LIE DERIVATIONS ON THE ALGEBRAS OF LOCALLY MEASURABLE OPERATORS

VLADIMIR CHILIN AND ILKHOM JURAEV

ABSTRACT. We prove that every Lie derivation on a solid *-subalgebra in an algebra of locally measurable operators is equal to a sum of an associative derivation and a center-valued trace.

1. INTRODUCTION

Let A be an arbitrary associative algebra and let Z(A) be the center of the algebra A. A linear operator $D: A \to A$ is called (an associative) derivation if D(xy) = D(x)y + xD(y)for all $x, y \in A$. For any derivation D, it is always true that $D(Z(A)) \subset Z(A)$. Every element $a \in A$ defines a derivation D_a on A given by $D_a(x) = ax - xa = [a, x], x \in A$. Such a derivation D_a is called the inner derivation.

A linear operator $L: A \to A$ is called a Lie derivation, if L([x, y]) = [L(x), y] + [x, L(y)]for all $x, y \in A$. It is obvious that every associative derivation D on A is a Lie derivation. An example of a non-associative Lie derivation is a nonzero center-valued trace $E: A \to Z(A)$, i.e., a linear map $E: A \to Z(A)$ such that E(xy) = E(yx) for all $x, y \in A$.

It is well known that any Lie derivation L on a C^* -algebra A can be uniquely represented in the form L = D + E, where D is an associative derivation and E is a center-valued trace on A [13]. Such representation of the Lie derivation L is called the standard form of L. In case where A is a von Neumann algebra the standard form of a Lie derivation L on A has the form $L = D_a + E$ for some $a \in A$ [15].

Development of the theory of algebras of measurable operators S(M) and of algebras of locally measurable operators LS(M) affiliated with von Neumann algebras or AW^* algebras M (see for example [6], [17], [18], [20], [21], [23]) provided an opportunity to construct and to study new meaningful examples of *-algebras of unbounded operators.

One of the interesting problem is to describe all derivations which act in the algebras S(M) and LS(M). In the case where M is a commutative von Neumann algebra any derivation on S(M) = LS(M) is inner if and only if M is an atomic algebra [3]. For a commutative AW^* -algebra M a criterion for existence of nonzero derivations on S(M) is the lack of the σ -distributive property of Boolean algebra of all projections in M [11].

In the case of type I von Neumann algebra, all associative derivations on the algebras LS(M) (respectively, S(M)) are described in [1]. In the case where M is a properly infinite von Neumann algebra, any associative derivation on LS(M) (and S(M)) is inner [5].

Following the approach of [15], in this paper we present a standard form of the Lie derivation acting on an arbitrarily solid *-subalgebras of LS(M), which contains M.

We use terminology and notations from the von Neumann algebra theory [8], [19], [22] and the theory of locally measurable operators [14], [20], [23].

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L52; Secondary 16W25, 47B47, 47L60.

 $Key\ words\ and\ phrases.$ Von Neumann algebras, locally measurable operator, derivation, Lie derivation, center-valued trace.

2. Preliminaries

Let H be a complex Hilbert space over the field \mathbb{C} of complex numbers and let B(H) be the algebra of all bounded linear operators on H. Let M be a von Neumann subalgebra in B(H) and let $\mathcal{P}(M)$ be the lattice of all projections in M, i.e., $\mathcal{P}(M) = \{p \in M : p^2 = p = p^*\}$. Denote by $\mathcal{P}_{fin}(M)$ the sublattice of all finite projections of $\mathcal{P}(M)$. Let Z(M)be the center of algebra M and **1** be the identity in M.

A linear subspace \mathcal{D} of H is said to be affiliated with M (denoted as $\mathcal{D}\eta M$), if $u(\mathcal{D}) \subseteq \mathcal{D}$ for every unitary operator u from the commutant M' of the von Neumann algebra M.

A linear subspace \mathcal{D} in H is said to be strongly dense in H with respect to the von Neumann algebra M, if $\mathcal{D}\eta M$ and there exists a sequence of projections $\{p_n\}_{n=1}^{\infty} \subset \mathcal{P}(M)$ such that $p_n \uparrow \mathbf{1}, p_n(H) \subset \mathcal{D}$ and $p_n^{\perp} := \mathbf{1} - p_n \in \mathcal{P}_{fin}(M)$ for all $n \in \mathbb{N}$, where \mathbb{N} is the set of all natural numbers.

A linear operator x on H with a dense domain $\mathcal{D}(x)$ is said to be affiliated with M (denoted as $x\eta M$) if $\mathcal{D}(x)\eta M$ and $ux(\xi) = xu(\xi)$ for all $\xi \in \mathcal{D}(x)$ and for every unitary operator $u \in M'$.

A closed linear operator x acting in the Hilbert space H is said to be measurable with respect to the von Neumann algebra M, if $x\eta M$ and $\mathcal{D}(x)$ is strongly dense in H. By S(M) we denote the set of all measurable operators with respect to M.

The set S(M) is a unital *-algebra with respect algebraic operations of strong addition and multiplication and taking the adjoint of an operator (it is assumed that the multiplication by a scalar defined as usual wherein $0 \cdot x = 0$) [21].

