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ON SIMILARITY OF UNBOUNDED PERTURBATIONS OF

SELFADJOINT OPERATORS

MICHAEL GIL’

Abstract. We consider a linear unbounded operator A in a separable Hilbert space
with the following property: there is an invertible selfadjoint operator S with a dis-

crete spectrum such that ‖(A−S)S−ν‖ <∞ for a ν ∈ [0, 1]. Besides, all eigenvalues

of S are assumed to be different. Under certain assumptions it is shown that A is si-
milar to a normal operator and a sharp bound for the condition number is suggested.

Applications of that bound to spectrum perturbations and operator functions are

also discussed. As an illustrative example we consider a non-selfadjoint differential
operator.

1. Introduction and statement of the main result

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√

(., .)
and the unit operator I. For a linear operator A in H, Dom(A) is the domain, A∗ is the
operator adjoint to A; σ(A) denotes the spectrum of A, and A−1 is the inverse of A. Two
operators A and M acting in H are said to be similar if there exists a boundedly invert-
ible bounded operator T such that A = T−1MT . The constant κT = ‖T−1‖‖T‖ is called
the condition number. The condition number is important in applications. We refer the
reader to [4], where condition number estimates are suggested for combined potential
boundary integral operators in acoustic scattering, and [20], where condition numbers
are estimated for second-order elliptic operators. Conditions that provide similarity of
various operators to normal and selfadjoint ones were considered by many mathemati-
cians, cf. [1, 3, 6], [12, 13], [15]–[19], and references given therein. In many cases, the
condition number must be numerically calculated, e.g. [2, 18]. The interesting general-
ization of condition numbers of bounded linear operators in Banach spaces were explored
in the paper [11]. Bounds for condition numbers of unbounded operators with Hilbert-
Schmidt and Shatten-von Neumann Hermitian components have been established in [7]
and [9]. The paper [8] deals with bounded perturbations of normal operators.

In the present paper we estimate the condition number of a linear operator A in H
with the following property: there is a positive definite selfadjoint operator S with a
discrete spectrum such that Dom (A) = Dom (S), and for some ν ∈ [0, 1],

(1.1) qν := ‖(A− S)S−ν‖ <∞.

Besides, under certain restrictions we considerably generalize the main result of the paper
[8]. Our approach in this paper is absolutely different from the one in [7, 9].

Let all the eigenvalues λk(S) (k = 1, 2, . . .) of S be simple (i.e., the multiplicities are
equal to one), and enumerated in the increasing order. So

dm := inf
k 6=m
|λk(S)− λm(S)|/2 > 0.
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That is, d1 = (λ2(S)− λ1(S))/2 and dm = 1
2 min{λm+1(S)− λm(S), λm(S)− λm−1(S)}

(m ≥ 2). It is assumed that

(1.2) 2qνλ
ν
m+1(S) < dm (m = 1, 2, . . .)

and

(1.3) ζν(S) :=

∞∑
k=1

λ2νk+1(S)

(dk − 2qνλνk+1(S))2
<∞.

Under condition (1.2) we have

(1.4) ην(S) := sup
m

dm
dm − qνλνm+1(S)

<∞.

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1)–(1.3) hold. Then there are a bounded and boundedly
invertible operator T, and a normal operator M , acting in H, such that

(1.5) TAx = MTx (x ∈ Dom(A)).

Moreover,

κT ≤ ην(S)
(

1 + 2qν
√
ζν(S)

)2
.

The proof of this theorem is presented in the next section. The theorem is sharp: if
A = S is selfadjoint, then qν = 0 and ην(S) = 1; we thus obtain κT = 1.

2. Proof of Theorem 1.1

Let {ek} be the set of all normed eigenvectors of S, such that

S =

∞∑
k=1

λk(S)Pk, where Pk = (., ek)ek.

Put Ω(c, r) := {z ∈ C : |z − c| ≤ r} (c ∈ C, r > 0). Due to [10, Theorem 1.1], if the
conditions (1.1) and (1.2) are satisfied, then A has in Ω(λm(S), dm) a simple eigenvalue,
say λm(A). Let {gk} be the set of all eigenvectors of A and {hk} the corresponding
biorthogonal sequence: (gk, hj) = 0, k 6= j, (gk, hk) = 1. Then Qk = (·, hk)gk are the
eigenprojections of A and

A =

∞∑
k=1

λk(A)Qk.

