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LIE DERIVATIONS ON THE ALGEBRAS OF LOCALLY

MEASURABLE OPERATORS

VLADIMIR CHILIN AND ILKHOM JURAEV

Abstract. We prove that every Lie derivation on a solid ∗-subalgebra in an algebra
of locally measurable operators is equal to a sum of an associative derivation and a

center-valued trace.

1. Introduction

Let A be an arbitrary associative algebra and let Z(A) be the center of the algebra A. A
linear operator D : A→ A is called (an associative) derivation if D(xy) = D(x)y+xD(y)
for all x, y ∈ A. For any derivation D, it is always true that D(Z(A)) ⊂ Z(A). Every
element a ∈ A defines a derivation Da on A given by Da(x) = ax − xa = [a, x], x ∈ A.
Such a derivation Da is called the inner derivation.

A linear operator L : A→ A is called a Lie derivation, if L ([x, y]) = [L(x), y]+[x, L(y)]
for all x, y ∈ A. It is obvious that every associative derivation D on A is a Lie derivation.
An example of a non-associative Lie derivation is a nonzero center-valued trace E : A→
Z(A), i.e., a linear map E : A→ Z(A) such that E(xy) = E(yx) for all x, y ∈ A.

It is well known that any Lie derivation L on a C∗-algebra A can be uniquely re-
presented in the form L = D + E, where D is an associative derivation and E is a
center-valued trace on A [13]. Such representation of the Lie derivation L is called the
standard form of L. In case where A is a von Neumann algebra the standard form of a
Lie derivation L on A has the form L = Da + E for some a ∈ A [15].

Development of the theory of algebras of measurable operators S(M) and of algebras
of locally measurable operators LS(M) affiliated with von Neumann algebras or AW ∗-
algebras M (see for example [6], [17], [18], [20], [21], [23]) provided an opportunity to
construct and to study new meaningful examples of ∗-algebras of unbounded operators.

One of the interesting problem is to describe all derivations which act in the algebras
S(M) and LS(M). In the case where M is a commutative von Neumann algebra any
derivation on S(M) = LS(M) is inner if and only if M is an atomic algebra [3]. For a
commutative AW ∗-algebra M a criterion for existence of nonzero derivations on S(M)
is the lack of the σ-distributive property of Boolean algebra of all projections in M [11].

In the case of type I von Neumann algebra, all associative derivations on the algebras
LS(M) (respectively, S(M)) are described in [1]. In the case where M is a properly
infinite von Neumann algebra, any associative derivation on LS(M) (and S(M)) is inner
[5].

Following the approach of [15], in this paper we present a standard form of the Lie
derivation acting on an arbitrarily solid ∗-subalgebras of LS(M), which contains M .

We use terminology and notations from the von Neumann algebra theory [8], [19], [22]
and the theory of locally measurable operators [14], [20], [23].
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2. Preliminaries

Let H be a complex Hilbert space over the field C of complex numbers and let B(H) be
the algebra of all bounded linear operators on H. Let M be a von Neumann subalgebra
in B(H) and let P(M) be the lattice of all projections in M , i.e., P(M) = {p ∈M : p2 =
p = p∗}. Denote by Pfin(M) the sublattice of all finite projections of P(M). Let Z(M)
be the center of algebra M and 1 be the identity in M .

A linear subspaceD ofH is said to be affiliated withM (denoted asDηM), if u(D) ⊆ D
for every unitary operator u from the commutant M ′ of the von Neumann algebra M.

A linear subspace D in H is said to be strongly dense in H with respect to the von
Neumann algebra M , if DηM and there exists a sequence of projections {pn}∞n=1 ⊂ P(M)
such that pn ↑ 1, pn(H) ⊂ D and p⊥n := 1− pn ∈ Pfin(M) for all n ∈ N, where N is the
set of all natural numbers.

A linear operator x on H with a dense domain D(x) is said to be affiliated with M
(denoted as xηM) if D(x)ηM and ux(ξ) = xu(ξ) for all ξ ∈ D(x) and for every unitary

operator u ∈M ′
.

A closed linear operator x acting in the Hilbert space H is said to be measurable with
respect to the von Neumann algebra M , if xηM and D(x) is strongly dense in H. By
S(M) we denote the set of all measurable operators with respect to M .