A closed linear operator x in H is said to be locally measurable with respect to the von Neumann algebra M, if $x\eta M$ and there exists a sequence $\{z_n\}_{n=1}^{\infty}$ of central projections in M such that $z_n \uparrow \mathbf{1}, z_n(H) \subset \mathcal{D}(x)$ and $xz_n \in S(M)$ for all $n \in \mathbb{N}$.

The set LS(M) of all locally measurable operators with respect to M is also a unital *-algebra equipped with the algebraic operations of strong addition and multiplication and taking the adjoint of an operator. In addition, S(M) and M are *-subalgebras in LS(M) [14, Ch. II, §2.3]. The center Z(LS(M)) of the *-algebra LS(M) coincides with the *-algebra S(Z(M)). In the case where M is a factor or M is finite von Neumann algebra, the equality LS(M) = S(M) holds.

Let x be a closed operator with a dense domain $\mathfrak{D}(x)$ in H, let x = u|x| be the polar decomposition of the operator x, where $|x| = (x^*x)^{\frac{1}{2}}$ and u is a partial isometry in B(H) such that u^*u (respectively, uu^*) is the right (left) support r(x) (respectively, l(x)) of x. It is known that $x \in LS(\mathcal{M})$ (respectively, $x \in S(\mathcal{M})$) if and only if $|x| \in LS(\mathcal{M})$ (respectively, $|x| \in S(\mathcal{M})$) and $u \in \mathcal{M}$ [14, Ch. II, §§ 2.2, 2.3].

The *-subalgebra A in LS(M) is called the solid *-subalgebra of LS(M), if $MAM \subset A$ for any $a, b \in M$, $x \in A$. It is known that a *-subalgebra A of LS(M) is solid if and only if the conditions $x \in LS(M)$, $y \in A$, $|x| \leq |y|$ imply that $x \in A$ (see for example, [2]). The examples of solid *-subalgebras of LS(M) are *-subalgebras M and S(M).

3. Standard decomposition of Lie derivations

In this section the standard decomposition of a Lie derivation acting in a solid *-subalgebra A in LS(M) containing M is established. More precisely, we prove the following result.

Theorem 1. Let A be a solid *-subalgebra in LS(M) containing M, and let L be a Lie derivation on A. Then there exist an associative derivation D on A and a center-valued trace $E: A \to Z(A)$ such that

(1)
$$L(x) = D(x) + E(x)$$

for all $x \in A$.

Remark 2. In the case of algebras LS(M) and S(M), the standard decomposition (1) for the Lie derivation L in general is not unique. For example, if M is a commutative von Neumann algebra without atoms, there are uncountably many distinct non-zero associative derivations $D : S(M) \to S(M)$ [3, 4], which are at the same time S(M)valued traces. Therefore, taking two different nonzero derivations D and D_1 on S(M), we have that for a zero Lie derivation L the equality

$$L = D + (-D) = D_1 + (-D_1)$$

holds, i.e., the standard decomposition for L is not a unique.

Remark 3. If M is a commutative von Neumann algebra, then the *-algebra LS(M) is also commutative [14, Ch. II, §2.2], and therefore for any *-subalgebra A in LS(M), we have that Z(A) = A. Hence, in this case, the class of Lie derivations on A coincides with the class of Z(A)-valued trace on A.

To prove Theorem 1, we first consider the case where the von Neumann algebra M has no direct commutative summands, i.e., for any nonzero central projection $z \in \mathcal{P}(Z(M))$ the von Neumann algebra zM is not commutative. In this case, in the von Neumann algebra M there exists a non-zero projection p such that

(2)
$$c(p) = c(1-p) = 1$$
 and $p \leq 1-p$,

where $c(p) := \mathbf{1} - \sup\{z \in \mathcal{P}(Z(M)) : pz = 0\}$ is the central support of the projection p [10, 6.1.9]. Everywhere below in this section we fix the projector $p \in \mathcal{P}(M)$ satisfying the conditions (2).

Let A be an arbitrary solid *-subalgebra in LS(M) such that $M \subset A$. Let $p_1 = p$, $p_2 = \mathbf{1} - p$. Consider the subalgebras $S_{ij} = p_i A p_j = \{p_i x p_j : x \in A\}$ in A, i, j = 1, 2. It is clear that $S_{ik}S_{lj} \subset S_{ij}$ and the inclusion $M \subset A$ implies that $p_i M p_j \subset S_{ij}$ for any i, j, k, l = 1, 2. In addition, $A = \sum_{i,j=1,2} S_{ij}$. Moreover, for $x \in S_{ik}, y \in S_{lj}$, the inclusion $xy \in S_{ij}$ holds, and if $k \neq l$, then xy = 0.

To prove Theorem 1 we need some technical lemmas that are similar to the corresponding lemma in [12, 15]. The proofs of these lemmas are similar to those in [12, 15] and are given here for the sake of completeness (in contrast with [12, 15], we also consider the case where $A \neq M$).

Lemma 4. (cf. [15, Lemma 1]). If $x \in S_{ij}$ and xy = 0 for all $y \in S_{jk}$, then x = 0.