By Lemma 3.1 from [10], under conditions (1.1) and (1.2) one has

(2.1) ‖Pm −Qm‖ ≤
qνλ

ν
m+1(S)

dm − qνλνm+1(S)
.

Put

(2.2) T =

∞∑
k=1

(., hk)ek.

Simple calculations show that the inverse operator is defined by

(2.3) T−1 =

∞∑
k=1

(., ek)gk.

Below we check that T and T−1 are bounded.

Lemma 2.1. Let conditions (1.1), (1.2) hold and T be defined by (2.2). Then (1.5) is
valid with

(2.4) M =

∞∑
k=1

λk(A)Pk.
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Proof. Indeed,

AT−1f =

∞∑
k=1

∞∑
j=1

λk(A)(f, ej)(gj , hk)gk =

∞∑
k=1

λk(A)(f, ek)gk

(f ∈ H, T−1f ∈ Dom(A))

and

TAT−1f =

∞∑
k=1

λk(A)

∞∑
j=1

(gk, hj)ej(f, ek) =

∞∑
k=1

λk(A)(f, ek)ek = Mf,

as claimed. �

Introduce the operator

J =

∞∑
k=1

‖hk‖(., ek)ek.

Then

Tf − Jf =

∞∑
k=1

‖hk‖(f, ĥk − ek)ek, where ĥk =
hk
‖hk‖

.

Hence,

(2.5) ‖Tf − Jf‖2 =

∞∑
k=1

‖hk‖2|(f, ĥk − ek)|2 ≤ ‖f‖2
∞∑
k=1

‖hk‖2‖ĥk − ek‖2.

It is clear the hk are eigenvectors of A∗. Besides, ‖(A∗ − S)S−ν‖ = ‖(A− S)S−ν‖ = qν .
Due to [10, Theorem 1.1], if the conditions (1.1), (1.2) are fulfilled, then the eigenvector

vm(A) of A corresponding to λm(A) and the eigenvector em of S corresponding to λm(S)
with ‖vm(A)‖ = ‖em‖ = 1 satisfy the inequality

‖vm(A)− em‖ ≤
2qνλ

ν
m+1(S)

dm − 2qνλνm+1(S)
.

Applying this result with A∗ instead of A, and ĥm instead of vm(A), we can write

(2.6) ‖em − ĥm‖ ≤
2qνλ

ν
m+1(S)

dm − 2qνλνm+1(S)
.

Now (2.5) implies

(2.7) ‖T − J‖2 ≤ (2qν)2
∞∑
k=1

‖hk‖2λ2νk+1(S)

(dk − 2qνλνk+1(S))2
.

We always can take hk and gk in such a way that ‖hk‖ = ‖gk‖. Clearly, Qkhk =
(hk, hk)gk. So

(Qkhk, gk) = (hk, hk)(gk, gk) = ‖hk‖4 = ‖gk‖4.
Hence, ‖hk‖4 ≤ ‖Qk‖‖hk‖‖gk‖ = ‖Qk‖‖hk‖2. Thus ‖hk‖2 ≤ ‖Qk‖ and ‖gk‖2 ≤ ‖Qk‖.
Therefore, (2.6) gives us the inequality

(2.8) ‖T − J‖2 ≤ (2qν)2
∞∑
k=1

‖Qk‖λ2νk+1(S)

(dk − 2qνλνk+1(S))2
.

Moreover, since ‖Pm‖ = 1 by (2.1) we get

(2.9)
‖Qm‖ ≤ sup

m
(1 +

qνλ
ν
m+1(S)

dm − qνλνm+1(S)
) = sup

m

dm
dm − qνλνm+1(S)

= ην(S)

(m = 1, 2, . . .).
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Consequently,

‖T − J‖2 ≤ (2qν)2ην(S)

∞∑
k=1

λ2νk+1(S)

(dk − 2qνλνk+1(S))2
= (2qν)2ην(S)ζν(S).