The set S(M) is a unital ∗-algebra with respect algebraic operations of strong addi-
tion and multiplication and taking the adjoint of an operator (it is assumed that the
multiplication by a scalar defined as usual wherein 0 · x = 0) [21].

A closed linear operator x in H is said to be locally measurable with respect to the von
Neumann algebra M , if xηM and there exists a sequence {zn}∞n=1 of central projections
in M such that zn ↑ 1, zn(H) ⊂ D(x) and xzn ∈ S(M) for all n ∈ N.

The set LS(M) of all locally measurable operators with respect to M is also a unital
∗-algebra equipped with the algebraic operations of strong addition and multiplication
and taking the adjoint of an operator. In addition, S(M) and M are ∗-subalgebras in
LS(M) [14, Ch. II, §2.3]. The center Z(LS(M)) of the ∗-algebra LS(M) coincides with
the ∗-algebra S(Z(M)). In the case where M is a factor or M is finite von Neumann
algebra, the equality LS(M) = S(M) holds.

Let x be a closed operator with a dense domain D(x) in H, let x = u|x| be the polar

decomposition of the operator x, where |x| = (x∗x)
1
2 and u is a partial isometry in B(H)

such that u∗u (respectively, uu∗) is the right (left) support r(x) (respectively, l(x)) of
x. It is known that x ∈ LS(M) (respectively, x ∈ S(M)) if and only if |x| ∈ LS(M)
(respectively, |x| ∈ S(M)) and u ∈M [14, Ch. II, §§ 2.2, 2.3].

The ∗-subalgebra A in LS(M) is called the solid ∗-subalgebra of LS(M), if MAM ⊂ A
for any a, b ∈M, x ∈ A. It is known that a ∗-subalgebra A of LS(M) is solid if and only
if the conditions x ∈ LS(M), y ∈ A, |x| ≤ |y| imply that x ∈ A (see for example, [2]).
The examples of solid ∗-subalgebras of LS(M) are ∗-subalgebras M and S(M).

3. Standard decomposition of Lie derivations

In this section the standard decomposition of a Lie derivation acting in a solid ∗-
subalgebra A in LS(M) containing M is established. More precisely, we prove the
following result.

Theorem 1. Let A be a solid ∗-subalgebra in LS(M) containing M , and let L be a Lie
derivation on A. Then there exist an associative derivation D on A and a center-valued
trace E : A→ Z(A) such that

(1) L(x) = D(x) + E(x)

for all x ∈ A.
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Remark 2. In the case of algebras LS(M) and S(M), the standard decomposition (1)
for the Lie derivation L in general is not unique. For example, if M is a commutative
von Neumann algebra without atoms, there are uncountably many distinct non-zero
associative derivations D : S(M) → S(M) [3, 4], which are at the same time S(M)-
valued traces. Therefore, taking two different nonzero derivations D and D1 on S(M),
we have that for a zero Lie derivation L the equality

L = D + (−D) = D1 + (−D1)

holds, i.e., the standard decomposition for L is not a unique.

Remark 3. If M is a commutative von Neumann algebra, then the ∗-algebra LS(M) is
also commutative [14, Ch. II, §2.2], and therefore for any ∗-subalgebra A in LS(M), we
have that Z(A) = A. Hence, in this case, the class of Lie derivations on A coincides with
the class of Z(A)-valued trace on A.

To prove Theorem 1, we first consider the case where the von Neumann algebra M has
no direct commutative summands, i.e., for any nonzero central projection z ∈ P(Z(M))
the von Neumann algebra zM is not commutative. In this case, in the von Neumann
algebra M there exists a non-zero projection p such that

(2) c(p) = c(1− p) = 1 and p � 1− p,

where c(p) := 1 − sup{z ∈ P(Z(M)) : pz = 0} is the central support of the projection
p [10, 6.1.9]. Everywhere below in this section we fix the projector p ∈ P(M) satisfying
the conditions (2).

