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ON SIMILARITY OF UNBOUNDED PERTURBATIONS OF
SELFADJOINT OPERATORS

MICHAEL GIL’

ABSTRACT. We consider a linear unbounded operator A in a separable Hilbert space
with the following property: there is an invertible selfadjoint operator S with a dis-
crete spectrum such that ||[(A—S)S™|| < oo for a v € [0, 1]. Besides, all eigenvalues
of S are assumed to be different. Under certain assumptions it is shown that A is si-
milar to a normal operator and a sharp bound for the condition number is suggested.
Applications of that bound to spectrum perturbations and operator functions are
also discussed. As an illustrative example we consider a non-selfadjoint differential
operator.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let H be a separable Hilbert space with a scalar product (.,.), the norm ||.|| = /(.,.)
and the unit operator I. For a linear operator A in H, Dom(A) is the domain, A* is the
operator adjoint to A; o(A) denotes the spectrum of A, and A~! is the inverse of A. Two
operators A and M acting in H are said to be similar if there exists a boundedly invert-
ible bounded operator T such that A = T-'MT. The constant xr = |T~|||T|| is called
the condition number. The condition number is important in applications. We refer the
reader to [4], where condition number estimates are suggested for combined potential
boundary integral operators in acoustic scattering, and [20], where condition numbers
are estimated for second-order elliptic operators. Conditions that provide similarity of
various operators to normal and selfadjoint ones were considered by many mathemati-
cians, cf. [1, 3, 6], [12, 13], [15]-[19], and references given therein. In many cases, the
condition number must be numerically calculated, e.g. [2, 18]. The interesting general-
ization of condition numbers of bounded linear operators in Banach spaces were explored
in the paper [11]. Bounds for condition numbers of unbounded operators with Hilbert-
Schmidt and Shatten-von Neumann Hermitian components have been established in [7]
and [9]. The paper [8] deals with bounded perturbations of normal operators.

In the present paper we estimate the condition number of a linear operator A in H
with the following property: there is a positive definite selfadjoint operator S with a
discrete spectrum such that Dom (A) = Dom (S), and for some v € [0, 1],

(1.1) @ = [[(A=5)57"| < oo.

Besides, under certain restrictions we considerably generalize the main result of the paper
[8]. Our approach in this paper is absolutely different from the one in [7, 9].

Let all the eigenvalues A (S) (k= 1,2,...) of S be simple (i.e., the multiplicities are
equal to one), and enumerated in the increasing order. So

dy = kl;lf |>\k(S) - /\m(S)|/2 > 0.
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That is, dy = (A2(S) — A1(5))/2 and dy, = § min{Ap41(S) — A (S), A (S) — Am—1(S)}
(m > 2). Tt is assumed that

(1.2) 2q, M1 (S) <dpm (m=1,2,...)
and
S A2 (S)

1.3 () = bl < 0.
(+5) )= G 20, )7
Under condition (1.2) we have

dm
(1.4) 7y (S) 1= sup < 00.

m m — ql/)‘l;n+1(5)

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1)-(1.3) hold. Then there are a bounded and boundedly
invertible operator T, and a normal operator M, acting in H, such that

(1.5) TAx = MTz (x € Dom(A)).
Moreover,

kr < mu(S) (1 + 2qy\/<y(5))2 :

The proof of this theorem is presented in the next section. The theorem is sharp: if
A = 8§ is selfadjoint, then ¢, = 0 and 7,(S) = 1; we thus obtain k7 = 1.

2. PrRoOF OF THEOREM 1.1

Let {ex} be the set of all normed eigenvectors of S, such that
S = Z)\k(S)Pk, where Py = (., eg)eg.
k=1

Put Q(c,r) :={2z € C: |z —¢| <71} (c € C,r > 0). Due to [10, Theorem 1.1], if the
conditions (1.1) and (1.2) are satisfied, then A has in Q(\,,(S),d,) a simple eigenvalue,
say Am(A). Let {gx} be the set of all eigenvectors of A and {hy} the corresponding
biorthogonal sequence: (gi,h;) = 0,k # j, (gk,hx) = 1. Then Qi = (-, hy)gr are the
eigenprojections of A and

A= Me(A)Qs.
k=1

By Lemma 3.1 from [10], under conditions (1.1) and (1.2) one has

QA1 (S)
(2.1) | | dr — 4,0 1 (5)
Put
(2.2) T =Y (. hi)ek
k=1
Simple calculations show that the inverse operator is defined by
(2.3) T = (., en)gn-
k=1

Below we check that T and T~ are bounded.