Proof. If j = k, then for $p_j \in S_{jj}$ we have that $x = xp_j = 0$. Let i = j = 1, k = 2, $x \in S_{11}$ and xy = 0 for all $y \in S_{12}$. Since $p_1 = p \leq 1 - p = p_2$ there exists a projection $q_1 \leq p_2$ such that $p_1 \sim q_1$, i.e., $u^*u = p_1$, $uu^* = q_1$ for some partial isometry $u \in M$. Taking into account that $u^*q_1u = p_1$, $q_1 = q_1p_2$, $x = p_1xp_1$ and the inclusion $M \subset A$, we have that $p_1u^*q_1p_2 \in S_{12}$ and

$$x = p_1 x p_1 u^* u = x (p_1 u^* q_1 p_2) u = 0.$$

For other indices i, j the proof of Lemma 4 is similar.

Lemma 5. If L is a Lie derivation on A then L(p) = [p, a] + z for some $a \in A$ and $z \in Z(A)$.

The proof is exactly the same as the proof of Lemma 5 in [12] and Lemma 4 in [15].

Lemma 6. If $L: A \to A$ is a Lie derivation and $L(p) \in Z(A)$ then

(*i*). $L(S_{ij}) \subset S_{ij}$ for $i \neq j$; (*ii*). $L(S_{ii}) \subset S_{ii} + Z(A), i = 1, 2$. *Proof.* The proof of (i) is analogous to the proof of Lemma 6 in [12].

(*ii*). If
$$a \in S_{11}$$
 and $L(a) = \sum_{i,j=1,2} x_{ij}$, where $x_{ij} \in S_{ij}$, then
 $a = pap, \ [p, a] = pa - ap = 0,$

and therefore

$$0 = L([p, a]) = [L(p), a] + [p, L(a)] = [p, L(a)] = x_{12} - x_{21}$$

Consequently, $x_{12} = px_{12} = p(x_{12} - x_{21}) = 0$ and $x_{21} = x_{12} - (x_{12} - x_{21}) = 0$, i.e., $L(a) \in S_{11} + S_{22}$. Similarly, if $a \in S_{22}$, then $L(a) \in S_{11} + S_{22}$.

Let now $a \in S_{11}$, $b \in S_{22}$, $L(a) = a_{11} + a_{22}$, $L(b) = b_{11} + b_{22}$, where $a_{ii}, b_{ii} \in S_{ii}$, i = 1, 2. From the equation $0 = L([a, b]) = [a_{22}, b] + [a, b_{11}]$ and the inclusions $[a_{22}, b] \in S_{22}$, $[a, b_{11}] \in S_{11}$ it follows that $[a_{22}, b] = 0 = [a, b_{11}]$. Thus $a_{22}b = ba_{22}$ for all $b \in (1 - p)A(1 - p)$, i.e., $a_{22} \in Z((1 - p)A(1 - p))$.

Let us show that Z((1-p)A(1-p)) = (1-p)Z(A). It is clear that

$$(\mathbf{1}-p)Z(A) \subset Z((\mathbf{1}-p)A(\mathbf{1}-p)).$$

Let $0 \leq x \in Z((1-p)A(1-p))$, z = x + (1-p) and let y be an inverse of z in the algebra (1-p)LS(M)(1-p). Since $0 \leq y \leq 1-p$ and $y \in Z((1-p)A(1-p))$, it follows that $y \in Z((1-p)M(1-p))$. According to [8, Part I, Ch. 2, §1], the equality Z((1-p)M(1-p)) = (1-p)Z(M) holds, and therefore y = (1-p)d, where $d \in Z(M) \subset Z(A)$. Consequently, $y \in (1-p)Z(A)$ and the operator z also belongs to the algebra (1-p)Z(A), which implies $x \in (1-p)Z(A)$.

Thus, Z((1-p)A(1-p)) = (1-p)Z(A) and $a_{22} = (1-p)z$, for some $z \in Z(A)$, i.e.,

$$L(a) = a_{11} + (\mathbf{1} - p) z = (a_{11} - pz) + z \in S_{11} + Z(A).$$

The inclusion $L(S_{22}) \subset S_{22} + Z(A)$ is established similarly.

The Lemma 6 implies that in the case where $L(p) \in Z(A)$, we have that $L(x) \in S_{ij}$ for $x \in S_{ij}, i \neq j$ and that L(x) = d(x) + z(x) for $x \in S_{ii}$, where $d(x) \in S_{ii}$ and $z(x) \in Z(A)$.

Now we prove the identity $pAp \cap Z(A) = \{0\}$. If there is $0 \neq a \in pAp \cap Z(A)$, then $0 \neq |a| \in pAp \cap Z(A)$ and therefore the operator |a| has non-zero spectral projection $q = \{|a| \geq \epsilon\}$ such that $q \leq p$ and $q \in Z(A)$. Hence, q(1-p) = 0, which is impossible, since c(1-p) = 1.

If $x \in S_{ii}$ and $L(x) = d_1(x) + z_1(x)$, where $d_1(x) \in S_{ii}, z_1(x) \in Z(A)$, then

$$d(x) - d_1(x) = z(x) - z_1(x) \in S_{ii} \cap Z(A) = (p_i A p_i) \bigcap Z(A) = \{0\}$$

Consequently, for each $x \in S_{ii}$ the element L(x) is uniquely represented in the form L(x) = d(x) + z(x), where $d(x) \in S_{ii}, z(x) \in Z(A)$.