Let A be an arbitrary solid ∗-subalgebra in LS(M) such that M ⊂ A. Let p1 = p,
p2 = 1 − p. Consider the subalgebras Sij = piApj = {pixpj : x ∈ A} in A, i, j = 1, 2.
It is clear that SikSlj ⊂ Sij and the inclusion M ⊂ A implies that piMpj ⊂ Sij for any
i, j, k, l = 1, 2. In addition, A =

∑
i,j=1,2

Sij . Moreover, for x ∈ Sik, y ∈ Slj , the inclusion

xy ∈ Sij holds, and if k 6= l, then xy = 0.
To prove Theorem 1 we need some technical lemmas that are similar to the corre-

sponding lemma in [12, 15]. The proofs of these lemmas are similar to those in [12, 15]
and are given here for the sake of completeness (in contrast with [12, 15], we also consider
the case where A 6= M).

Lemma 4. (cf. [15, Lemma 1]). If x ∈ Sij and xy = 0 for all y ∈ Sjk, then x = 0.

Proof. If j = k, then for pj ∈ Sjj we have that x = xpj = 0. Let i = j = 1, k = 2,
x ∈ S11 and xy = 0 for all y ∈ S12. Since p1 = p � 1− p = p2 there exists a projection
q1 ≤ p2 such that p1 ∼ q1, i.e., u∗u = p1, uu

∗ = q1 for some partial isometry u ∈ M .
Taking into account that u∗q1u = p1, q1 = q1p2, x = p1xp1 and the inclusion M ⊂ A,
we have that p1u

∗q1p2 ∈ S12 and

x = p1xp1u
∗u = x(p1u

∗q1p2)u = 0.

For other indices i, j the proof of Lemma 4 is similar. �

Lemma 5. If L is a Lie derivation on A then L(p) = [p, a] + z for some a ∈ A and
z ∈ Z(A).

The proof is exactly the same as the proof of Lemma 5 in [12] and Lemma 4 in [15].

Lemma 6. If L : A→ A is a Lie derivation and L(p) ∈ Z(A) then
(i). L (Sij) ⊂ Sij for i 6= j;
(ii). L (Sii) ⊂ Sii + Z(A), i = 1, 2.
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Proof. The proof of (i) is analogous to the proof of Lemma 6 in [12].
(ii). If a ∈ S11 and L(a) =

∑
i,j=1,2

xij , where xij ∈ Sij , then

a = pap, [p, a] = pa− ap = 0,

and therefore

0 = L([p, a]) = [L(p), a] + [p, L(a)] = [p, L(a)] = x12 − x21.

Consequently, x12 = px12 = p(x12 − x21) = 0 and x21 = x12 − (x12 − x21) = 0, i.e.,
L(a) ∈ S11 + S22. Similarly, if a ∈ S22, then L(a) ∈ S11 + S22.

Let now a ∈ S11, b ∈ S22, L(a) = a11 + a22, L(b) = b11 + b22, where aii, bii ∈
Sii, i = 1, 2. From the equation 0 = L([a, b]) = [a22, b] + [a, b11] and the inclusions
[a22, b] ∈ S22, [a, b11] ∈ S11 it follows that [a22, b] = 0 = [a, b11]. Thus a22b = ba22 for all
b ∈ (1− p)A(1− p), i.e., a22 ∈ Z((1− p)A(1− p)).

Let us show that Z((1− p)A(1− p)) = (1− p)Z(A). It is clear that

(1− p)Z(A) ⊂ Z((1− p)A(1− p)).

Let 0 ≤ x ∈ Z((1 − p)A(1 − p)), z = x + (1 − p) and let y be an inverse of z in
the algebra (1 − p)LS(M)(1 − p). Since 0 ≤ y ≤ 1 − p and y ∈ Z((1 − p)A(1 − p)),
it follows that y ∈ Z((1 − p)M(1 − p)). According to [8, Part I, Ch. 2, §1], the
equality Z((1 − p)M(1 − p)) = (1 − p)Z(M) holds, and therefore y = (1 − p)d, where
d ∈ Z(M) ⊂ Z(A). Consequently, y ∈ (1 − p)Z(A) and the operator z also belongs to
the algebra (1− p)Z(A), which implies x ∈ (1− p)Z(A).

Thus, Z((1− p)A(1− p)) = (1− p)Z(A) and a22 = (1− p) z, for some z ∈ Z(A), i.e.,

L(a) = a11 + (1− p) z = (a11 − pz) + z ∈ S11 + Z(A).