Due to (2.9),

‖Jf‖2 =

∞∑
k=1

‖hk‖2|(f, ek)|2 ≤
∞∑
k=1

‖Qk‖|(f, ek)|2 ≤ ην(S)

∞∑
k=1

|(f, ek)|2 = ‖f‖2ην(S)

(f ∈ H).

Thus we obtain

‖T‖2 = ‖J + (T − J)‖2 ≤ (‖J‖+ ‖T − J‖)2 ≤ ην(S)(1 + 2qν
√
ζν(S))2.

The same arguments give us the inequality

‖T−1‖2 ≤ ην(S)(1 + 2qν
√
ζν(S))2.

This proves the theorem.

3. Example

Consider in L2(0, 1) the problem

u(4)(x) + a(x)u′(x) = λu(x) (λ ∈ C; 0 < x < 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where a(x) (0 ≤ x ≤ 1) is a bounded complex valued function. Take S = d4/dx4 with

Dom (S) = {v ∈ L2(0, 1) : v(4) ∈ L2(0, 1), v(0) = v(1) = v′′(0) = v′′(1) = 0},
and ν = 1/4. Define A by

(3.1) (Au)(x) = u(4)(x) + a(x)u′(x)

with Dom (A) = Dom (S). Obviously, λj(S) = π4j4 (j = 1, 2, . . .) and

q1/4 = ‖(S −A)S−1/4‖ = sup
x
|a(x)| sup

f∈Dom(S),‖f‖=1

‖(S−1/4f)′x‖.

But

(S−1/4f)(x) =

∞∑
k=1

1

λ
1/4
j (S)

(f, ek)ek(x) =
1

π

∞∑
k=1

1

j
(f, ek)ek(x),

where ek(x) =
√

2 sin π(kx). Thus

d

dx
(S−1/4f)(x) =

d

dx

∞∑
k=1

1

λ
1/4
j (S)

(f, ek)ek(x) =
√

2

∞∑
k=1

(f, ek)cos π(kx).

Hence,

‖(S−1/4f)′x‖2 =

∞∑
k=1

|(f, ek)|2 = ‖f‖2.

Therefore, q1/4 = |a|C , where |a|C := sup0≤x≤1 |a(x)|. Moreover,

dj = (λj+1(S)− λj(S))/2 = π4[(j + 1)4 − j4]/2

= π4(2j3 + 3j2 + 2j + 1/2) ≥ 2π4j3.

Condition (1.2) is provided by the inequality

|a|C(j + 1) < π3j3 (j = 1, 2, . . .).

Since

min
j

j3

j + 1
≥ 1/2,
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condition (1.2) obviously holds, if

(3.2) |a|C < π3/2.

Besides,

η1/4(S) ≤ sup
m

dm

dm − q1/4λ
1/4
m+1(S)

≤ η̂1/4,

where

η̂1/4 =
7π3

7π3 − 4|a|C
.

In addition,

ζ1/4(S) =

∞∑
k=1

(k + 1)2

(π3(2k3 + 3k2 + 2k + 1/2)− 2|a|C(k + 1))2
.

Evidently, ζ1/4(S) ≤ ζ̂, where

ζ̂ =
∞∑
k=1

(k + 1)2

(2π3k3 − 2|a|C(k + 1))2
<∞.

Consequently, by Theorem 1.1, there are a bounded and boundedly invertible operator
T, and a normal operator M , acting in H, such that (1.5) holds and

κT ≤ η̂1/4
(

1 + 2|aC |
√
ζ̂

)2

,

provided condition (3.2) holds.

4. Applications of Theorem 1.1 and concluding remarks

4.1. Some applications of Theorem 1.1. For brevity, put

γν(S) = ην(S)
(

1 + 2qν
√
ζν(S)

)2
.

Let f(z) be a scalar-valued function defined and uniformly bounded on the spectrum of
A. Put

f(A) =

∞∑
k=1

f(λk(A))Qk.

Recall that Qk (k = 1, 2, . . .) are eigenprojections of A. Due to (1.5) Theorem 1.1
immediately implies the following.

