈ R,

so an application of dominated convergence yields

lim
ℓ→∞

(

ψ
(0)
ℓ (−k2, · ), f

<ℓ

)

L2((−ℓ,ℓ);dx)
= lim

ℓ→∞

∫ ℓ

−ℓ

ψ
(0)
ℓ (−k2, x)f

<ℓ
(x) dx = 0.(3.24)

Finally, (3.24) and the last inequality in (3.21) imply

(3.25) lim
ℓ→∞

∥

∥

∥

[

P
(0)
ℓ (−k2)⊕ℓ 0

]

f
∥

∥

∥

2

L2(R;dx)
= 0, f ∈ L2(R; dx) ∩ L1(R; dx),

which yields (3.19) and completes the proof. �

Another application of Krein’s resolvent formula (2.42) yields the extensions of (3.11)
and (3.12) to the case of the coupled boundary conditions at the endpoints of [−ℓ, ℓ] in
(2.10). The proofs of these results rely on two classic convergence results for the trace
ideals Bp(H) which we recall in Appendix A for completeness.

Lemma 3.4. Assume Hypothesis 2.1. For each fixed z ∈ C\[λ
(0)
∞ ,∞), the following

convergence results hold in B2(L
2(R; dx)):

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z)⊕ℓ 0

]

− uR(0)(z)
∥

∥

∥

B2(L2(R;dx))
= 0,(3.26)

lim
ℓ→∞

∥

∥

∥

[

R
(0)
ℓ (z)vℓ ⊕ℓ 0

]

−R(0)(z)v
∥

∥

∥

B2(L2(R;dx))
= 0.(3.27)

Proof. It suffices to prove (3.26) for one z ∈ C\[λ
(0)
∞ ,∞). In fact, suppose that

(3.28) lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

]

− uR(0)(z0)
∥

∥

∥

B2(L2(R;dx))
= 0
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for some fixed z0 ∈ C\[λ
(0)
∞ ,∞). We claim that (3.28) actually implies (3.26) for all

z ∈ C\[λ
(0)
∞ ,∞). Indeed, for any z ∈ C\[λ

(0)
∞ ,∞), the first resolvent identity implies

(3.29)

[

uℓR
(0)
ℓ (z)⊕ℓ 0

]

− uR(0)(z)

=
[

uℓR
(0)
ℓ (z0)⊕ℓ 0

]

− uR(0)(z0)

+ (z − z0)
{[

uℓR
(0)
ℓ (z0)⊕ℓ 0

](

[

H
(0)
ℓ ⊕ℓ 0

]

− zIL2(R;dx)

)−1

− uR(0)(z0)R
(0)(z)

}

, ℓ ∈ N,

so that

(3.30)

∥

∥

∥

[

uℓR
(0)
ℓ (z)⊕ℓ 0

]

− uR(0)(z)
∥

∥

∥

B2(L2(R;dx))

6

∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

]

− uR(0)(z0)
∥

∥

∥

B2(L2(R;dx))

+ |z − z0|
∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

](

[

H
(0)
ℓ ⊕ℓ 0

]

− zIL2(R;dx)

)−1

− uR(0)(z0)R
(0)(z)

∥

∥

∥

B2(L2(R;dx))
, ℓ ∈ N.

The first term on the right-hand side of the inequality in (3.30) goes to zero as ℓ → ∞
by (3.28). To show the norm in the second term on the right-hand side of the inequality
in (3.30) goes to zero as ℓ → ∞, we apply Grümm’s Theorem (i.e., Theorem A.2) with
the choices p = 2 and

A = uR(0)(z0), Aℓ =
[

uℓR
(0)
ℓ (z0)⊕ℓ 0

]

, ℓ ∈ N,

B = R(0)(z), Bℓ =
([

H
(0)
ℓ ⊕ℓ 0

]

− zIL2(R;dx)

)−1

, ℓ ∈ N.
(3.31)

If dist(ζ,Ω) denotes the distance from a point ζ ∈ C to a subset Ω ⊂ C, then

(3.32)

∥

∥Bℓ

∥

∥

B(L2(R;dx))
=

∥

∥

∥
R

(0)
ℓ (z)⊕ℓ (−z

−1)IL2(R\(−ℓ,ℓ);dx)

∥

∥

∥

B(L2(R;dx))

6

∥

∥

∥
R

(0)
ℓ (z)

∥

∥

∥

B(L2((−ℓ,ℓ);dx))

+
∥

∥

∥
(−z−1)IL2(R\(−ℓ,ℓ);dx)

∥

∥

∥

B(L2(R\(−ℓ,ℓ);dx))

= dist
(

z, σ
(

H
(0)
ℓ

))−1
+ |z|−1

6 dist(z, [λ(0)∞ ,∞))−1 + |z|−1, ℓ ∈ N,

shows that

(3.33) sup
ℓ∈N

∥

∥Bℓ

∥

∥

B(L2(R;dx))
<∞.