The inclusion L(S22) ⊂ S22 + Z(A) is established similarly. �

The Lemma 6 implies that in the case where L(p) ∈ Z(A), we have that L(x) ∈ Sij for
x ∈ Sij , i 6= j and that L(x) = d(x)+z(x) for x ∈ Sii, where d(x) ∈ Sii and z(x) ∈ Z(A).

Now we prove the identity pAp ∩ Z(A) = {0}. If there is 0 6= a ∈ pAp ∩ Z(A), then
0 6= |a| ∈ pAp ∩ Z(A) and therefore the operator |a| has non-zero spectral projection
q = {|a| ≥ ε} such that q ≤ p and q ∈ Z(A). Hence, q(1 − p) = 0, which is impossible,
since c(1− p) = 1.

If x ∈ Sii and L(x) = d1(x) + z1(x), where d1(x) ∈ Sii, z1(x) ∈ Z(A), then

d(x)− d1(x) = z(x)− z1(x) ∈ Sii ∩ Z(A) = (piApi)
⋂
Z(A) = {0}.

Consequently, for each x ∈ Sii the element L(x) is uniquely represented in the form
L(x) = d(x) + z(x), where d(x) ∈ Sii, z(x) ∈ Z(A).

Thus, in the case L(p) ∈ Z(A), the map D : A→ A is correctly defined by

(3) D(x) = d(x11) + d(x22) + L(x12 + x21),

where x ∈ A, xij = pixpj , i, j = 1, 2. If x, y ∈ S11, then

L(x+ y) = d(x+ y) + z(x+ y); L(x) = d(x) + z(x); L(y) = d(y) + z(y).

Since L is a linear map, it follows that

d(x+ y) + z(x+ y) = d(x) + d(y) + z(x) + z(y),

d(λx) + z(λx) = λ(d(x) + z(x)), λ ∈ C.

Using the identity pAp ∩ Z(A) = {0} we have that

d(x+ y) = d(x) + d(y), z(x+ y) = z(x) + z(y),

d(λx) = λd(x), z(λx) = λz(x).
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This means that the mappings d : S11 → S11 and z : S11 → Z(A) are linear. For the
same reasons, these mappings are linear on S22. Thus the map D constructed in (3) is
a linear operator acting on the solid ∗-subalgebra A. In this case, the map E from A to
Z(A), defined by

E(x) = L(x)−D(x) = z(x11) + z(x22), x ∈ A,

is also linear. In additional, for x ∈ Sij , i 6= j, we have that E(x) = 0, i.e., L(x) = D(x).

Lemma 7. If x ∈ Sij , i 6= j, y ∈ A, then

D(xyx) = D(x)yx+ xD(y)x+ xyD(x).

The proof is exactly the same as the proof of Lemma 9 in [12].

Lemma 8. (cf. [12, Lemma 10, 11]). If x ∈ Sii and y ∈ A, or x ∈ A and y ∈ Sii,
i = 1, 2, then

(4) D(xy) = D(x)y + xD(y).

Proof. If x ∈ S11 and y ∈ S12, then [x, y] = xy and

D(xy) = L(xy) = L([x, y]) = [D(x) + E(x), y] + [x,D(y) + E(y)]

= [D(x), y] + [x,D(y)] = D(x)y + xD(y).

For x ∈ S11 and y ∈ S21 we have that D(x) ∈ S11 and D(y) ∈ S21, which implies (4).
For the cases x ∈ S22, y ∈ Sij , i 6= j, the identity (4) is established similarly.

Now let x, y ∈ S11, z ∈ S12. According to the arguments above it follows that

D(xy)z = D(xyz)− xyD(z) = D(x)yz + xD(yz)− xyD(z)

= D(x)yz + x(D(y)z + yD(z))− xyD(z) = (D(x)y + xD(y))z.

Consequently, (D(xy)−D(x)y−xD(y))z = 0 for all z ∈ S12 and from Lemma 4 we have
that D(xy)−D(x)y − xD(y) = 0.