Lemma 2.1. Let conditions (1.1), (1.2) hold and T be defined by (2.2). Then (1.5) is
valid with

(2.4) M = i Ae(A) Py
k=1
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Proof. Indeed,

AT f = ZZ)% )(f.e)(95, b gk—z)\k )(fs ex) gk

k=1 j=1 k=1
(f €H, T~ f € Dom(A))
and
TAT™'f = Me(A)D (g hyde;(Fren) =Y M(A)(f,en)en = M,
k=1 j=1 k=1
as claimed. 0O

Introduce the operator

T =l ex)ex
k=1

Then
hi

Tf—Jf = Z||hk|| frhy — ex)er, where hy = Tl

k=1
Hence,

(2.5) ITf—JfI* = Z Rl 1Cf e = e)]* < |1 £ Z s [V ore = e

k=1 =

It is clear the hy are eigenvectors of A*. Besides, ||(A* — S)S7¥|| = ||(A—S8)S7"] = qu-
Due to [10, Theorem 1.1}, if the conditions (1.1), (1.2) are fulfilled, then the eigenvector
vm(A) of A corresponding to Ay, (A) and the eigenvector e, of S corresponding to A, (S)
with v (A)]] = |lem|| = 1 satisfy the inequality
24, A7 41(5)
m = 200,11 ()

Applying this result with A* instead of A, and h,, instead of v, (A), we can write

H 2qy)\7”n+1(S)
mh= dm - 2QV)‘7Vn+1(S)

A) — <
lom(4) = emll < -

(2.6) llem — h

Now (2.5) implies

- IthIQAi”l(S)
2.7 T-J|? < 2 + .
(2.7) Im= I < 20 Y o o
We always can take hy and gx in such a way that ||hg]| = ||gx||. Clearly, Qrhr =

(hk,hk)gk. So

(Quhis gi) = (hiey i) (gis 9) = 1hell* = llgwll*.
Hence, [[hx||* < |Qullllhxllgrll = QxllIAkl?. Thus [|hg|* < Qx| and [lgk|l* < Q|-
Therefore, (2.6) gives us the inequality

> ||Qk||)‘k+1( )

(2.8) 1T~ J|* < (2¢0)° :
kz_:,l (dr = 20,77 1(5))?
Moreover, since || P,|| = 1 by (2.1) we get
qV)‘7yn+1(S) dm
Qml| <sup (1+ > ) = sup — =1,(5)
(29) H || m ( dm - QV)\m+1(S) m d )\erl(S) (

(m=1,2,...).
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Consequently,
IT =712 < a2 (9)S &) (o120 (s16(5)
N o 1 (di. — 2QV/\Z+1(S))2 o Y .
Due to (2.9),
171 = Z Iel2I(F ) < Z 1P < () S (el = 1 F1P(S)
k=1

(f € ).

Thus we obtain
ITI? = 11 + (T = DI* < (T +IT = T < 1 (S)(1 + 200/ ¢ (9))*.
The same arguments give us the inequality
IT7H? < m(S)(1 + 200/ G (9))*.

This proves the theorem.

3. EXAMPLE
Consider in L?(0,1) the problem
u® (z) + a(z)/(z) = lu(z) MNeC; 0<z<1),
u(0) = u(1) = u"(0) = u"(1) =0,
where a(x) (0 < z < 1) is a bounded complex valued function. Take S = d*/dz* with
Dom (S) = {v e L*(0,1) : v e L2(0,1), v(0) = v(1) = v"(0) = v" (1) = 0},
and v = 1/4. Define A by

(3.1) (Au)(z) = u(2) + a(2)u’ (x)
with Dom (A) = Dom (S). Obviously, \;(S) =n%j* (j =1,2,...) and
174 = |I(S — A4S~V = supa(z)| sup IS~ F)L -
@ feDom(8),|fI=1
But - -
(ST @) =S —a—(frex)en(a) = = 21 (f, ex)er(z
=PVEC) =t/
where ey (x) = v/2 sin 7(kx). Thus
d d o 1
dx( A (2) = - ; m(f, er)ek(x \fz f,ex)cos m(kx).
J
Hence,

IS~ = Zlf,ek = |If1.

Therefore, q1/4 = |a|c, where |a|c := supg<,<; |a(x)|. Moreover,
4y = (Aj+1(8) = A (8))/2 = 7 + ) = j%]/2
=74(25% + 352 + 25 + 1/2) > 2n*j3
Condition (1.2) is provided by the inequality
lalc(G+1) <7%® (G =1,2,...).

Since
3

>1/2,
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condition (1.2) obviously holds, if
(3.2) lalc < 73/2.

Besides,

dm R

n1/4(8) < sup < 14,
m dpy, — (11/4)\71411(5)

where
L T3
= T
In addition,
(e’ ]f—‘r 2
()= (E+1)

(m3(2k3 + 3k2 + 2k +1/2) — 2|a|c(k +1))2"

Evidently, ¢;/4(5) < C, where

o (k+1)?
¢= ; 2o —2dck+1)E =

Consequently, by Theorem 1.1, there are a bounded and boundedly invertible operator
T, and a normal operator M, acting in H, such that (1.5) holds and

2
K1 < M1/a (1 + 2@0\&)
provided condition (3.2) holds.

4. APPLICATIONS OF THEOREM 1.1 AND CONCLUDING REMARKS

4.1. Some applications of Theorem 1.1. For brevity, put

() = nu(S) (1 +2g, cy(S))2 .