Thus, in the case $L(p) \in Z(A)$, the map $D: A \to A$ is correctly defined by

(3)
$$D(x) = d(x_{11}) + d(x_{22}) + L(x_{12} + x_{21}),$$

where $x \in A$, $x_{ij} = p_i x p_j$, i, j = 1, 2. If $x, y \in S_{11}$, then

$$L(x+y) = d(x+y) + z(x+y); \ L(x) = d(x) + z(x); \ L(y) = d(y) + z(y).$$

Since L is a linear map, it follows that

$$\begin{aligned} d(x+y) + z(x+y) &= d(x) + d(y) + z(x) + z(y), \\ d(\lambda x) + z(\lambda x) &= \lambda (d(x) + z(x)), \quad \lambda \in \mathbb{C}. \end{aligned}$$

Using the identity $pAp \cap Z(A) = \{0\}$ we have that

$$\begin{aligned} d(x+y) &= d(x) + d(y), \quad z(x+y) = z(x) + z(y), \\ d(\lambda x) &= \lambda d(x), \quad z(\lambda x) = \lambda z(x). \end{aligned}$$

This means that the mappings $d: S_{11} \to S_{11}$ and $z: S_{11} \to Z(A)$ are linear. For the same reasons, these mappings are linear on S_{22} . Thus the map D constructed in (3) is a linear operator acting on the solid *-subalgebra A. In this case, the map E from A to Z(A), defined by

$$E(x) = L(x) - D(x) = z(x_{11}) + z(x_{22}), \quad x \in A,$$

is also linear. In additional, for $x \in S_{ij}$, $i \neq j$, we have that E(x) = 0, i.e., L(x) = D(x).

Lemma 7. If $x \in S_{ij}$, $i \neq j$, $y \in A$, then

$$D(xyx) = D(x)yx + xD(y)x + xyD(x).$$

The proof is exactly the same as the proof of Lemma 9 in [12].

Lemma 8. (cf. [12, Lemma 10, 11]). If $x \in S_{ii}$ and $y \in A$, or $x \in A$ and $y \in S_{ii}$, i = 1, 2, then

(4)
$$D(xy) = D(x)y + xD(y)$$

Proof. If $x \in S_{11}$ and $y \in S_{12}$, then [x, y] = xy and

$$\begin{split} D(xy) &= L(xy) = L([x,y]) = [D(x) + E(x), y] + [x, D(y) + E(y)] \\ &= [D(x), y] + [x, D(y)] = D(x)y + xD(y). \end{split}$$

For $x \in S_{11}$ and $y \in S_{21}$ we have that $D(x) \in S_{11}$ and $D(y) \in S_{21}$, which implies (4). For the cases $x \in S_{22}$, $y \in S_{ij}$, $i \neq j$, the identity (4) is established similarly.

Now let $x, y \in S_{11}$, $z \in S_{12}$. According to the arguments above it follows that

$$\begin{split} D(xy)z &= D(xyz) - xyD(z) = D(x)yz + xD(yz) - xyD(z) \\ &= D(x)yz + x(D(y)z + yD(z)) - xyD(z) = (D(x)y + xD(y))z. \end{split}$$

Consequently, (D(xy) - D(x)y - xD(y))z = 0 for all $z \in S_{12}$ and from Lemma 4 we have that D(xy) - D(x)y - xD(y) = 0.

In the case where $x \in S_{11}$, $y \in S_{22}$, or $x \in S_{22}$, $y \in S_{11}$, we have that xy = 0 and D(x)y + xD(y) = 0. The case $x, y \in S_{22}$ can be treated similarly to that of $x, y \in S_{11}$.

Thus, identity (4) holds for any $x \in S_{ii}$, $y \in S_{kl}$ for all i, k, l = 1, 2. Using the equality $A = \sum_{i,j=1,2} S_{ij}$ we obtain that the equality (4) holds for any $x \in S_{ii}$, $y \in A$, i = 1, 2. For the case $x \in A$ and $y \in S_{ii}$, i = 1, 2 the equality (4) is established similarly. \Box

Lemma 9. (cf. [16, Lemma 10]). The linear mapping D defined by (3) is an associative derivation on A.

Proof. In the case where $x \in S_{ii}$, $i = 1, 2, y \in A$, Lemma 9 is proved in Lemma 8. If $x \in S_{12}$ and $y \in S_{21}$, then

$$\begin{split} E([x,y]) &= L([x,y]) - D([x,y]) = [L(x),y] + [x,L(y)] - D([x,y]) \\ &= [D(x),y] + [x,D(y)] - D(xy) + D(yx). \end{split}$$

Consequently, for $z = E([x, y]) \in Z(A)$, we have that

(5)
$$z = D(x)y + xD(y) - D(xy) + D(yx) - D(y)x - yD(x).$$

Since $(D(x)y+xD(y)-D(xy)) \in S_{11}$, $(D(y)x+yD(x)-D(yx)) \in S_{22}$ and $S_{11} \cap S_{22} = \{0\}$, it follows in the case z = 0 that equation (5) implies D(xy) = D(x)y + xD(y).