In the case where x ∈ S11, y ∈ S22, or x ∈ S22, y ∈ S11, we have that xy = 0 and
D(x)y + xD(y) = 0. The case x, y ∈ S22 can be treated similarly to that of x, y ∈ S11.

Thus, identity (4) holds for any x ∈ Sii, y ∈ Skl for all i, k, l = 1, 2. Using the equality
A =

∑
i,j=1,2

Sij we obtain that the equality (4) holds for any x ∈ Sii, y ∈ A, i = 1, 2. For

the case x ∈ A and y ∈ Sii, i = 1, 2 the equality (4) is established similarly. �

Lemma 9. (cf. [16, Lemma 10]). The linear mapping D defined by (3) is an associative
derivation on A.

Proof. In the case where x ∈ Sii, i = 1, 2, y ∈ A, Lemma 9 is proved in Lemma 8. If
x ∈ S12 and y ∈ S21, then

E([x, y]) = L([x, y])−D([x, y]) = [L(x), y] + [x, L(y)]−D([x, y])

= [D(x), y] + [x,D(y)]−D(xy) +D(yx).

Consequently, for z = E([x, y]) ∈ Z(A), we have that

(5) z = D(x)y + xD(y)−D(xy) +D(yx)−D(y)x− yD(x).

Since (D(x)y+xD(y)−D(xy)) ∈ S11, (D(y)x+yD(x)−D(yx)) ∈ S22 and S11∩S22 = {0},
it follows in the case z = 0 that equation (5) implies D(xy) = D(x)y + xD(y).

Let us show that z = 0. Suppose that z 6= 0. Multiplying the left hand-side of (5) by
x and then by y, we have that

(6) xz = xD(yx)− xD(y)x− xyD(x), yz = yD(x)y + yxD(y)− yD(xy).
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Since yx ∈ S22, it follows from Lemma 8 that D(xyx) = D(x)yx+ xD(yx). Now, using
the equality (6), we have that

xz = D(xyx)−D(x)yx− xD(y)x− xyD(x)

and by Lemma 7, xz = 0.
Due to xy ∈ S11 and Lemma 8, we have D(yxy) = D(y)xy + yD(xy).
Therefore, from (6) and Lemma 6 it follows that

yz = yD(x)y + yxD(y)−D(yxy) +D(y)xy

= yD(x)y + yxD(y)−D(y)xy − yD(x)y − yxD(y) +D(y)xy = 0.

Let x = u|x| be the polar decomposition of the operator x ∈ A. Since xz = 0, M ⊂ A,
it follows that |x| = u∗x ∈ A and |x|z = u∗xz = 0. Hence z∗|x| = 0 and xz∗ = z∗x = 0.
Similarly, using the equality yz = 0, we have that yz∗ = z∗y = 0. Multiplying now the
left hand-side and the right hand-side of (5) by z∗, we have that

z∗zz∗ = z∗(D(yx)−D(xy))z∗.

Since yx ∈ S22 and uxz∗ = 0 = z∗y, it follows by Lemma 8 that

(7) 0 = D(yx(1− p)z∗) = D(yx)(1− p)z∗ + yxD((1− p)z∗).
Using D(yx) ∈ S22 and equality (7), we have that

D(yx)z∗ = D(yx)(1− p)z∗ = −yxD((1− p)z∗).
Similarly, D(xy)z∗ = −yxD(pz∗). Since z∗x = 0 = z∗y, it follows that

z∗zz∗ = z∗xyD(pz∗)− z∗yxD((1− p)z∗) = 0,

i.e., z = 0. In the case x ∈ S21 and y ∈ S12 the statement of Lemma 9 is proved
similarly. �

In particular, Lemma 9 implies the following result.

Corollary 10. E([x, y]) = 0 for all x, y ∈ A.

Proof. Since the D is an associative derivation it follows that D is also a Lie derivation.
Thus for any x, y ∈ A we have

L([x, y]) = [D(x) + E(x), y] + [x,D(y) + E(y)] = [D(x), y] + [x,D(y)] = D([x, y]),

which implies that E([x, y]) = 0. �

Now we are ready to establish the standard decomposition for the Lie derivation L in
the case where the von Neumann algebra M has no direct commutative summands.