In (3.32), we have used the standard norm estimate for the resolvent of a self-adjoint ope-
rator (cf., e.g., [22, Problem 3.5 on p. 111]). Moreover, Lemma 3.3 implies s-limℓ→∞Bℓ =
B. Therefore, the choices in (3.31) satisfy the hypotheses of Grümm’s Theorem. Conse-
quently, one infers that

(3.34)
lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

](

[

H
(0)
ℓ ⊕ℓ 0

]

− zIL2(R;dx)

)−1

− uR(0)(z0)R
(0)(z)

∥

∥

∥

B2(L2(R;dx))
= 0,
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and (3.30) implies

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z)⊕ℓ 0

]

− uR(0)(z)
∥

∥

∥

B2(L2(R;dx))
= 0.(3.35)

We will now prove that (3.28) holds for z0 = −k2 with k > k0 fixed, where k0 is again
the constant from (2.64). By Krein’s resolvent formula (2.42),

(3.36)

[

uℓR
(0)
ℓ (−k2)⊕ℓ 0

]

− uR(0)(−k2)

=
[

uℓ

(

R
(0)
ℓ,D(−k2) + P

(0)
ℓ (−k2)

)

⊕ℓ 0
]

− uR(0)(−k2)

=
[

uℓR
(0)
ℓ,D(−k2)⊕ℓ 0

]

− uR(0)(−k2) +
[

uℓP
(0)
ℓ (−k2)⊕ℓ 0

]

, ℓ ∈ N.

Applying the triangle inequality for norms,
∥

∥

∥

[

uℓR
(0)
ℓ (−k2)⊕ℓ 0

]

− uR(0)(−k2)
∥

∥

∥

B2(L2(R;dx))

6

∥

∥

∥

[

uℓR
(0)
ℓ,D(−k2)⊕ℓ 0

]

− uR(0)(−k2)
∥

∥

∥

B2(L2(R;dx))
(3.37)

+
∥

∥

∥
uℓP

(0)
ℓ (−k2)⊕ℓ 0

∥

∥

∥

B2(L2(R;dx))
, ℓ ∈ N.

By (3.11), the first term on the right-hand side of the inequality in (3.37) converges to
zero as ℓ→ ∞. Thus, it suffices to show

(3.38) lim
ℓ→∞

∥

∥

∥
uℓP

(0)
ℓ (−k2)⊕ℓ 0

∥

∥

∥

B2(L2(R;dx))
= 0.

To this end, note that

(3.39)

∥

∥

∥
uℓP

(0)
ℓ (−k2)⊕ℓ 0

∥

∥

∥

B2(L2(R;dx))

=
∥

∥

∥
uℓP

(0)
ℓ (−k2)

∥

∥

∥

B2(L2((−ℓ,ℓ);dx))

=
∣

∣q
(0)
ℓ (−k2)−1

∣

∣

∥

∥

∥
uℓ
(

ψ
(0)
ℓ (−k2, · ), ·

)

L2((−ℓ,ℓ);dx)
ψ
(0)
ℓ (−k2, · )

∥

∥

∥

B2(L2((−ℓ,ℓ);dx))

6 C0k
−1

∥

∥

∥

(

ψ
(0)
ℓ (−k2, · ), ·

)

L2((−ℓ,ℓ);dx)
uℓψ

(0)
ℓ (−k2, · )

∥

∥

∥

B2(L2((−ℓ,ℓ);dx))

= C0k
−1

∥

∥ψ
(0)
ℓ (−k2, · )

∥

∥

L2((−ℓ,ℓ);dx)

∥

∥uℓψ
(0)
ℓ (−k2, · )

∥

∥

L2((−ℓ,ℓ);dx)
, ℓ ∈ N,

where we have used the simple fact that

‖A⊕ℓ 0‖Bp(L2(R;dx)) = ‖A‖Bp(L2((−ℓ,ℓ);dx)), A ∈ Bp(L
2((−ℓ, ℓ); dx)),

p ∈ [1,∞), ℓ ∈ N.
(3.40)

On the other hand,

(3.41)

∥

∥ψ
(0)
ℓ (−k2, · )

∥

∥

L2((−ℓ,ℓ);dx)
6

{

2|c+|
2
[

k−1 tanh(kℓ) + ℓ sech2(kℓ)
]

+ 2|c−|
2
[

k−1 coth(kℓ)− ℓ csch2(kℓ)
]}1/2

6 C2, ℓ ∈ N,

for some constant C2 > 0. In addition,

(3.42)

∥

∥uℓψ
(0)
ℓ (−k2, · )

∥

∥

2

L2((−ℓ,ℓ);dx)

=

∫ ℓ

ℓ

|uℓ(x)|
2

∣

∣

∣

∣

c+
cosh(kx)

cosh(kℓ)
+ c−

sinh(kx)

sinh(kℓ)

∣

∣

∣

∣

2

dx

=

∫ ∞

−∞

χ(−ℓ,ℓ)(x)|V (x)|

∣

∣

∣

∣

[

c+
cosh(kx)

cosh(kℓ)
+ c−

sinh(kx)

sinh(kℓ)

]∣

∣

∣

∣

2

dx, ℓ ∈ N.
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An application of dominated convergence, using V ∈ L1(R; dx), then yields

(3.43) lim
ℓ→∞

∥

∥uℓψ
(0)
ℓ (−k2, · )

∥

∥

2

L2((−ℓ,ℓ);dx)
= 0.