Let us show that z = 0. Suppose that $z \neq 0$. Multiplying the left hand-side of (5) by x and then by y, we have that

(6)
$$xz = xD(yx) - xD(y)x - xyD(x), \quad yz = yD(x)y + yxD(y) - yD(xy).$$

Since $yx \in S_{22}$, it follows from Lemma 8 that D(xyx) = D(x)yx + xD(yx). Now, using the equality (6), we have that

$$xz = D(xyx) - D(x)yx - xD(y)x - xyD(x)$$

and by Lemma 7, xz = 0.

Due to $xy \in S_{11}$ and Lemma 8, we have D(yxy) = D(y)xy + yD(xy).

Therefore, from (6) and Lemma 6 it follows that

$$yz = yD(x)y + yxD(y) - D(yxy) + D(y)xy = yD(x)y + yxD(y) - D(y)xy - yD(x)y - yxD(y) + D(y)xy = 0.$$

Let x = u|x| be the polar decomposition of the operator $x \in A$. Since xz = 0, $M \subset A$, it follows that $|x| = u^*x \in A$ and $|x|z = u^*xz = 0$. Hence $z^*|x| = 0$ and $xz^* = z^*x = 0$. Similarly, using the equality yz = 0, we have that $yz^* = z^*y = 0$. Multiplying now the left hand-side and the right hand-side of (5) by z^* , we have that

$$z^*zz^* = z^*(D(yx) - D(xy))z^*.$$

Since $yx \in S_{22}$ and $uxz^* = 0 = z^*y$, it follows by Lemma 8 that

(7)
$$0 = D(yx(1-p)z^*) = D(yx)(1-p)z^* + yxD((1-p)z^*).$$

Using $D(yx) \in S_{22}$ and equality (7), we have that

$$D(yx)z^* = D(yx)(1-p)z^* = -yxD((1-p)z^*).$$

Similarly, $D(xy)z^* = -yxD(pz^*)$. Since $z^*x = 0 = z^*y$, it follows that

$$z^*zz^* = z^*xyD(pz^*) - z^*yxD((1-p)z^*) = 0,$$

i.e., z = 0. In the case $x \in S_{21}$ and $y \in S_{12}$ the statement of Lemma 9 is proved similarly.

In particular, Lemma 9 implies the following result.

Corollary 10. E([x, y]) = 0 for all $x, y \in A$.

Proof. Since the D is an associative derivation it follows that D is also a Lie derivation. Thus for any $x, y \in A$ we have

$$L([x,y]) = [D(x) + E(x), y] + [x, D(y) + E(y)] = [D(x), y] + [x, D(y)] = D([x,y]),$$
which implies that $E([x,y]) = 0.$

Now we are ready to establish the standard decomposition for the Lie derivation L in the case where the von Neumann algebra M has no direct commutative summands.

Theorem 11. Let M be a von Neumann algebra without direct commutative summands, let A be a solid *-subalgebra in LS(M), containing M, and let L be a Lie derivation on A. Then there exist an associative derivation D on A and a center-valued trace $E: A \to Z(A)$ such that L(x) = D(x) + E(x) for all $x \in A$.

Proof. Since the von Neumann algebra M has no direct commutative summands, there exists a projection $p \in \mathcal{P}(M)$ such that $c(p) = c(\mathbf{1} - p) = \mathbf{1}$ ([10, 6.1.9]). Assume first that $L(p) \in Z(A)$. In this case, according to Lemma 8 and Corollary 10, we have that L = D + E, where D is an associative derivation on A and E is a trace on A with values in Z(A).

Now let $L(p)\in Z(A)$. By Lemma 5, the equality L(p) = [p, a] + z holds for some $a \in A$ and $z \in Z(A)$. Consider on A the inner derivation $D_a(x) = [a, x]$, and let $L_1 = L + D_a$. It is clear that L_1 is a Lie derivation on A, moreover,

$$L_1(p) = L(p) + D_a(p) = [p, a] + [a, p] + z = z \in Z(A).$$

By Lemma 9 and Corollary 10 the Lie derivation L_1 has the standard form, i.e., $L_1 = D_1 + E_1$, where D_1 is an associative derivation on A and E_1 is a Z(A)-valued trace on A. Therefore,

$$L = L_1 - D_a = D_1 - D_a + E_1.$$

It is clear that $D = D_1 - D_a$ is an associative derivation on A, and consequently the equality $L = D + E_1$ completes the proof of Theorem 11.

We now consider the case of an arbitrary von Neumann algebra M. We need the following

Lemma 12. Let M be an arbitrary von Neumann, and let A be a *-subalgebra in LS(M). If L is a Lie derivation on A then $L(Z(A)) \subset Z(A)$.

Proof. If $z \in Z(A)$, $a \in A$, then [z, a] = 0 = [z, L(a)], and consequently [L(z), a] = L([z, a]) - [z, L(a)] = 0, i.e., L(z)a = aL(z), which implies that $L(z) \in Z(A)$.