Theorem 11. Let M be a von Neumann algebra without direct commutative summands,
let A be a solid ∗-subalgebra in LS(M), containing M , and let L be a Lie derivation
on A. Then there exist an associative derivation D on A and a center-valued trace
E : A→ Z(A) such that L(x) = D(x) + E(x) for all x ∈ A.

Proof. Since the von Neumann algebra M has no direct commutative summands, there
exists a projection p ∈ P(M) such that c(p) = c(1 − p) = 1 ([10, 6.1.9]). Assume first
that L(p) ∈ Z(A). In this case, according to Lemma 8 and Corollary 10, we have that
L = D+E, where D is an associative derivation on A and E is a trace on A with values
in Z(A).

Now let L(p)∈̄Z(A). By Lemma 5, the equality L(p) = [p, a] + z holds for some a ∈ A
and z ∈ Z(A). Consider on A the inner derivation Da(x) = [a, x], and let L1 = L+Da.
It is clear that L1 is a Lie derivation on A, moreover,

L1(p) = L(p) +Da(p) = [p, a] + [a, p] + z = z ∈ Z(A).
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By Lemma 9 and Corollary 10 the Lie derivation L1 has the standard form, i.e., L1 =
D1 + E1, where D1 is an associative derivation on A and E1 is a Z(A)-valued trace on
A. Therefore,

L = L1 −Da = D1 −Da + E1.

It is clear that D = D1 − Da is an associative derivation on A, and consequently the
equality L = D + E1 completes the proof of Theorem 11. �

We now consider the case of an arbitrary von Neumann algebra M . We need the
following

Lemma 12. Let M be an arbitrary von Neumann, and let A be a ∗-subalgebra in LS(M).
If L is a Lie derivation on A then L(Z(A)) ⊂ Z(A).

Proof. If z ∈ Z(A), a ∈ A, then [z, a] = 0 = [z, L(a)], and consequently [L(z), a] =
L([z, a])− [z, L(a)] = 0, i.e., L(z)a = aL(z), which implies that L(z) ∈ Z(A). �

If z0 = sup{z ∈ P(Z(M)) : zM ⊂ Z(M)} then M0 := z0M = z0Z(M) is a commuta-
tive von Neumann algebra, and the von Neumann algebra M1 = (1−z0)M has no direct
commutative summands, moreover M = M1

⊕
M0.

Let A be a solid ∗-subalgebra in LS(M), containing M , z1 = 1− z0, A1 = z1A, and
let L be a Lie derivation on A.

Lemma 13. (i). L1(x) := z1L(x) is a Lie derivation on the solid ∗-subalgebra A1 in
LS(M1);

(ii). The linear mappings F1(x) := z0L(z1x), F2(x) := z1L(z0x) and F3(x) :=
z0L(z0x) are Z(A)-valued traces on A;

(iii). If E1 is a Z(A1)-valued traces on A1, then E(x) := E1(z1x) is a Z(A)-valued
traces on A;

(iv). If D1 is an associative derivation on A1, then D(x) := D1(z1x) is an associative
derivation on A.

Proof. (i). If x, y ∈ A1, then

L1([x, y]) = z1L([x, y]) = z1([L(x), z1y] + [z1x, L(y)]) = [L1(x), y] + [x, L1(y)].

(ii). It is clear that F1(x) ∈ z0A ⊂ Z(A). If x, y ∈ A, then z1[x, y] = [z1x, z1y] and
from equality z0z1 = 0 it follows that

F1([x, y]) = z0(L([z1x, z1y]) = z0([L(z1x), z1y] + [z1x, L(z1y)]) = 0,

i. e., F1(xy) = F1(yx).
Since z0x ∈ Z(A), by Lemma 12, we have that F2(x) = z1L(z0x) ∈ Z(A). Moreover,

F2([x, y]) = z1L(z0[x, y]) = z1L([z0x, z0y] = 0,

i. e., F2(xy) = F2(yx). Similarly we can show that F3(xy) = F3(yx).
(iii). For any x, y ∈ A we have E(x) ∈ Z(A1) ⊂ Z(A) and

E(xy) = E1(z1xy) = E1((z1x)(z1y)) = E1((z1y)(z1x)) = E(yx).