Corollary 4.1. Let conditions (1.1)–(1.3) hold. Then f(A) = T−1f(M)T and therefore,

‖f(A)‖ ≤ γν(S) sup
k
|f(λk(A))|.

In particular, we have

‖e−At‖ ≤ γν(S)e−β(A)t (t ≥ 0),

where β(A) = infk < λk(A). In addition,

(4.1) ‖Rλ(A)‖ ≤ γν(S)

ρ(A, λ)
where ρ(A, λ) = inf

s∈σ(A)
|λ− s| (λ 6∈ σ(A)).

Let A and Ã be linear operators. Then the quantity

svA(Ã) := sup
t∈σ(Ã)

inf
s∈σ(A)

|t− s|

is said to be the variation of Ã with respect to A.
Let Ã be a linear operator in H with Dom(A) = Dom(Ã) and

(4.2) ξ := ‖A− Ã‖ <∞.
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From (4.1) it follows that λ 6∈ σ(Ã), provided ξγν(S) < ρ(A, λ). So for any µ ∈ σ(Ã) we
have ξγν(S) ≥ ρ(A,µ). This inequality implies our next result.

Corollary 4.2. Let conditions (1.1)–(1.3) and (4.2) hold. Then svA(Ã) ≤ ξγν(S).

4.2. α-dependence. For a parameter α > 0 put Aα = A+αI, Sα = S+αI and consider
the dependence of our results on α. Clearly, Aα is similar to a normal operator if and
only if so is A. On the other hand,

qν(α) := ‖(Aα − Sα)(S + αI)−ν‖ = ‖(A− S)(S + αI)−ν‖ ≤ qν(0) = qν

and λk(Sα)− λm(Sα) = λk(S)− λm(S) (k 6= m). If ν > 0, then the condition

(4.3) 2qν(α)(λk(S) + α)ν < dk

is not applicable for all k ≥ 1, provided α is sufficiently large. In our opinion, this
is because we do not have an explicit dependence of qν(α) on α. Note that (λk(S) +
α)/λk(S) → 1 as k → ∞, and due to (1.2), for any α > 0 there is a sufficiently large
integer k0 such that (4.3) holds for all k ≥ k0.

If ν = 0, then taking into account that (λk(S) + α)0 = 1, (S + αI)0 = I, we get
q0(α) = q0,

ζ0(Sα) :=

∞∑
k=1

1

(dk − 2q0)2
= ζ0(S), η0(Sα) := sup

m

dm
dm − q0

= η0(S0)

and condition (4.3) takes the form 2q0 < dk. So if ν = 0, then the conditions of Theorem
1.1 do not depend on α.

4.3. Concluding remarks. Let us illustrate the sharpness and α-dependence of Theo-
rem 1.1 in the finite dimensional case. Consider the matrix

(4.4) A =

(
5 1/6
0 1

)
.

First let ν = 0 and consider the sharpness. Take
(4.5)

S=

(
5 0
0 1

)
and T =

(
1 1/24
0 1

)
. It is simple to check that T−1 =

(
1 −1/24
0 1

)
and TAT−1 = S. In addition, q0 = ‖A− S‖ = 1/6 and κT = ‖T−1‖‖T‖ ≈ 1.08. In the
considered case λ1(S) = 1, λ2(S) = 5, d1 = 2. So d1 > 2q0,

ζ0(S) =
1

(d1 − 2q0)2
= 9/25, η0(S) =

d1
d1 − q0

= 12/11.

Theorem 1.1 implies

κT ≤ η0(S)(1 + 2q0
√
ζ0(S))2 ≈ 1.57.

We can see that in the considered trivial case Theorem 1.1 gives us a rather rough bound.
Now let ν = 1/2, and consider the α-dependence. Take Aα = A+αI with A defined by

(4.4) and Sα = S +αI with S defined as in (4.5). Then λ1(Sα) = 1 +α, λ2(Sα) = 5 +α,

S−1/2 =

(
1/
√

5 0
0 1

)
and (A− S)S−1/2 =

(
0 1/6
0 0

)
.

