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A PROBABILISTIC PROOF OF THE VITALI COVERING LEMMA

E. GWALTNEY, P. HAGELSTEIN, AND D. HERDEN

Abstract. The classical Vitali Covering Lemma on R states that there exists a

constant c > 0 such that, given a finite collection of intervals {Ij} in R, there exists

a disjoint subcollection {Ĩj} ⊆ {Ij} such that | ∪ Ĩj | ≥ c| ∪ Ij |. We provide a new

proof of this covering lemma using probabilistic techniques and Padovan numbers.

1. Introduction

The Vitali Covering Lemma is one of the fundamental tools of modern analysis and
geometric measure theory. Its d-dimensional version may be stated as follows.

Theorem 1. (Vitali Covering Lemma on Rd). Let {Bj} be a finite collection of open

balls in Rd. Then there exists a disjoint subcollection {B̃j} ⊆ {Bj} such that

| ∪ B̃j | ≥ 3−d |∪Bj | .

This theorem is very well known and has many minor variations; see, e.g., [6, 9]. The
proof on Rd relies on both an initial ordering of the balls so that they are nonincreasing in
size as well as the triangle inequality, taking advantage of the observation that if two open
balls B1 and B2 intersect and |B1| ≥ |B2|, then B2 is necessarily contained in the 3-fold
concentric dilate of B1. (This accounts for the term 3−d above.) In the one-dimensional
case, the ordering of the real line may be exploited to provide a better constant:

Theorem 2. (Vitali Covering Lemma on R). Let {Ij} be a finite collection of open

intervals in R. Then there exists a disjoint subcollection {Ĩj} ⊆ {Ij} such that

| ∪ Ĩj | ≥
1

2
|∪Ij | .

The reader may consult [7] as well as [8] for a straightforward proof, attributed to
W. H. Young, of the above.

Covering lemmas have been proven for collections of objects other than balls. For
instance, in [4] A. Córdoba and R. Fefferman proved a covering lemma for rectangles
with sides parallel to the axes that implies that these rectangles differentiate functions in
Lp(R2) for p > 1 and, moreover, functions in the Orlicz class L(logL)(R2)loc. Strömberg,
Córdoba, and Fefferman used similar ideas in [5, 14] to prove that rectangles in R2

oriented in a direction of the form 2−j also differentiate functions in Lp(R2) for p ≥ 2
(subsequent work of Nagel, Stein, and Wainger [10] and independently by Bateman [2]
shows that these rectangles also differentiate Lp(R2) for p > 1.)

Unfortunately, over the past few decades there has been relatively little progress in
developing covering lemmas to yield improved differentiation results. (This is not to say
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there have not been some fantastic results in the theory of differentiation of integrals,
see, for instance, the work of Bateman and Katz in [2, 3].) For example, we still do
not know if rectangles in R2 oriented in lacunary directions must differentiate functions
locally in an Orlicz class of the form L(logL)k(R2)loc for some k.

This paper considers a different approach to covering lemmas, one inspired by prob-
abilistic reasoning and “Erdös-type” methods. As these methods have been highly suc-
cessful in the field of combinatorics (many examples may be found in the excellent text
[1] by Alon and Spencer), it is natural to ask whether they may be of use in the area
of differentiation of integrals. To answer, we start at the very beginning: an attempt to
reprove the Vitali Covering Lemma on R via probabilistic techniques. We are pleased to
present a new proof in the next section. Of particular interest is the proof’s natural but
unexpected encounter with the so-called Padovan sequence. This sequence, named after
Richard Padovan, is considered to have been originally discovered by the Dutch archi-
tect Dom Hans Van Der Laan [11], and the interested reader may find an introduction
to them by Ian Stewart in [13]. In the last section of the paper we provide topics of
research that we believe are suitable for further exploration.

2. A Probabilistic proof of the Vitali Covering Lemma on R

The goal of this section is to provide a probabilistic proof of the following:

Theorem 3. Let {Ij}Nj=1 be a finite collection of intervals in R. Then there exists a

disjoint subcollection {Ĩj} ⊆ {Ij} such that

| ∪ Ĩj | ≥
1

4
| ∪ Ij | .

Proof. We begin by making some useful reductions. Without loss of generality we may
assume that each Ij = [xj , yj ] is closed. Moreover, we may assume without loss of
generality that the collection is minimal in the sense that no given Ij is covered by the
union of the remaining Ik’s. In addition, we may label the intervals {Ij} such that
xj ≤ xk for all j < k.

Suppose there is an interval different from Ik in {Ij} that contains yk as an inte-
rior point. Without loss of generality, let Il be the interval of this type that extends
furthest to the right. Now let yk ∈ I 6= Ik, Il. Suppose towards a contradiction that
I = [x, y] ∈ {Ij}. If x ≤ xk, then Ik ⊆ I, and by the minimality of {Ij}, we have that
Ik /∈ {Ij}, a contradiction. On the other hand, if x > xk, then I ⊆ Ik ∪ Il, and by
the minimality of {Ij}, we have that I /∈ {Ij}, another contradiction. Thus, yk is only
contained in Ik and Il, and l = k+ 1 follows. Accordingly, without loss of generality, we
may assume the intervals {Ij}Nj=1 are such that yj = xj+1 for all j < N .