(iv). Since z1D1(a) = D1(a) for any a ∈ A1, it follows that

D(xy) = D1(z1xy) = D1((z1x)(z1y)) = D1(z1x)(z1y) + z1xD1(z1y)

= D1(z1x)y + xD1(z1y) = D(x)y + xD(y)

for all x, y ∈ A. �
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Now we will prove Theorem 1. If x ∈ A then using notations of Lemma 10, we obtain

L(x) = z1L(z1x) + z1L(z0x) + z0L(z1x) + z0L(z0x)

= L1(z1x) + F2(x) + F1(x) + F3(x).

By Theorem 11 and Lemma 13 (i) there exist an associative derivation D1 on A1 and
a Z(A1)-valued trace E1 on A1 such that L1(z1x) = D1(z1x) + E1(z1x) for all x ∈ A.
By Lemma 13 (iii), (iv), the mapping D(x) = D1(z1x) is an associative derivation on A
and the mapping E(x) = E1(z1x) is a Z(A)-valued trace on A. Thus,

(8) L(x) = D(x) + E(x) + F1(x) + F2(x) + F3(x)

for all x ∈ A. Since E + F1 + F2 + F3 is a Z(A)-valued trace on A (see Lemma 13 (ii)),
the equality (8) completes the proof of Theorem 1.

4. Lie derivations on LS(M) in the case of type I von Neumann algebra

Let Z be a commutative von Neumann algebra, let Hn be an n-dimensional complex
Hilbert space and let Mn = B(Hn)

⊗
Z be a homogeneous von Neumann algebra of

type In. The von Neumann algebra Mn is ∗-isomorphic to the ∗-algebra Mat(n,Z) of all
n× n-matrix (aij)

n
i,j=1 with entries aij ∈ Z. Since Mn is a finite von Neumann algebra,

it follows that LS(Mn) = S(Mn), in addition, ∗-algebra S(Mn) is identified with the
∗-algebra Mat(n, S(Z)) of all n× n-matrix with entries from S(M) (see [1]).

If eij , i, j = 1, . . . , n, is the matrix unit of Mat(n, S(Z)), then every element x ∈
Mat(n, S(Z)) has the form

x =

n∑
i,j=1

λijeij , λij ∈ S(Z), i, j = 1, . . . , n.

For any derivation δ : S(Z)→ S(Z) the linear operator

(9) Dδ

( n∑
i,j=1

λijeij

)
=

n∑
i,j=1

δ(λij)eij

is a derivation on S(Mn) = Mat(n, S(Z)). Since the algebras Z(S(Mn)) and S(Z) are
isomorphic, we can identify them. The restriction of Dδ to the center S(Z) coincides with
δ. It is know that in the case where a commutative von Neumann algebra Z has no atoms
there exists an uncountable set of mutually different derivations δ : S(Z) → S(Z) (see
[4]). Consequently, in this case, there exists an uncountable family of mutually different
derivations on the algebra Mat(n, S(Z)) = S(M) of the form Dδ.

Now let M be an arbitrary finite von Neumann algebra of type I with center Z. There
exists a family {zn}n∈F , F ⊆ N, of mutually orthogonal central projections from M
with sup

n∈F
zn = 1 such that the algebra M is ∗-isomorphic to the direct sum of the von

Neumann algebras znM of type Ikn , n ∈ F , i.e.,

M ∼=
∑
n∈F

⊕
znM,

and
znM = B(Hkn)

⊗
L∞(Ωn,Σn, µn) ∼= Mat(kn, L

∞(Ωn,Σn, µn))

= {(aij)kni,j=1 : aij ∈ L∞(Ωn,Σn, µn)},
where kn = dim(Hn) <∞, (Ωn,Σn, µn) is a Maharam measure space, n ∈ N. According
to Proposition 1.1 from [1], we have that

LS(M) ∼=
∏
n∈F

LS(znM) =
∏
n∈F

S(znM)
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and
LS(znM) = S(znM) ∼= Mat(kn, L(Ωn,Σn, µn))

= {(λij)kni,j=1 : λij ∈ L(Ωn,Σn, µn)},
where L(Ωn,Σn, µn) is an ∗-algebra of all complex measurable functions on the measure
space (Ωn,Σn, µn) (functions that are equal almost everywhere are identified).

