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CATEGORIES OF UNBOUNDED OPERATORS

PAUL D. MITCHENER

Abstract. In this article we introduce the concept of an LK∗-algebroid, which is

defined axiomatically. The main example of an LK∗-algebroid is the category of all

subspaces of a Hilbert space and closed (not necessarily bounded) linear operators.
We prove that for any LK∗-algebroid there is a faithful functor that respects its

structure and maps it into this main example.

1. Introduction

One of the nicest things about C∗-algebras, known since they were introduced (see [12])
is that any C∗-algebra can be representated as an algebra of bounded linear operators
acting on a Hilbert space. In the classical algebraic approach to quantum field theory and
statistical mechanics, as described in [11, 1] C∗-algebras are typically used to describe
the algebra of observables and states, free from any particular model, and the deep
mathematical theory of C∗-algebras (see for instance the books [8, 9, 10, 20]) is there to
exploit.

However, as pointed out for instance in the introduction to [2], there is in principle a
problem with the C∗-algebra approach. Specifically, C∗-algebras correspond to bounded
linear operators on a Hilbert space, and most observables appearing in physical systems
correspond to unbounded operators, such as differentiation, on a Hilbert space. One
issue with handling unbounded operators algebraically is that a well-behaved unbounded
linear operator does not have a domain equal to the whole subspace it acts on, but rather
a dense subset.

This issue led to the introduction of partial ∗-algebras and various elaborations such as
quasi-∗-algebras, O∗-algebras and CQ∗-algebras; see for instance [2, 6, 5, 7]. One major
area of interest in the study of these structures is the representation of one described
axiomatically as a concrete partial algebra of not necessarily bounded operators on a
Hilbert space.

As is the case for C∗-algebras, a partial ∗-algebra with suitable additional structure can
always be represented in this way. Indeed, the proof of this largely follows the classical
GNS construction for C∗-algebras (see [12]), but the partial multiplication means that
the states used to construct the Hilbert space are replaced by more fiddly constructions
called biweights (see [4, 3, 22]) which explicitly involve sesquilinear forms and behave
slightly awkwardly for homomorphisms.

In this article we present an alternative construction. Instead of considering partial
∗-algebras, we remember the domains of unbounded operators on a Hilbert space and
consider algebroids. Doing this carefully, and describing a fair amount of extra structure,
allows us to come up with a representation theory for unbounded operators which again
uses states rather than biweights. The constructions are based on work for C∗-categories
in [13, 19].
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More specifically, we focus on algebroids where the morphism sets are locally convex
vector spaces equipped with an A-bimodule structure, where A is a C∗-algebra, the
objects are arranged in a lattice (inspired by looking at subspaces of a Hilbert space), a
partially defined involution, and the condition that morphisms of the form xx∗, where
x 7→ x∗, have a positive spectrum. We call algebroids with this additional structure
LK∗-algebroids.

We then look at examples of LK∗-algebroids. The primary example is the algebroid
where the objects are all subspaces of a Hilbert space H, and the set of morphisms
from a subspace U to a subspace V consists of all operators with domain U and image
contained in V . We conclude by adapting the GNS construction to prove that for any
LK∗-algebroid there is a faithful functor that respects its structure into the category of
subspaces and operators on a Hilbert space.

2. Locally convex algebroids and further structures

In a small category C, let us write Ob(C) to denote the set of objects, Hom(U, V )C
to denote the set of morphisms from an object U to an object V , and Mor(C) =⋃
U,V ∈Ob(C)Hom(U, V )C to denote the total set of morphisms.

Recall from [17] that a small category C is called a complex algebroid if each morphism
set is a complex vector space, and composition between morphism spaces

Hom(V,W )C ×Hom(U, V )C → Hom(U,W )C

is bilinear.
If V is a real or complex vector space, recall (see [21]) that a seminorm on V is a map

p : X → R such that

• p(x) ≥ 0 for all x ∈ X.
• p(λx) = |λ|p(x) for all x ∈ X and λ ∈ C.
• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

If V has a family {pα | α ∈ A} of seminorms, we equip V with the weakest topology
under which each map x 7→ pα(x − x0) is continuous, where x0 ∈ V and α ∈ A. With
this topology, V is a topological vector space, that is to say the operations of addition
and scalar multiplication are continuous.

A topological vector space where the topology is defined by a family of seminorms is
called a locally convex space. The main property of locally convex spaces that we will
need in these notes is the second geometric form of the Hahn-Banach theorem; again, see
[21] for a proof.