If $z_0 = \sup\{z \in \mathcal{P}(Z(M)) : zM \subset Z(M)\}$ then $M_0 := z_0M = z_0Z(M)$ is a commutative von Neumann algebra, and the von Neumann algebra $M_1 = (\mathbf{1} - z_0)M$ has no direct commutative summands, moreover $M = M_1 \bigoplus M_0$.

Let A be a solid *-subalgebra in LS(M), containing M, $z_1 = 1 - z_0$, $A_1 = z_1 A$, and let L be a Lie derivation on A.

Lemma 13. (i). $L_1(x) := z_1L(x)$ is a Lie derivation on the solid *-subalgebra A_1 in $LS(M_1)$;

(ii). The linear mappings $F_1(x) := z_0 L(z_1 x)$, $F_2(x) := z_1 L(z_0 x)$ and $F_3(x) := z_0 L(z_0 x)$ are Z(A)-valued traces on A;

(iii). If E_1 is a $Z(A_1)$ -valued traces on A_1 , then $E(x) := E_1(z_1x)$ is a Z(A)-valued traces on A;

(iv). If D_1 is an associative derivation on A_1 , then $D(x) := D_1(z_1x)$ is an associative derivation on A.

Proof. (i). If $x, y \in A_1$, then

$$L_1([x,y]) = z_1L([x,y]) = z_1([L(x), z_1y] + [z_1x, L(y)]) = [L_1(x), y] + [x, L_1(y)].$$

(*ii*). It is clear that $F_1(x) \in z_0 A \subset Z(A)$. If $x, y \in A$, then $z_1[x, y] = [z_1x, z_1y]$ and from equality $z_0z_1 = 0$ it follows that

$$F_1([x,y]) = z_0(L([z_1x, z_1y])) = z_0([L(z_1x), z_1y] + [z_1x, L(z_1y)]) = 0,$$

i. e., $F_1(xy) = F_1(yx)$.

Since $z_0 x \in Z(A)$, by Lemma 12, we have that $F_2(x) = z_1 L(z_0 x) \in Z(A)$. Moreover,

$$F_2([x,y]) = z_1 L(z_0[x,y]) = z_1 L([z_0x, z_0y]) = 0,$$

i. e., $F_2(xy) = F_2(yx)$. Similarly we can show that $F_3(xy) = F_3(yx)$. (*iii*). For any $x, y \in A$ we have $E(x) \in Z(A_1) \subset Z(A)$ and

$$E(xy) = E_1(z_1xy) = E_1((z_1x)(z_1y)) = E_1((z_1y)(z_1x)) = E(yx).$$

(*iv*). Since $z_1D_1(a) = D_1(a)$ for any $a \in A_1$, it follows that

$$D(xy) = D_1(z_1xy) = D_1((z_1x)(z_1y)) = D_1(z_1x)(z_1y) + z_1xD_1(z_1y)$$

= $D_1(z_1x)y + xD_1(z_1y) = D(x)y + xD(y)$

for all $x, y \in A$.

Now we will prove Theorem 1. If $x \in A$ then using notations of Lemma 10, we obtain

$$L(x) = z_1 L(z_1 x) + z_1 L(z_0 x) + z_0 L(z_1 x) + z_0 L(z_0 x)$$

= $L_1(z_1 x) + F_2(x) + F_1(x) + F_3(x).$

By Theorem 11 and Lemma 13 (i) there exist an associative derivation D_1 on A_1 and a $Z(A_1)$ -valued trace E_1 on A_1 such that $L_1(z_1x) = D_1(z_1x) + E_1(z_1x)$ for all $x \in A$. By Lemma 13 (*iii*), (*iv*), the mapping $D(x) = D_1(z_1x)$ is an associative derivation on Aand the mapping $E(x) = E_1(z_1x)$ is a Z(A)-valued trace on A. Thus,

(8)
$$L(x) = D(x) + E(x) + F_1(x) + F_2(x) + F_3(x)$$

for all $x \in A$. Since $E + F_1 + F_2 + F_3$ is a Z(A)-valued trace on A (see Lemma 13 (*ii*)), the equality (8) completes the proof of Theorem 1.

4. Lie derivations on LS(M) in the case of type I von Neumann Algebra

Let Z be a commutative von Neumann algebra, let H_n be an n-dimensional complex Hilbert space and let $M_n = B(H_n) \bigotimes Z$ be a homogeneous von Neumann algebra of type I_n . The von Neumann algebra M_n is *-isomorphic to the *-algebra Mat(n, Z) of all $n \times n$ -matrix $(a_{ij})_{i,j=1}^n$ with entries $a_{ij} \in Z$. Since M_n is a finite von Neumann algebra, it follows that $LS(M_n) = S(M_n)$, in addition, *-algebra $S(M_n)$ is identified with the *-algebra Mat(n, S(Z)) of all $n \times n$ -matrix with entries from S(M) (see [1]).