Therefore, (3.38) follows from (3.39), (3.41), and (3.43).

The claim in (3.27) actually follows for all z ∈ C\[λ
(0)
∞ ,∞) by a simple adjoint argu-

ment. Indeed, one notes that

(3.44)
R

(0)
ℓ (z)vℓ =

(

vℓR
(0)
ℓ (z)

)∗
,

R(0)(z)v =
(

vR(0)(z)
)∗
, z ∈ C\[λ(0)∞ ,∞),

and since ‖A∗‖B2(H) = ‖A‖B2(H), A ∈ B2(H), one obtains

(3.45)

∥

∥

∥

[

R
(0)
ℓ (z)vℓ ⊕ℓ 0

]

−R(0)(z)v
∥

∥

∥

B2(L2(R;dx))

=
∥

∥

∥

[

vℓR
(0)
ℓ (z)⊕ℓ 0

]

− vR(0)(z)
∥

∥

∥

B2(L2(R;dx))
, z ∈ C\[λ(0)∞ ,∞).

By repeating the proof of (3.26) with uℓ and u replaced by vℓ and v, respectively, one
infers that

(3.46) lim
ℓ→∞

∥

∥

∥

[

vℓR
(0)
ℓ (z)⊕ℓ 0

]

− vR(0)(z)
∥

∥

∥

B2(L2(R;dx))
= 0, z ∈ C\[λ(0)∞ ,∞),

and (3.27) follows. �

Next, we extend (3.13) to the coupled boundary conditions in (2.10).

Lemma 3.5. Assume Hypothesis 2.1. For each fixed z ∈ C\[λ
(0)
∞ ,∞), the following

convergence result holds in B1(L
2(R; dx)):

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z)vℓ ⊕ℓ 0

]

− uR(0)(z)v
∥

∥

∥

B1(L2(R;dx))
= 0.(3.47)

Proof. It suffices to prove (3.47) for one z ∈ C\[λ
(0)
∞ ,∞). To see this, suppose that

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z0)vℓ ⊕ℓ 0

]

− uR(0)(z0)v
∥

∥

∥

B1(L2(R;dx))
= 0(3.48)

for some fixed z0 ∈ C\[λ
(0)
∞ ,∞). If z ∈ C\[λ

(0)
∞ ,∞), then (3.48) actually implies (3.47).

Indeed, by the first resolvent identity,

(3.49)

[

uℓR
(0)
ℓ (z)vℓ ⊕ℓ 0

]

−uR(0)(z)v

=
[

uℓR
(0)
ℓ (z0)vℓ ⊕ℓ 0

]

−uR(0)(z0)v

+ (z − z0)
{[

uℓR
(0)
ℓ (z0)⊕ℓ 0

][

R
(0)
ℓ (z)vℓ ⊕ℓ 0

]

−uR(0)(z0)R(0)(z)v
}

, ℓ ∈ N.

As a result, one obtains the following estimate:

(3.50)

∥

∥

∥

[

uℓR
(0)
ℓ (z)vℓ ⊕ℓ 0

]

− uR(0)(z)v
∥

∥

∥

B1(L2(R;dx))

6

∥

∥

∥

[

uℓR
(0)
ℓ (z0)vℓ ⊕ℓ 0

]

− uR(0)(z0)v
∥

∥

∥

B1(L2(R;dx))

+ |z − z0|
∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

][

R
(0)
ℓ (z)vℓ ⊕ℓ 0

]

− uR(0)(z0)R(0)(z)v
∥

∥

∥

B1(L2(R;dx))
, ℓ ∈ N.
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In light of (3.48), the first term on the right-hand side of the inequality in (3.50) goes to
zero as ℓ→ ∞. By (3.26) and (3.27), one has

(3.51)

lim
ℓ→∞

∥

∥

∥

[

uℓR
(0)
ℓ (z0)⊕ℓ 0

]

− uR(0)(z0)
∥

∥

∥

B2(L2(R;dx))
= 0,

lim
ℓ→∞

∥

∥

∥

[

R
(0)
ℓ (z)vℓ ⊕ℓ 0

]

−R(0)(z)v
∥

∥

∥

B2(L2(R;dx))
= 0,

so the second term on the right-hand side of the inequality in (3.50) goes to zero as
ℓ → ∞ by a direct application of Lemma A.3. Finally, (3.47) follows from (3.50) by an
application of the squeeze theorem.