Theorem 2.1. Let V be a real locally convex space. Let A,B ⊆ V be convex, with A
compact, B closed and A∩B = ∅. Then there is a continuous linear map ϕ : V → R and
real numbers α, β ∈ R such that

ϕ(x) ≤ α < β ≤ ϕ(y)

for all x ∈ A and y ∈ B.

Definition 2.2. A complex algebroid C is called a locally convex algebroid if each mor-
phism set is a locally convex vector space, and composition is continuous.

Recall that a lattice is a partially ordered set, (S,≤), where any two elements a, b ∈ S
have a least upper bound, a ∨ b, and a greatest lower bound a ∧ b.

Definition 2.3. We call an algebroid C a lattice algebroid if:

• The set of objects has a partial ordering, ≤, under which it is a lattice.
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• If U ≤ V for objects U and V then there is a canonical monomorphism iU,V : U ↪→
V such that iV,W iU,V = iU,W for all U, V,W ∈ Ob(C).1

• Let V ′ ≤ V and let x ∈ Hom(U, V )C . Let V ′ ≤ V . Then there is an object
x−1[V ′] ≤ U and a morphism x|x−1[V ′] such that iV ′,V x|x−1[V ′] = xix−1[V ′],U .

In a lattice algebroid, let us write U∨V to denote the join of objects U and V , and U∧V
to denote their meet. In terms of arrows, we write U ↪→ V to denote the monomorphism
iU,V when U ≤ V . For morphisms x ∈ Hom(U, V )C and y ∈ Hom(U ′, V ′)C , we write
x ≤ y, and call y an extension of x if U ≤ U ′, and we have an object W such that
V, V ′ ≤W and the morphisms

U
x−→ V ↪→W

and
U ↪→ U ′

y−→ V ′ ↪→W

are equal.
A lattice structure enables us to add morphisms in different morphism sets.

Definition 2.4. Let C be a lattice algebroid. Let x ∈ Hom(U, V )C and y ∈
Hom(U ′, V ′)C . Then we define x + y ∈ Hom(U ∧ U ′, V ∨ V ′)C to be the sum of the
morphisms

U ∧ U ′ ↪→ U
x−→ V ↪→ V ∨ V ′

and
U ∧ U ′ ↪→ U ′

y−→ V ′ ↪→ V ∨ V ′.
We can also compose any two morphisms.

Definition 2.5. Let x ∈ Hom(U, V )C and y ∈ Hom(U ′, V ′)C . Then we define the
product yx to be the composite

x−1[V ∧ U ′]
x|x−1[V∧U′]−→ V ∧ U ′ ↪→ U ′

y−→ V ′.

One warning is that the above product is not, in general, associative. Therefore,
when we can, we avoid it, sticking with the associative composition of morphisms at the
category level.

Definition 2.6. Let C be a locally convex algebroid. A partial involution on C consists
of:

• A set of distinguished objects, Ob(C)0, called the dense objects. We write
Mor(C)0 =

⋃
U∈Ob(C0),V ∈Ob(C)Hom(U, V )C ,

• A function Mor(C)0 →Mor(C)0, written x 7→ x∗

such that:

• For any object U ∈ Ob(C), we have an object V ∈ Ob(C)0 such that U ≤ V .
• If V ≤ W and V is a dense object, then so is W , and for each object U , the

map Hom(U, V )C → Hom(U,W )C defined by the formula x 7→ iV,Wx is a dense
embedding.

• Let x, y ∈ Hom(U, V )C , where U is a dense object. Let α, β ∈ C. Then αx∗ +
βy∗ ≤ (αx+ βy)∗.

• Let x ∈ Hom(U, V )C and y ∈ Hom(V,W )C , where U and V are dense objects.
Then x∗y∗ ≤ (yx)∗.

• Let x ∈Mor(C)0. Then x = (x∗)∗.

A locally convex lattice algebroid with an involution is called a locally convex
∗-algebroid.

1A morphism, i ∈ Hom(U, V )C is a monomorphism if it has the left-cancellation property, that is to
say if ix = iy for x, y ∈ Hom(U ′, U)C , then x = y.
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Note that the lattice structure on C is needed to define the sum of two arbitrary
morphisms, and so used to formulate the first of the above axioms.

Definition 2.7. Let A be a unital C∗-algebra, and let C be a locally convex ∗-algebroid.
An A-bimodule structure on C consists of continuous maps

A×Mor(C)→ C, Mor(C)×A→ C
written simply (a, x) 7→ ax and (x, a) 7→ xa respectively, such that:

• Let a, b ∈ A and x ∈Mor(C). Then (ab)x = a(bx) and x(ab) = (xa)b.
• Let α, β ∈ C. Then (αa+βb)x = α(ax)+β(bx) = (αa)x+(βb)x and x(αa+βb) =
x(αa) + y(βb) = α(xa) + β(xb).