We now begin to reason in a probabilistic manner. We call {Ĩj} a maximally disjoint

subcollection of {Ij}Nj=1 if the intervals in {Ĩj} are pairwise disjoint and, moreover, every

interval in {Ij} intersects the union of the intervals in {Ĩj}. Our strategy is the following:

(i) Count the number of maximally disjoint subcollections of {Ij}Nj=1.

(ii) Given an interval I ∈ {Ij}Nj=1, show that it must lie in 1
4 of the maximally disjoint

subcollections. In particular, show that, given a maximally disjoint subcollection, the
probability that a given interval I ∈ {Ij} is a member of that subcollection is greater
than or equal to 1

4 .

Observe that once (i) and (ii) are proven, Theorem 3 immediately follows via linearity
of expectation.
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Figure 1. Maximally Disjoint Subcollections of Seven Intervals

Denote the number of maximally disjoint subcollections of {Ij}Nj=1 by QN . By in-
spection, we see that Q1 = 1, Q2 = Q3 = 2, Q4 = 3, Q5 = 4, Q6 = 5, and Q7 = 7.
Figure 1 illustrates the seven different maximally disjoint subcollections associated to
seven intervals. Observe that if N ≥ 4, the number of maximally disjoint subcollections
that contain I1 is exactly QN−2 and the number of maximally disjoint subcollections
that contain I2 is QN−3. By symmetry, the number of maximally disjoint subcollections
that contain IN is QN−2 and the number that contain IN−1 is QN−3. More generally,
if 3 ≤ k ≤ N − 2, then the number of maximally disjoint subcollections that contain Ik
is the number of maximally disjoint subcollections of {I1, . . . , Ik−2} times the number of
maximally disjoint subcollections of {Ik+2, . . . , IN}, or Qk−2 ×QN−(k+1).

If N ≥ 3, any maximally disjoint subcollection of {Ij}Nj=1 must contain exactly one of
I1 or I2, but not both. From the above argument we know how many maximally disjoint
subcollections contain I1 and how many contain I2, and we find the recursive relation

QN = QN−2 +QN−3.

This establishes (i). To show (ii), we see it suffices to show that the inequalities

QN−2
QN

≥ 1

4
,

QN−3
QN

≥ 1

4
,

and

Qk−2QN−(k+1)

QN
≥ 1

4
, k = 3, . . . , N − 2

hold for an arbitrary integer N ≥ 4. (The cases N = 1, 2, 3 follow readily by inspection.)
The recursive relation for Qj coincides with that of the Padovan numbers Pj , defined

by

(2.1) P0 = P1 = P2 = 1, Pj = Pj−2 + Pj−3 for j ≥ 3 .

In particular, we have Pj+1 = Qj . In terms of the Padovan numbers, it suffices to show
that

PN−1
PN+1

≥ 1

4
,(2.2)

PN−2
PN+1

≥ 1

4
, and(2.3)

(2.4)
Pk−1PN−k
PN+1

≥ 1

4
, k = 1, 2, . . . , N

hold for an arbitrary integer N ≥ 4. As P0 = P1 = 1, the first two inequalities are
implied by the third one, so it suffices to show (2.4).
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We now associate the Padovan numbers with the generating function

P (x) =

∞∑
n=0

Pnx
n.

The recursive relation satisfied by the Padovan numbers yields

P (x) = 1 + x+ x2 +

∞∑
n=3

(Pn−2 + Pn−3)xn

= 1 + x+ x2P (x) + x3P (x).

Solving for P (x) yields

P (x) =
1 + x

1− x2 − x3
.

Standard partial fraction decomposition permits us to express P (x) as

P (x) = −
(

A

x− α
+

B

x− β
+

C

x− γ

)
,

where

α =
3

√
25

54
+

√
23

108
+

3

√
25

54
−
√

23

108
− 1

3
∼ 0.75488 and

β = γ̄ = −
1 + α+ i

√
4α(1 + α)− (1 + α)2

2
∼ −0.8774− 0.7449i,

are the roots of the cubic equation 1− x2 − x3 = 0,

A =
1 + α

(α− β)(α− γ)
∼ 0.5451, and

B = C̄ =
1 + β

(β − α)(β − γ)
∼ −0.2726 + 0.0740i.

Expressing 1
x−α , 1

x−β , 1
x−γ in the standard way as geometric series, we find

P (x) =

∞∑
n=0

(
A

αn+1
+

B

βn+1
+

C

γn+1

)
xn.

This enables us to express the numbers Pn as

Pn =
A

αn+1
+

B

βn+1
+

C

γn+1
.

Now, from (2.1) an elementary induction gives the estimates

(2.5)
2α5

αn+1
≤ Pn ≤

4α7

αn+1
for n ≥ 4 .