To show (3.47) holds for z = −k2 with k > k0, where k0 is the constant in (2.64), we
compute

(3.52)

[

uℓR
(0)
ℓ (−k2)vℓ ⊕ℓ 0

]

− uR(0)(−k2)v

=
[

uℓR
(0)
ℓ,D(−k2)vℓ ⊕ℓ 0

]

− uR(0)(−k2)v +
[

uℓP
(0)
ℓ (−k2)vℓ ⊕ℓ 0

]

, ℓ ∈ N,

where the splitting of the closure is justified by the fact that for each ℓ ∈ N, uℓR
(0)
ℓ,D(−k2)vℓ

and uℓP
(0)
ℓ (−k2)vℓ are bounded operators with domains equal to the dense subspace

dom(vℓ) ⊂ L2((−ℓ, ℓ); dx), so all closures involved are simply the continuous extensions
of the underlying operators to all of L2((−ℓ, ℓ); dx). By (3.52),

(3.53)

∥

∥

∥

[

uℓR
(0)
ℓ (−k2)vℓ ⊕ℓ 0

]

− uR(0)(−k2)v
∥

∥

∥

B1(L2(R;dx))

6

∥

∥

∥

[

uℓR
(0)
ℓ,D(−k2)vℓ ⊕ℓ 0

]

− uR(0)(−k2)v
∥

∥

∥

B1(L2(R;dx))

+
∥

∥

∥
uℓP

(0)
ℓ (−k2)vℓ ⊕ℓ 0

∥

∥

∥

B1(L2(R;dx))
, ℓ ∈ N.

In light of (3.13) and (3.53), to prove (3.47) for z = −k2, it suffices to show

lim
ℓ→∞

∥

∥

∥
uℓP

(0)
ℓ (−k2)vℓ ⊕ℓ 0

∥

∥

∥

B1(L2(R;dx))
= 0.(3.54)

The closure uℓP
(0)
ℓ (−k2)vℓ was computed explicitly in (2.59). By the equality in (2.62)

and the estimate in (2.64), one obtains

(3.55)

∥

∥

∥
uℓP

(0)
ℓ (−k2)vℓ

∥

∥

∥

B1(L2((−ℓ,ℓ);dx))

6 C0k
−1‖Ψ(−k2, · )‖L2((−ℓ,ℓ);dx)‖Φ(−k

2, · )‖L2((−ℓ,ℓ);dx)

= C0k
−1

∫ ∞

−∞

χ(−ℓ,ℓ)(x)|V (x)|

∣

∣

∣

∣

[

c+
cosh(kx)

cosh(kℓ)
+ c−

sinh(kx)

sinh(kℓ)

]∣

∣

∣

∣

2

dx, ℓ ∈ N,

so (3.54) follows from an application of dominated convergence, using V ∈ L1(R; dx)
once more.

�

4. Convergence properties of spectral shift functions

In this section, assuming Hypothesis 2.1, we introduce the spectral shift functions

for the pairs (H,H(0)) and (Hℓ, H
(0)
ℓ ), ℓ ∈ N, and apply the convergence properties

of resolvents developed in Section 3 and the abstract convergence criteria from [9] (and
summarized in Appendix B) to obtain weak and vague convergence results for the spectral
shift functions in the limit ℓ→ ∞.
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As a consequence of Lemma 2.6, one notes that for each fixed ℓ ∈ N, the conditions
in [9, Hypothesis 2.1] hold upon making the identifications

B = Hℓ, A = H
(0)
ℓ , W = Vℓ, W1 = uℓ, W2 = vℓ.(4.1)

As a result, the resolvents of Hℓ and H
(0)
ℓ satisfy the following Kato-type resolvent

identity:

Rℓ(z) = R
(0)
ℓ (z)−R

(0)
ℓ (z)vℓ

[

IL2((−ℓ,ℓ);dx) + uℓR
(0)
ℓ (z)vℓ

]−1

uℓR
(0)
ℓ (z),

z ∈ ρ(Hℓ) ∩ ρ(H
(0)
ℓ ), ℓ ∈ N.

(4.2)

By Lemma 2.6 (viz., (2.51)), and the fact that the product of two Hilbert–Schmidt

operators is trace class, Hℓ and H
(0)
ℓ are resolvent comparable,

(4.3)
[

Rℓ(z)−R
(0)
ℓ (z)

]

∈ B1(L
2((−ℓ, ℓ); dx)), z ∈ ρ(Hℓ) ∩ ρ(H

(0)
ℓ ), ℓ ∈ N.

In a similar vein, the resolvents of H and H(0) satisfy

(4.4) R(z) = R(0)(z)−R(0)(z)v
[

IL2(R;dx) + uR(0)(z)v
]−1

uR(0)(z), z ∈ ρ(H),

and

(4.5)
[

R(z)−R(0)(z)
]

∈ B1(L
2(R; dx)), z ∈ ρ(H).