• Let x, y ∈ Hom(U, V )C . Then a(αx + βy) = α(ax) + β(by) and (αx + βy)a =
α(xa) + β(ya).

• If x, y ∈ Mor(C) are composable and a ∈ A, then so are ax and y, and a(xy) =
(ax)y.

• Let x, y ∈ Mor(C) and a ∈ A. Then the morphisms xa and y are composable if
and only if the morphisms x and ay are composable, and (xa)y = x(ay).

• If x, y ∈ Mor(C) are composable and a ∈ A, then so are x and ya, and (xy)a =
x(ya).

• If x ∈Mor(C)0 and a ∈ A, then ax, xa ∈Mor(C)0, and (ax)∗ = x∗a∗ .
• Let 1 ∈ A be the unit. Then 1x = x1 = x.
• Let a ∈ A, and U ≤ V be objects in C. Then aiU,V = iU,V a.

The definition ensures the following is valid for the more general addition and multi-
plication present in a locally convex ∗-algebroid.

Proposition 2.8. Let C be a locally convex ∗-algebroid with an A-bimodule structure.
Let x, y ∈Mor(C) and a ∈ A. Then

a(x+ y) = ax+ ay, (x+ y)a = xa+ ya

and
a(xy) = (ax)y, (xa)y = x(ay), (xy)a = x(ya).

Let C be a locally convex ∗-algebroid with an A-bimodule structure. We say a mor-
phism x ∈ Hom(U, V )C has bounded inverse if we have an element a ∈ A such that
ax = xa = iU,V .

We define the spectrum of T , Spectrum(T ), to be the set of all λ ∈ C such that the
morphism x− λiU,V does not have bounded inverse.

We call an element x ∈ Hom(U, V )C , where U is a dense object, positive if x∗ = x,
and Spectrum(x) ⊆ [0,∞).

Definition 2.9. Let A be a C∗-algebra. An LK∗-algebroid over A is a locally convex
∗-algebroid equipped with an A-bimodule structure such that for each x ∈ Hom(U, V )C
we have that xx∗ is positive.

LK∗-algebroids have a fair amount of structure. An LK∗-functor is a functor between
LK∗-algebroids that preserves all of this structure. Specifically, we have the following.

Definition 2.10. Let A and B be LK∗-algebroids over a C∗-algebra A. A function
γ : A → B is called an LK∗-functor if:

• The map γ : Ob(A) → Ob(B) is order-preserving, and takes dense objects to
dense objects, with γ(U ∨ V ) = γ(U) ∨ γ(V ) and γ(U ∧ V ) = γ(U) ∧ γ(V ).

• For U, V ∈ Ob(A) with U ≤ V , we have γ(iU,V ) = iγ(U),γ(V ).

• Let V ′ ≤ V and let x ∈ Hom(U, V )A. Let V ′ ≤ V . Then γ(x−1[V ′]) =
γ(x)−1[γ(V ′)] and γ(x|x−1[V ′]) = γ(X)|γ(x)−1[γ(V ′)].
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• Each map γ : Hom(U, V )A → Hom(γ(U), γ(V ))B is continuous and linear.
• For each morphism T ∈ Mor(A) and a ∈ A, we have γ(aT ) = aγ(T ), and
γ(Ta) = γ(T )a.

• For any morphism T ∈Mor(A)0 we have γ(T ∗) = γ(T )∗.

The structure we have defined ensures that LK∗-functors preserve the more general
addition and multiplication of morphisms. Specifically, we have the following.

Proposition 2.11. Let γ : A → B be an LK∗-functor. Then for all x, y ∈Mor(A), we
have γ(x+ y) = γ(x) + γ(y) and γ(xy) = γ(x)γ(y).

The following notion is slightly more generaral, though the above proposition still
holds.

Definition 2.12. Let A an LK∗-algebroid over a C∗-algebra A, and B be an LK∗-
algebroids over a C∗-algebra B. A pair (γ, θ), where θ : A → B is an ∗-homomorphism,
and γ : A → B is a function, is called an LK∗-functor if:

• The map γ : Ob(A) → Ob(B) is order-preserving, and takes dense objects to
dense objects, with γ(U ∨ V ) = γ(U) ∨ γ(V ) and γ(U ∧ V ) = γ(U) ∧ γ(V ).

• For U, V ∈ Ob(A) with U ≤ V , we have γ(iU,V ) = iγ(U),γ(V ).