Suppose that D is a derivation on LS(M) and δ is the restriction of D onto the center
S(LS(M)) = S(Z(M)). The restriction of the derivation δ onto znS(Z(M)) defines a
derivation δn on znS(Z(M)) for each n ∈ F .

Let Dδn be a derivation on the matrix algebra Mat(kn, znS(Z(M))) ∼= S(znM), de-
fined by the equation (9). Set

(10) Dδ({xn}n∈F ) = {Dδn(xn)}, {xn}n∈F ∈
∏
n∈F

S(znM) = LS(M).

It is clear that Dδ is a derivation on the algebra LS(M). If M is an arbitrary von
Neumann algebra of type I, then there exists a central projection z0 ∈M such that z0M
is a properly infinite algebra and z⊥0 M is a finite von Neumann algebra.

Consider a derivation D on LS(M) and by δ denote the restriction of D onto the
center Z(LS(M)). By Theorem 2.7 [1], the derivation z0D is an inner derivation on
z0LS(M) = LS(z0M), moreover, z0δ = 0, i.e. δ = z⊥0 δ.

Let Dδ be a derivation on z⊥0 LS(M) of the form (10). Consider the extension of Dδ

onto LS(M) = z0LS(M)
⊕
z⊥0 LS(M), defined as

(11) Dδ(x1 + x2) := Dδ(x2), x1 ∈ z0LS(M), x2 ∈ z⊥0 LS(M).

By [1, Theorems 2.8, 3.6], any derivation D on the algebra LS(M) (respectively, on the
algebra S(M)) can be uniquely represented as the sum D = Da + Dδ, where a is an
element in LS(M) (respectively, in S(M)). Thus by Theorem 1 we have the following.

Theorem 14. If M is a type I von Neumann algebra. Then any Lie derivation on the
algebra LS(M) (respectively, on S(M)) has the form

L = Da +Dδ + E,

where Da is an inner derivation, Dδ is a derivation given by (11), generated by the
derivation δ on the center of LS(M) (respectively, on S(M)) and E is a center-valued
trace on LS(M) (respectively, on S(M)).

5. Lie derivations on EW ∗ algebras

In this section we give applications of Theorem 1 to a description of Lie derivations
on EW ∗-algebras. The class of EW ∗-algebras (extended W ∗-algebras) was introduced
in [9] for the purpose of description of ∗-algebras of unbounded closed operators, which
are ”similar” to W ∗-algebras by their algebraic and order properties.

Let A be a set of closed, densely defined operators on a Hilbert space H, which is an
∗-algebra with the identity 1 equipped with the strong sum, strong product, the scalar
multiplication and the usual adjoint of operators.

An ∗-algebra A is said to be EW ∗-algebra if the following conditions hold:
(i). (1 + x∗x)−1 ∈ A for every x ∈ A;
(ii). A ∗-subalgebra Ab of bounded operators in A is a von Neumann subalgebra in

B(H).
In this case, an ∗-algebra A is said to be an EW ∗-algebra over von Neumann algebra

Ab. It is clear that every solid ∗-subalgebras A in LS(M) with M ⊂ A is an EW ∗-algebra
and Ab = M. The converse implication is given in [7], where it is established that every
EW ∗-algebra A with the bounded part Ab = M is a solid ∗-subalgebra in the ∗-algebra
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LS(M). Thus LS(M) is the greatest EW ∗-algebra of EW ∗-algebras with the bounded
part coinciding with M .

Using Theorem 1, we get the following description Lie derivation on an EW ∗-algebra.

Theorem 15. Any Lie derivation L, defined on an EW ∗-algebra A has a standard form
L = D + E, where D : A → A is an associative derivation, and E : A → Z(A) is a
center-valued trace on A.

In the case where the bounded part Ab of an EW ∗-algebra A is a properly infinite
W ∗-algebra, any associative derivation D : A→ LS(Ab) is inner [5, Theorem 5.1(ii)].

Thus Theorem 15 implies the following.

Theorem 16. If the bounded part Ab of an EW ∗-algebra A is a properly infinite von
Neumann algebra, then every Lie derivation L on A is equal to Da + E, where a ∈ A
and E : A→ Z(A) is a central-valued trace.
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