The resolvent comparability condition in (4.3) guarantees the existence of a real-valued

spectral shift function ξ( · ;Hℓ, H
(0)
ℓ ) for each ℓ ∈ N which satisfies

(4.6)

∫ ∞

−∞

|ξ(λ;Hℓ, H
(0)
ℓ )|

1 + λ2
dλ <∞ and ξ(λ;Hℓ, H

(0)
ℓ ) = 0, λ ∈ (−∞, λ∞),

and

trL2((−ℓ,ℓ);dx)

(

Rℓ(z)−R
(0)
ℓ (z)

)

= −

∫

R

ξ(λ;Hℓ, H
(0)
ℓ )

(λ− z)2
dλ,

z ∈ ρ(Hℓ) ∩ ρ(H
(0)
ℓ ), ℓ ∈ N.

(4.7)

Similarly, by (4.5) there exists a real-valued spectral shift function ξ( · ;H,H(0)) which
satisfies

(4.8)

∫ ∞

−∞

|ξ(λ;H,H(0))|

1 + λ2
dλ <∞ and ξ(λ;H,H(0)) = 0, λ ∈ (−∞, λ∞),

and

trL2(R;dx)

(

R(z)−R(0)(z)
)

= −

∫

R

ξ(λ;H,H(0))

(λ− z)2
dλ, z ∈ ρ(H).(4.9)

The conditions in (4.6)–(4.9) guarantee that ξ( · ;Hℓ, H
(0)
ℓ ) and ξ( · ;H,H(0)) are uniquely

determined almost everywhere. Moreover, for a large class of functions f (e.g., any f

such that the Fourier transform f̂ ∈ L1(R; (1 + |p|) dp)) one has
[

f(Hℓ)− f(H
(0)
ℓ )

]

∈ B1(L
2((−ℓ, ℓ); dx)), ℓ ∈ N,

[

f(H)− f(H(0))
]

∈ B1(L
2(R; dx)),

(4.10)

and the following trace formulas hold:

trL2((−ℓ,ℓ);dx)

(

f(Hℓ)− f(H
(0)
ℓ )

)

=

∫

R

f ′(λ) ξ(λ;Hℓ, H
(0)
ℓ ) dλ, ℓ ∈ N,

trL2(R;dx)

(

f(H)− f(H(0))
)

=

∫

R

f ′(λ) ξ(λ;H,H(0)) dλ.

(4.11)
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For these, and many other pertinent facts related to spectral shift functions, we refer to
[25, Chapter 8].

At this point, assuming Hypothesis 2.1, we may verify the conditions of Hypothesis B.1
and apply Theorem B.2 and Corollary B.5. In the notation employed in Hypothesis B.1,

(4.12)

v corresponds to V ∗
1 ,

vℓ corresponds to V ∗
1,ℓ,

H(0) corresponds to A(0),

u corresponds to V2,

uℓ corresponds to V2,ℓ, ℓ ∈ N,

H
(0)
ℓ corresponds to A

(0)
ℓ , ℓ ∈ N.

Under the correspondences in (4.12), it is clear that items (i)–(iii) hold in Hypothesis B.1.
In particular, (B.2) and (B.3) hold in light of the fact that functions in dom(|H(0)|1/2)

and dom(|H
(0)
ℓ |1/2) are bounded on R and (−ℓ, ℓ), respectively, and u, v ∈ L2(R; dx),

while uℓ, vℓ ∈ L2((−ℓ, ℓ); dx). Item (iv) in Hypothesis B.1 follows from (2.49), (2.50),
and Lemma 2.6. The strong resolvent convergence condition in item (v) of Hypothesis
B.1 follows from Lemma 3.3, and conditions (B.11)–(B.13) follow from Lemmata 3.4 and
3.5. Plainly, item (vii) in Hypothesis B.1 is satisfied since V is a.e. real-valued. Finally,
item (viii) in Hypothesis B.1 follows from the fact that the operator of multiplication
by a function from L1(R; dx) (resp., L1((−ℓ, ℓ); dx)) is infinitesimally form bounded with

respect to H(0) (resp., H
(0)
ℓ ).

Having verified the criteria of Hypothesis B.1, we are now in a position to invoke
Theorem B.2 and Corollary B.5 to obtain weak and vague convergence results for the

spectral shift functions {ξ( · ;Hℓ, H
(0)
ℓ )}∞ℓ=1 as ℓ→ ∞.

Theorem 4.1. Assume Hypothesis 2.1. If f ∈ Cb(R), then

(4.13) lim
ℓ→∞

∫

R

ξ(λ;Hℓ, H
(0)
ℓ )

λ2 + 1
f(λ) dλ =

∫

R

ξ(λ;H,H(0))

λ2 + 1
f(λ) dλ.

The result of Theorem 4.1 is that

(4.14)
ξ( · ;Hℓ, H

(0)
ℓ )

| · |2 + 1
converges weakly to

ξ( · ;H,H(0))

| · |2 + 1
as ℓ→ ∞.

By applying Corollary B.4, the continuity assumption on f in Theorem 4.1 may be
relaxed.