If e_{ij} , i, j = 1, ..., n, is the matrix unit of Mat(n, S(Z)), then every element $x \in Mat(n, S(Z))$ has the form

$$x = \sum_{i,j=1}^{n} \lambda_{ij} e_{ij}, \quad \lambda_{ij} \in S(Z), \quad i, j = 1, \dots, n.$$

For any derivation $\delta: S(Z) \to S(Z)$ the linear operator

(9)
$$D_{\delta}\left(\sum_{i,j=1}^{n}\lambda_{ij}e_{ij}\right) = \sum_{i,j=1}^{n}\delta(\lambda_{ij})e_{ij}$$

is a derivation on $S(M_n) = Mat(n, S(Z))$. Since the algebras $Z(S(M_n))$ and S(Z) are isomorphic, we can identify them. The restriction of D_{δ} to the center S(Z) coincides with δ . It is know that in the case where a commutative von Neumann algebra Z has no atoms there exists an uncountable set of mutually different derivations $\delta : S(Z) \to S(Z)$ (see [4]). Consequently, in this case, there exists an uncountable family of mutually different derivations on the algebra Mat(n, S(Z)) = S(M) of the form D_{δ} .

Now let M be an arbitrary finite von Neumann algebra of type I with center Z. There exists a family $\{z_n\}_{n\in F}$, $F\subseteq \mathbb{N}$, of mutually orthogonal central projections from M with $\sup_{n\in F} z_n = 1$ such that the algebra M is *-isomorphic to the direct sum of the von Neumann algebras $z_n M$ of type I_{k_n} , $n \in F$, i.e.,

$$M \cong \sum_{n \in F} \bigoplus z_n M,$$

and

$$z_n M = B(H_{k_n}) \bigotimes L^{\infty}(\Omega_n, \Sigma_n, \mu_n) \cong Mat(k_n, L^{\infty}(\Omega_n, \Sigma_n, \mu_n))$$
$$= \{(a_{ij})_{i,j=1}^{k_n} : a_{ij} \in L^{\infty}(\Omega_n, \Sigma_n, \mu_n)\},$$

where $k_n = dim(H_n) < \infty$, $(\Omega_n, \Sigma_n, \mu_n)$ is a Maharam measure space, $n \in \mathbb{N}$. According to Proposition 1.1 from [1], we have that

$$LS(M) \cong \prod_{n \in F} LS(z_n M) = \prod_{n \in F} S(z_n M)$$

and

$$LS(z_nM) = S(z_nM) \cong Mat(k_n, L(\Omega_n, \Sigma_n, \mu_n))$$
$$= \{ (\lambda_{ij})_{i,j=1}^{k_n} : \lambda_{ij} \in L(\Omega_n, \Sigma_n, \mu_n) \},\$$

where $L(\Omega_n, \Sigma_n, \mu_n)$ is an *-algebra of all complex measurable functions on the measure space $(\Omega_n, \Sigma_n, \mu_n)$ (functions that are equal almost everywhere are identified).

Suppose that D is a derivation on LS(M) and δ is the restriction of D onto the center S(LS(M)) = S(Z(M)). The restriction of the derivation δ onto $z_n S(Z(M))$ defines a derivation δ_n on $z_n S(Z(M))$ for each $n \in F$.

Let D_{δ_n} be a derivation on the matrix algebra $Mat(k_n, z_n S(Z(M))) \cong S(z_n M)$, defined by the equation (9). Set

(10)
$$D_{\delta}(\{x_n\}_{n\in F}) = \{D_{\delta_n}(x_n)\}, \ \{x_n\}_{n\in F} \in \prod_{n\in F} S(z_nM) = LS(M).$$

It is clear that D_{δ} is a derivation on the algebra LS(M). If M is an arbitrary von Neumann algebra of type I, then there exists a central projection $z_0 \in M$ such that z_0M is a properly infinite algebra and $z_0^{\perp}M$ is a finite von Neumann algebra.

Consider a derivation D on LS(M) and by δ denote the restriction of D onto the center Z(LS(M)). By Theorem 2.7 [1], the derivation z_0D is an inner derivation on $z_0LS(M) = LS(z_0M)$, moreover, $z_0\delta = 0$, i.e. $\delta = z_0^{\perp}\delta$.

Let D_{δ} be a derivation on $z_0^{\perp} LS(M)$ of the form (10). Consider the extension of D_{δ} onto $LS(M) = z_0 LS(M) \bigoplus z_0^{\perp} LS(M)$, defined as

(11)
$$D_{\delta}(x_1 + x_2) := D_{\delta}(x_2), \quad x_1 \in z_0 LS(M), \quad x_2 \in z_0^{\perp} LS(M).$$

By [1, Theorems 2.8, 3.6], any derivation D on the algebra LS(M) (respectively, on the algebra S(M)) can be uniquely represented as the sum $D = D_a + D_{\delta}$, where a is an element in LS(M) (respectively, in S(M)). Thus by Theorem 1 we have the following.

Theorem 14. If M is a type I von Neumann algebra. Then any Lie derivation on the algebra LS(M) (respectively, on S(M)) has the form

$$L = D_a + D_\delta + E$$

where D_a is an inner derivation, D_{δ} is a derivation given by (11), generated by the derivation δ on the center of LS(M) (respectively, on S(M)) and E is a center-valued trace on LS(M) (respectively, on S(M)).

5. Lie derivations on EW^* algebras

In this section we give applications of Theorem 1 to a description of Lie derivations on EW^* -algebras. The class of EW^* -algebras (extended W^* -algebras) was introduced in [9] for the purpose of description of *-algebras of unbounded closed operators, which are "similar" to W^* -algebras by their algebraic and order properties.