Let f(z) be a scalar-valued function defined and uniformly bounded on the spectrum of
A. Put

FA) =) FOn(A))Qx-
k=1
Recall that Q (k = 1,2,...) are eigenprojections of A. Due to (1.5) Theorem 1.1
immediately implies the following.
Corollary 4.1. Let conditions (1.1)-(1.3) hold. Then f(A) = T~ f(M)T and therefore,
IF (A < w(S )Sgplf(/\k( )l

In particular, we have
le™ 4] < (S)e D0 (> 0),
where B(A) = inf, R Ap(A4). In addition,

1 (S)
(A A)

Let A and A be linear operators. Then the quantity

(4.1) [RA(A)] < where  p(A, ) = U A =s| (A& a(A)).

svg(A) = sup inf |t—s|
teo(A) s€o(A)

is said to be the variation of A with respect to A. ~
Let A be a linear operator in H with Dom(A) = Dom(A) and

(4.2) £:=]A - A|| < oo,
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From (4.1) it follows that X ¢ o(A), provided £v,(S) < p(A,)). So for any p € o(A) we
have £v,(S) > p(A, p). This inequality implies our next result.

Corollary 4.2. Let conditions (1.1)~(1.8) and (4.2) hold. Then sv(A) < &v,(S).
4.2. a-dependence. For a parameter a > 0 put A, = A+al, S, = S+al and consider

the dependence of our results on «. Clearly, A, is similar to a normal operator if and
only if so is A. On the other hand,

(@) = [[(Aa — S )(5+0J) I =1(A=5)(S+al)™"| < q.(0) = g
and A, (Sa) — A (Sa) = A(S) — A (S) (k # m). If v > 0, then the condition
(4.3) 2q, (@) (Ak(S) + @) < di,

is not applicable for all £ > 1, provided « is sufficiently large. In our opinion, this
is because we do not have an explicit dependence of q,(«) on a. Note that (Az(S) +
a)/Ae(S) = 1 as k — oo, and due to (1.2), for any o > 0 there is a sufficiently large
integer ko such that (4.3) holds for all k > k.

If v = 0, then taking into account that (A\x(S) + ) = 1, (S + al)? = I, we get
q0(@) = qo,

Co(Sa) = ;M = (o(5),m0(5a) _Sipd i —770(50)

and condition (4.3) takes the form 2¢qy < di. So if v = 0, then the conditions of Theorem
1.1 do not depend on «.

4.3. Concluding remarks. Let us illustrate the sharpness and a-dependence of Theo-
rem 1.1 in the finite dimensional case. Consider the matrix

(5 1/6
(4.4) A_(O 1).
First let v = 0 and consider the sharpness. Take
(4.5)
_ (5 0 (1 1/24 o (1 -1y
S—(O 1)andT—<O 1 ).It1551mpletocheckthatT _<O 1 >

and TAT~! = S. In addition, go = ||[A — S|| = 1/6 and kr = ||T~Y||||T|| =~ 1.08. In the
considered case \1(S) = 1,A2(S) = 5,d; = 2. So di > 2qo,

“iS) = (di —2q0)2 9/25,m(S) = di — qo

=12/11.

Theorem 1.1 implies
rr < 10(S)(1 + 2g0v/Co(5))* ~ 1.57.
We can see that in the considered trivial case Theorem 1.1 gives us a rather rough bound.
Now let v = 1/2, and consider the a-dependence. Take A, = A+«l with A defined by
(4.4) and S, = S+ of with S defined as in (4.5). Then A1(So) =1+ a, A2(Sa) =5+ «,

S/ = ( 1/6/5 ; ) and (A— S)§~V/?2 = ( 8 166 )

Consequently, q; /2 = 1/6 and condition (4.3) is provided by the inequality 2q; /2(A2(S) +
a)'/? < d; for a < 31. We can write

dq 2
) R 2 Ha s )
and
CoalSa) = A2(S) + « 5+«

(di = 2q1/2( + A2(S))1/2)2 (2**\/5+a)
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Theorem 1.1 implies

2
12 3vV5 +
k1 < M12(Sa) (14 24124/ C1y2(Sa))? (1 a)

=————[1+
12 —vVa+5 6—-vVd+a
(0 < a < 31). This inequality shows that the dependence of the conditions of Theorem 1.1
on « is rather complicated.
Acknowledgments. T am very grateful to the referee of this paper for his (her) really
helpful remarks.
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