Corollary 4.2. Assume Hypothesis 2.1. Then (4.13) holds for any bounded Borel mea-
surable function g that is continuous almost everywhere with respect to Lebesgue measure
on R. In particular,

(4.15) lim
ℓ→∞

∫

S

ξ(λ;Hℓ, H
(0)
ℓ )

1 + λ2
dλ =

∫

S

ξ(λ;H,H(0))

1 + λ2
dλ

holds for any set S ⊆ R that is boundaryless with respect to Lebesgue measure (i.e., any
set S ⊆ R for which the boundary of S has Lebesgue measure equal to zero).

Finally, an application of Corollary B.5 yields the following result.

Corollary 4.3. Assume Hypothesis 2.1. If g is a bounded Borel measurable function
that is compactly supported and Lebesgue almost everywhere continuous on R, then

(4.16) lim
ℓ→∞

∫

R

ξ(λ;Hℓ, H
(0)
ℓ ) g(λ) dλ =

∫

R

ξ(λ;H,H(0)) g(λ) dλ.

Of course, (4.16) holds in particular when g ∈ C0(R), so:

(4.17) ξ( · ;Hℓ, H
(0)
ℓ ) converges vaguely to ξ( · ;H,H(0)) as ℓ→ ∞.
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Appendix A. Background results for Bp(H)

In this appendix, we collect some well-known facts pertaining to the trace ideals
Bp(H), p ∈ [1,∞), which are used extensively throughout this paper. In the first result,
we compute the Bp-norm of a rank-one operator. Though elementary, this result plays
a fundamental role in handling the rank-one terms which appear as a result of Krein’s
resolvent identity in the proofs of Lemmata 3.3–3.5.

Proposition A.1. Let H denote a Hilbert space with inner product (·, ·)H. If φ, ψ ∈
H\{0}, then the lone nonzero singular value of A = (ψ, ·)Hφ, dom(A) = H, is s1(A) =
‖ψ‖H‖φ‖H. In particular, for each p ∈ [1,∞),

(A.1) ‖A‖Bp(H) = ‖ψ‖H‖φ‖H.

Proof. In light of the identities

(f,Ag)H =
(

f, (ψ, g)Hφ
)

H
= (ψ, g)H(f, φ)H

=
(

(f, φ)Hψ, g
)

H
=

(

(φ, f)Hψ, g
)

H
, f, g ∈ H,

(A.2)

the adjoint of A is A∗ = (φ, ·)Hψ. Therefore,

(A.3) A∗Af = A∗(ψ, f)Hφ = ‖φ‖2H(ψ, f)Hψ, f ∈ H,

that is, A∗A = ‖φ‖2H(ψ, ·)ψ. It follows that the lone nonzero eigenvalue of A∗A is
‖φ‖2H‖ψ‖2H, and A has one nonzero singular value, namely s1(A) = ‖φ‖H‖ψ‖H. Since the
Bp-norm of A is the ℓp-norm of its sequence of singular values, we have ‖A‖Bp(H) = s1(A),
and the result follows. �

The following convergence results are classic and deal with sequences of products in
the trace ideals.

Theorem A.2. (Grümm’s Theorem, [11]). Let p ∈ [1,∞), A ∈ Bp(H), and suppose that
{Aℓ}

∞
ℓ=1 ⊂ Bp(H) with limℓ→∞ ‖Aℓ − A‖Bp(H) = 0. If B ∈ B(H), {Bℓ}

∞
ℓ=1 ⊂ B(H) with

supℓ∈N ‖Bℓ‖B(H) <∞ and s-limℓ→∞Bℓ = B, then

(A.4) lim
ℓ→∞

‖AℓBℓ −AB‖Bp(H) = lim
ℓ→∞

‖BℓAℓ −BA‖Bp(H) = 0.

Lemma A.3. Let p, q, r ∈ [1,∞) with p−1+q−1 = r−1. If {Aℓ}
∞
ℓ=1 ⊂ Bp(H), {Bℓ}

∞
ℓ=1 ⊂

Bq(H), A ∈ Bp(H), and B ∈ Bq(H) with

(A.5) lim
ℓ→∞

‖Aℓ −A‖Bp(H) = 0 and lim
ℓ→∞

‖Bℓ −B‖Bq(H) = 0,

then

(A.6) lim
ℓ→∞

‖AℓBℓ −AB‖Br(H) = 0.

The proof of Lemma A.3 is a simple exercise which makes use of Hölder’s inequality
for the trace ideals (cf., e.g., [21, Theorem 2.8]).