Accordingly, we estimate

Pk−1PN−k
PN+1

≥
2α5

αk
2α5

αN−k+1

4α7

αN+2

= α4 > 0.32 for k − 1, N − k, and N + 1 ≥ 4 ,

and it remains to verify (2.4) for k = 1, 2, 3, 4. If N ≥ 8 we may handle the cases
k = 1, 2, 3, 4 by estimating PN+1 and PN−k with (2.5) while using the exact value for
Pk−1. This yields

Pk−1PN−k
PN+1

≥ α2

2
> 0.28,
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the smallest value occurring for the k = 3 case. This leaves us to deal with the fewer than

28 cases associated to 1 ≤ k ≤ 4 and 1 ≤ N ≤ 7. The associated values for Pk−1PN−k

PN+1
are

provided in the following table.

Pk−1PN−k

PN+1
k = 1 k = 2 k = 3 k = 4

N = 1 1
N = 2 1/2 1/2
N = 3 1/2 1/2 1/2
N = 4 2/3 1/3 1/3 2/3
N = 5 1/2 1/2 1/4 1/2
N = 6 3/5 2/5 2/5 2/5
N = 7 4/7 3/7 2/7 4/7
N = 8 5/9 4/9 1/3 4/9

Table 1. Pk−1PN−k

PN+1
for small N, k

We see then that a minimum value of 1
4 occurs for Pk−1PN−k

PN+1
when k = 3 and N = 5.

The following figure illustrates this scenario. Observe that the third of five intervals oc-
curs only once in the four possible maximally disjoint subcollections of
{[0, 1/5], [1/5, 2/5], . . . , [4/5, 1]}. This shows that the probability that a given interval
I ∈ {Ij}Nj=1 lies in a maximally disjoint subcollection is greater than or equal to 1

4 ,
proving (ii) and completing the proof of the theorem.

�

Figure 2. Maximally Disjoint Subcollections of Five Intervals

Remark : The factor of 1
4 in the above proof could be improved upon very slightly, simply

by recognizing that in the case of five intervals one could select either the first, third,
and fifth intervals or the second, and fourth intervals and then look for the minimum
value associated to higher values of N . Via this probabilistic technique, however, we
cannot escape the asymptotic behavior as N tends to infinity for the fixed value k = 3 of
Pk−1PN−k

PN+1
, which is α2

2 ∼ 0.28. In this regard we are unable to achieve the sharp constant

1/2. However, we are pleased to have achieved the constant 1
4 without having taken

recourse to using ordering or Besicovitch-type arguments typical to proofs of covering
lemmas .

3. Future directions

Certainly this initial foray into proving covering theorems via probabilistic methods
has been promising. Much more work in this area remains to be done. We believe that
the following problems would be particularly suitable for further research in this area.
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Problem 1: A natural next step would be to prove the Vitali Covering Lemma for
balls or cubes in Rd via probabilistic methods. New ideas are clearly needed here, as
the proof we have provided in the R1 context heavily relies on ordering properties of the
real line that are unavailable in Rd for d > 1. In particular, we relied on being able
to, given a finite collection of intervals {Ij} in R, find a subcollection {Ĩj} such that

∪Ij = ∪Ĩj , where no more than two Ĩj overlap at any given point. This type of reduction
is unavailable in a higher dimensional scenario.

Problem 2: This problem involves a Vitali covering lemma on multiple scales simul-
taneously. Given an interval I ⊂ R and a constant d > 0, let dI denote the interval
concentric with I and with length d|I|. Does there exist a constant c > 0 such that,
given any finite collection of intervals {Ij} and any positive integer k, there exists a

subcollection {Ĩj} ⊆ {Ij} satisfying

i) | ∪ Ĩj | ≥ c| ∪ Ij |, and
ii)
∑
j χ2k Ĩj

≤ 2k?

In seeking to prove this result, we have tried but at present failed to find an algorithm
for finding the appropriate subcollection {Ĩj}. It is quite possible that the appropriate
approach is to simply show the desired subcollection exists by probabilistic means.

Problem 3: Let B be a collection of open sets in Rd of finite measure. We may define
the associated maximal operator MB by

MBf(x) = sup
x∈R∈B

1

|R|

∫
R

|f | .

Suppose the maximal operator MB is of weak type (1, 1), i.e., there exists a postive finite
constant C such that

|{x ∈ Rd : MBf(x) > α}| ≤ C ‖f‖1
α

for f ∈ L1(Rd) .

Must there be a covering lemma associated to B? In particular, does there exist a con-
stant c > 0 such that, given a finite collection {Rj} ⊆ B, there exists a subcollection

{R̃j} ⊆ {Rj} satisfying

i) | ∪ R̃j | ≥ c| ∪Rj | , and
ii)
∑
j χR̃j

≤ c−1 ?

Note that, if B is the collection of balls in Rd, MB is the well-known Hardy-Littlewood
maximal operator, and this operator is known to be of weak type (1, 1). (See, e.g., [12].)
So the usual Vitali Covering Lemma corresponds to a special case of this problem. It is
interesting that Córdoba and Fefferman have shown in [4] that covering lemmas do exist
for maximal operators that are of weak type (p, p) for 1 < p <∞, but somewhat surpris-
ingly the p = 1 case remains unresolved. The generality of this problem also suggests
that an explicit covering algorithm may not be feasible, but possibly the existence of the
desired {R̃j} may be proved by probabilistic methods.
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