Consequently, q1/2 = 1/6 and condition (4.3) is provided by the inequality 2q1/2(λ2(S)+

α)1/2 < d1 for α < 31. We can write

η1/2(Sα) =
d1

d1 − q1/2(α+ λ2(S))1/2
=

2

2− 1
6 (α+ 5)1/2

and

ζ1/2(Sα) =
λ2(S) + α

(d1 − 2q1/2(α+ λ2(S))1/2)2
=

5 + α

(2− 1
3

√
5 + α)2

.
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Theorem 1.1 implies

κT ≤ η1/2(Sα)(1 + 2q1/2

√
ζ1/2(Sα))2 =

12

12−
√
α+ 5

(
1 +

3
√

5 + α

6−
√

5 + α

)2

(0 < α < 31). This inequality shows that the dependence of the conditions of Theorem 1.1
on α is rather complicated.

Acknowledgments. I am very grateful to the referee of this paper for his (her) really
helpful remarks.

References

1. N. E. Benamara and N. K. Nikolskii, Resolvent tests for similarity to a normal operator, Proc.
London Math. Soc. 78 (1999), 585–626.

2. T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, M. Lindner, Condition number
estimates for combined potential integral operators in acoustics and their boundary element

discretisation, Numer. Methods Partial Differential Equ. 27 (2011), 31–69.

3. J A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific J. Math. 104 (1983),
no. 1, 241–255.

4. S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates

for combined potential boundary integral operators in acoustic scattering, J. Int. Eqn. Appl. 21
(2009), 229–279.

5. N. Dunford and J. T. Schwartz, Linear Operators, Part 3: Spectral Operators, Wiley-

Interscience Publishers, Inc., New York, 1971.
6. M. M. Faddeev and R. G. Shterenberg, On similarity of differential operators to a selfadjoint

one, Math. Notes 72 (2002), 292–303.

7. M. I. Gil’, A bound for similarity condition numbers of unbounded operators with Hilbert–
Schmidt hermitian components, J. Aust. Math. Soc. 97 (2014), no. 3, 1–12.

8. M. I. Gil’, On condition numbers of spectral operators in a Hilbert space, Analysis and Mathe-

matical Physics 5 (2015), 363–372.
9. M. I. Gil’, An inequality for similarity condition numbers of unbounded operators with Schatten–

von Neumann Hermitian components, Filomat 30 (2016), no. 13, 3415–3425.
10. M. I. Gil’, Rotations of eigenvectors under unbounded perturbations, Journal of Spectral Theory

7 (2017), no. 1, 191–199.

11. Guoliang Chen, Yimin Wei and Yifeng Xue, The generalized condition numbers of bounded
linear operators in Banach spaces, J. Aust. Math. Soc. 76 (2004), 281–290.

12. I. M. Karabash, J-selfadjoint ordinary differential operators similar to selfadjoint operators,

Methods Funct. Anal. Topology 6 (2000), no. 2, 22–49.
13. I. M. Karabash, A. S. Kostenko, and M. M. Malamud, The similarity problem for J-nonnegative

Sturm–Liouville operators, J. Differential Equations 246 (2009), 964–997.

14. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
15. A. Kostenko, The similarity problem for indefinite Sturm–Liouville operators with periodic

coefficients, Oper. Matrices 5 (2011), no. 4, 707–722.

16. A. Kostenko, The similarity problem for indefinite Sturm–Liouville operators and the help
inequality, Advances in Mathematics 246 (2013), 368–413.

17. M. M. Malamud, Similarity of a triangular operator to a diagonal operator, Journal of Mathe-
matical Sciences 115 (2003), no. 2, 2199–2222.

18. S. V. Parter and Sze-Ping Wong, Preconditioning second-order elliptic operators: condition

numbers and the distribution of the singular values, Journal of Scientific Computing 6 (1991),
no. 2, 129–157.

19. B. Pruvost, Analytic equivalence and similarity of operators, Integr. Equ. Oper. Theory 44

(2002), 480–493.
20. M. Seidel and B. Silbermann, Finite sections of band-dominated operators, norms, condition

numbers and pseudospectra, Operator Theory: Advances and Applications, Vol. 228, 375–390.

Springer, Basel, 2013.

Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-
Sheva 84105, Israel

E-mail address: gilmi@bezeqint.net

Received 13/04/2017; Revised 05/10/2017