Appendix B. Criteria for vague and weak convergence of spectral shift

functions

In this appendix, we recall the criteria for convergence of sequences of spectral shift
functions introduced in [9]. For clarity, we state the criteria and the corresponding
convergence results in the context in which they are applied in this paper, that is for
pairs of self-adjoint operators acting in the Hilbert spaces L2((−ℓ, ℓ); dx) and L2(R; dx).
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Hypothesis B.1. (Hypothesis 3.1 in [9]). Let H := L2(R; dx).
(i) For each ℓ ∈ N, decompose H according to

(B.1) L2(R; dx) = L2((−ℓ, ℓ); dx)⊕ℓ L
2(R\(−ℓ, ℓ); dx),

and write Hℓ := L2((−ℓ, ℓ); dx) and Hc
ℓ = L2(R\(−ℓ, ℓ); dx).

(ii) Let A(0) be a self-adjoint operator in H, and for each ℓ ∈ N, let A
(0)
ℓ be self-adjoint

operators in Hℓ. In addition, suppose that A(0) is bounded from below in H, and that for

each ℓ ∈ N, A
(0)
ℓ is bounded from below in Hℓ.

(iii) Suppose that V1, and V2 are closed operators in H, and for each ℓ ∈ N, assume that
V1,ℓ, and V2,ℓ are closed operators in Hℓ such that

dom(V1) ∩ dom(V2) ⊇ dom(|A(0)|1/2),(B.2)

dom(V1,ℓ) ∩ dom(V2,ℓ) ⊇ dom(|A
(0)
ℓ |1/2), ℓ ∈ N,(B.3)

where

(B.4) V = V ∗
1 V2 is a self-adjoint operator in H,

and for each ℓ ∈ N,

(B.5) Vℓ = V ∗
1,ℓV2,ℓ is a self-adjoint operator in Hℓ.

(iv) Suppose

V2(A(0) − zIH)−1V ∗
1 , V2,ℓ(A

(0)
ℓ − zIHℓ

)−1V ∗
1,ℓ ⊕ℓ 0 ∈ B1(H), ℓ ∈ N,(B.6)

V2(A
(0) − zIH)−1, V2,ℓ(A

(0)
ℓ − zIHℓ

)−1 ⊕ℓ 0 ∈ B2(H), ℓ ∈ N,(B.7)

(A(0) − zIH)−1V ∗
1 , (A

(0)
ℓ − zIHℓ

)−1V ∗
1,ℓ ⊕ℓ 0 ∈ B2(H), ℓ ∈ N,(B.8)

for some (and hence for all ) z ∈ C\R. In addition, assume that

lim
z↓−∞

∥

∥

∥

[

V2(A(0) − zIH)−1V ∗
1

∥

∥

∥

B1(H)
= 0,

lim
z↓−∞

∥

∥

∥
V2,ℓ(A

(0)
ℓ − zIHℓ

)−1V ∗
1,ℓ ⊕ℓ 0

∥

∥

∥

B1(H)
= 0, ℓ ∈ N.

(B.9)

(v) Assume that for some (and hence for all) z ∈ C\R,

(B.10) s-lim
ℓ→∞

[

(A
(0)
ℓ − zIHℓ

)−1 ⊕ℓ
−1

z
IHc

ℓ

]

= (A(0) − zIH)−1.

(vi) Suppose that for some (and hence for all) z ∈ C\R,

lim
ℓ→∞

∥

∥

∥

[

V2,ℓ(A
(0)
ℓ − zIHℓ

)−1V ∗
1,ℓ ⊕ℓ 0

]

− V2(A(0) − zIH)−1V ∗
1

∥

∥

∥

B1(H)
= 0,(B.11)

lim
ℓ→∞

∥

∥

∥

[

V2,ℓ(A
(0)
ℓ − zIHℓ

)−1 ⊕ℓ 0
]

− V2(A
(0) − zIH)−1

∥

∥

∥

B2(H)
= 0,(B.12)

lim
ℓ→∞

∥

∥

∥

[

(A
(0)
ℓ − zIHℓ

)−1V ∗
1,ℓ ⊕ℓ 0

]

− (A(0) − z)−1V ∗
1

∥

∥

∥

B2(H)
= 0.(B.13)

(vii) Suppose that

(V2f, V1g)H = (V1f, V2g)H, f, g ∈ dom(V1) ∩ dom(V2),

(V2,ℓf, V1,ℓg)H = (V1,ℓf, V2,ℓg)H, f, g ∈ dom(V1,ℓ) ∩ dom(V2,ℓ), ℓ ∈ N.
(B.14)

(viii) Decomposing V, Vℓ, ℓ ∈ N, into their positive and negative parts,

(B.15) V± = (1/2)[|V | ± V ], Vℓ,± = (1/2)[|Vℓ| ± Vℓ], ℓ ∈ N,

V± are assumed to be infinitesimally form bounded with respect to A(0), and for each

ℓ ∈ N, Vℓ,± are assumed to be infinitesimally form bounded with respect to A
(0)
ℓ .
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These hypotheses permit one to identify A and Aℓ with the quadratic form sums of

A(0) with V ∗
1 V2 and A

(0)
ℓ with V ∗

1,ℓV2,ℓ, respectively:

A = A(0) +q V
∗
1 V2,

Aℓ = A
(0)
ℓ +q V

∗
1,ℓV2,ℓ, ℓ ∈ N.