Let A be a set of closed, densely defined operators on a Hilbert space H, which is an *-algebra with the identity **1** equipped with the strong sum, strong product, the scalar multiplication and the usual adjoint of operators.

An *-algebra A is said to be EW^* -algebra if the following conditions hold:

(i). $(\mathbf{1} + x^*x)^{-1} \in A$ for every $x \in A$;

(ii). A *-subalgebra A_b of bounded operators in A is a von Neumann subalgebra in B(H).

In this case, an *-algebra A is said to be an EW^* -algebra over von Neumann algebra A_b . It is clear that every solid *-subalgebras A in LS(M) with $M \subset A$ is an EW^* -algebra and $A_b = M$. The converse implication is given in [7], where it is established that every EW^* -algebra A with the bounded part $A_b = M$ is a solid *-subalgebra in the *-algebra

24

LS(M). Thus LS(M) is the greatest EW^* -algebra of EW^* -algebras with the bounded part coinciding with M.

Using Theorem 1, we get the following description Lie derivation on an EW^* -algebra.

Theorem 15. Any Lie derivation L, defined on an EW^* -algebra A has a standard form L = D + E, where $D : A \to A$ is an associative derivation, and $E : A \to Z(A)$ is a center-valued trace on A.

In the case where the bounded part A_b of an EW^* -algebra A is a properly infinite W^* -algebra, any associative derivation $D: A \to LS(A_b)$ is inner [5, Theorem 5.1(ii)].

Thus Theorem 15 implies the following.

Theorem 16. If the bounded part A_b of an EW^* -algebra A is a properly infinite von Neumann algebra, then every Lie derivation L on A is equal to $D_a + E$, where $a \in A$ and $E : A \to Z(A)$ is a central-valued trace.

References

- S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal. 256 (2009), 2917– 2943.
- A. F. Ber, B. de Pagter and F. A. Sukochev, Derivations in algebras of operator-valued functions, J. Operator Theory 66 (2001), 261–300.
- A. F. Ber, V. I. Chilin, F. A. Sukochev, Non-trivial derivation on commutative regular algebras, Extracta Math. 21 (2006), 107–147.
- A. F. Ber, Derivations on commutative regular algebras, Siberian Adv. Math. 21 (2011), 161– 169.
- A. F. Ber, V. I. Chilin, F. A. Sukochev, Continuous derivations on algebras locally measurable operators are inner, Proc. London Math. Soc. 109 (2014), 65–89.
- 6. S. K. Berberian, The regular ring of finite AW*-algebra, Ann. Math. 65 (1957), 224-240.
- V. I. Chilin, B. S. Zakirov, Abstract charactaization of EW*-algebras, Funktsional. Anal. i Prilozhen. 25 (1991), 76–78. (Russian)
- J. Dixmier, Von Neumann Algebras, North-Holland Publishing Company, Amsterdam—New York—Oxford, 1981.
- 9. P. G. Dixon, Unbounded operator algebras, Proc. London. Math. Soc. 23 (1971), 53-59.
- R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory, Academic Press, New York, 1983.
- A. G. Kusraev, Automorphisms and derivations on a universally complete complex f-algebra, Siberian Math. J. 47 (2006), 77–85.
- 12. W. S. Martindale 3rd, Lie derivations of primitive rings, Michigan J. Math. 11 (1964), 183–187.
- M. Mathieu and A. R. Villena, The structure of Lie derivations on C*-algebras, J. Funct. Anal. 202 (2003), 504–525.
- M. A. Muratov, V. I. Chilin, Algebras of Measurable and Locally Measurable Operators, Pratsi In-ty matematiki NAN Ukraini, vol. 69, Kyiv, 2007. (Russian)
- 15. C. Robert Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.
- C. Robert Miers, Lie triply derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 57–61.
- K. Saito, On the algebra of measureble operators for a general AW*-algebras, I, Tohoku Math. J. 21 (1969), 249–270.
- K. Saito, On the algebra of measureble operators for a general AW*-algebras, II, Tohoku Math. J. 23 (1971), 525–534.
- 19. S. Sakai, C^* -algebras and W^* -algebras, Springer-Verlag, New York—Heidelberg—Berlin, 1971.
- 20. S. Sankaran, The *-algebra of unbounded operators, J. London Math. Soc. 34 (1959), 337–344.
- 21. I. Segal, A non-commutative extention of abstract integration, Ann. Math. 57 (1953), 401–457.
- S. Stratila, L. Zsido, *Lectures on von Neumann Algebras*, England Abacus Press, Tunbridge Wells, 1979.
- F. J. Yeadon, Convergence of measurable operators, Proc. Cambridge Philos. Soc. 74 (1973), 257–268.

VLADIMIR CHILIN AND ILKHOM JURAEV

NATIONAL UNIVERSITY OF UZBEKISTAN, TASHKENT, 100174, UZBEKISTAN E-mail address: vladimirchil@gmail.com; chilin@ucd.uz

Bukhara State University, Bukhara, 100200, Uzbekistan $E\text{-}mail\ address: \texttt{ijmo64@mail.ru}$

Received 10/05/2017; Revised 05/06/2017

26