(B.16)

Assuming Hypothesis B.1, the pairs (A,A(0)) and (Aℓ, A
(0)
ℓ ), ℓ ∈ N, are resolvent

comparable in the sense that

(B.17)
[

(A− zIH)−1 − (A(0) − zIH)−1
]

∈ B1(H), z ∈ C\R,

and

(B.18)
[

(Aℓ − zIH)−1 − (A
(0)
ℓ − zIH)−1

]

∈ B1(H), z ∈ C\R, ℓ ∈ N.

Therefore, Hypothesis B.1 guarantees the existence of real-valued spectral shift functions

ξ( · ;A,A(0)) and ξ( · ;Aℓ, A
(0)
ℓ ), ℓ ∈ N, which satisfy

trH
(

(A− zIH)−1 − (A(0) − zIH)−1
)

= −

∫

R

ξ(λ;A,A(0))

(λ− z)2
dλ,

z ∈ ρ(A) ∩ ρ(A(0)),

(B.19)

and

trHℓ

(

(Aℓ − zIH)−1 − (A
(0)
ℓ − zIH)−1

)

= −

∫

R

ξ(λ;Aℓ, A
(0)
ℓ )

(λ− z)2
dλ,

z ∈ ρ(Aℓ) ∩ ρ(A
(0)
ℓ ), ℓ ∈ N,

(B.20)

and are determined uniquely (a.e.) by the conditions

ξ(λ;A,A(0)) = 0, λ < inf[σ(A) ∪ σ(A(0))],

ξ( · ;A,A(0)) ∈ L1(R; (1 + λ2)−1),
(B.21)

and

ξ(λ;Aℓ, A
(0)
ℓ ) = 0, λ < inf[σ(Aℓ) ∪ σ(A

(0)
ℓ )],

ξ( · ;Aℓ, A
(0)
ℓ ) ∈ L1(R; (1 + λ2)−1), ℓ ∈ N.

(B.22)

Moreover, for a large class of functions f , for example, any f such that the Fourier

transform f̂ ∈ L1(R; (1 + |p|) dp), Krein’s trace formula holds:

trH(f(A)− f(A(0))) =

∫

R

f ′(λ) ξ(λ;A,A(0)) dλ,(B.23)

trH(f(Aℓ)− f(A
(0)
ℓ )) =

∫

R

f ′(λ) ξ(λ;Aℓ, A
(0)
ℓ ) dλ, ℓ ∈ N.(B.24)

We refer to [25, Chapter 8] for these, as well as many other, properties of spectral shift
functions.

Under the assumptions in Hypothesis B.1, the following convergence results hold for

the sequence of spectral shift functions {ξ( · ;Aℓ, A
(0)
ℓ )}∞ℓ=1.

Theorem B.2. (Theorem 3.13 in [9]). Assume Hypothesis B.1. Then

(B.25) lim
ℓ→∞

∫

R

ξ(λ;Aℓ, A
(0)
ℓ )

λ2 + 1
f(λ) dλ =

∫

R

ξ(λ;A,A(0))

λ2 + 1
f(λ) dλ, f ∈ Cb(R).

The factor (1 + λ2)−1 is essential in (B.25). Without it, the integrals need not exist.

As a consequence of Theorem B.2, {ξ( · ;Aℓ, A
(0)
ℓ )}∞ℓ=1 converges vaguely to ξ( · ;A,A(0))

as ℓ→ ∞, which is the content of the following corollary.
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Corollary B.3. (Corollary 3.11 in [9]). Assume Hypothesis B.1 and let g ∈ C0(R).
Then

(B.26) lim
ℓ→∞

∫

R

ξ(λ;Aℓ, A
(0)
ℓ ) g(λ) dλ =

∫

R

ξ(λ;A,A(0)) g(λ) dλ.

Actually, the continuity assumption in Theorem B.2 may be relaxed, as in the following
result.

Corollary B.4. (Corollary 3.14 in [9]). Assume Hypothesis B.1. Then convergence
in (B.25) holds for any bounded Borel measurable function that is continuous almost
everywhere with respect to Lebesgue measure on R. In particular,

(B.27) lim
ℓ→∞

∫

S

ξ(λ;Aℓ, A
(0)
ℓ )

1 + λ2
dλ =

∫

S

ξ(λ;A,A(0))

1 + λ2
dλ

holds for any set S ⊆ R that is boundaryless with respect to Lebesgue measure (i.e., any
set S ⊆ R for which the boundary of S has Lebesgue measure equal to zero).

Corollary B.5. (Corollary 3.15 in [9]). Assume Hypothesis B.1. If g is a bounded
Borel measurable function that is compactly supported and Lebesgue almost everywhere
continuous on R, then

(B.28) lim
ℓ→∞

∫

R

ξ(λ;Aℓ, A
(0)
ℓ ) g(λ) dλ =

∫

R

ξ(λ;A,A(0)) g(λ) dλ.
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