• Let V ′ ≤ V and let x ∈ Hom(U, V )A. Let V ′ ≤ V . Then γ(x−1[V ′]) =
γ(x)−1[γ(V ′)] and γ(x|x−1[V ′]) = γ(X)|γ(x)−1[γ(V ′)].

• Each map γ : Hom(U, V )A → Hom(γ(U), γ(V ))B is continuous and linear.
• For each morphism T ∈ Mor(A) and a ∈ A, we have γ(aT ) = θ(a)γ(T ), and
γ(Ta) = γ(T )θ(a).

• For any morphism T ∈Mor(A)0 we have γ(T ∗) = γ(T )∗.

3. Examples

Let H be a Hilbert space. Let U ⊆ H be a subset, and let T : U → V ⊆ H be a linear
map (not in general bounded); we call a not necessarily bounded linear map an operator.

Let x ∈ H, and define ϕx : U → C by the formula ϕx(y) = 〈x, Ty〉. Set

V ′ = {x ∈ H | ϕy is continuous}.
Then one can show using the Hahn-Banach theorem (see [21]) that if U is dense, then

there is a unique operator T ∗ : V ′ → U ′ ⊆ H such that 〈T ∗x, y〉 = 〈x, Ty〉 for all x ∈ W
and y ∈ V . We call T ∗ the adjoint of T .

Recall that we call an operator T closed if the graph Gr(T ) = {(u, Tu) | u ∈ U} is a
closed subset of H ⊕H. This does not in general imply that U is a closed subset of H;
if this were true, by the closed graph theorem, the operator T would be bounded. See
chapter 10 of [14] for details, where the following is also shown.

Proposition 3.1. Let T : U → V be a closed operator. Then the above domain of the
adjoint, V ′, is a dense subset of H.

In particular, in this case, we can form the second adjoint (T ∗)∗. It turns out that
(T ∗)∗ = T ; again, see [14] for details. The definition of LK∗-categories was motivated
by the following result, which is now straightforward to verify.

Proposition 3.2. Let H be a Hilbert spaces. Let U(H) be the category where the set of
objects is the collection of linear subspaces of H, and the morphisms are closed operators
between them. Let us define a locally convex topology on the space Hom(U, V )U(H) by
the family of seminorms

pM (T ) = sup{〈u, Tv〉 | (u, v) ∈M},
where M is a subset of V × U such that the above supremum is finite.
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Define a partial ordering on Ob(U(H)) by taking subsets, and a lattice structure by
writing U ∧ V = U ∩ V and U ∨ V = U + V . If U ⊆ V , let iU,V be inclusion map
U ↪→ V . If T ∈ Hom(U, V )U(H), and V ′ ⊆ V , let T−1[V ′] = {u ∈ U | T (u) ∈ V ′}, and

let T |T−1[V ′] : T
−1[V ′]→ V ′ be defined by restricting T to this set.

Call U ∈ Ob(U(H)) a dense object if U is a dense subset of H. If T ∈ Hom(U, V )C
for some subspace V , define T ∗ to be the above adjoint.

Finally, let B(H) denote the C∗-algebra of bounded linear operators on H. Then U(H)
is an LK∗-algebroid over B(H).

The locally convex topology described above is typical in the literature on topological
algebras of operators; see for example [15].

Definition 3.3. Let A be a C∗-algebra, and let B be a sub-algebra of A. We call a
subalgebroid, D, of an LK∗-category, C, over A, a sub-LK∗-algeboid over B if:

• The greatest lower and least upper bounds of any two objects in D are also in D.
• Let U ≤ V , where U, V ∈ Ob(D). Then iU,V ∈ Hom(U, V )D.
• Let x ∈ Hom(U, V )D, and let V ′ ∈ Ob(D) be such that V ′ ≤ V . Then x−1[V ′] ∈
Ob(D) and x|x−1[V ′] ∈ Hom(x−1[V ′], V ′)D.

• Each morphism set Hom(U, V )D is a B-bimodule, with operations inherited from
the A-bimodule Hom(U, V )C .

• Let U ∈ Ob(D). Then there is an object V ∈ Ob(D) such that U ≤ V and V is
a dense object in C.

• Let x ∈ Hom(U, V )D, where U is a dense object in C. Then x∗ ∈Mor(D).

Certainly, a sub-LK∗-algebroid over B of an LK∗-algebroid is itself an LK∗-algebroid
with its inherited structure.

Example 3.4. Let H be a Hilbert space, let U ⊆ H be a dense subspace, let V be
another subspace , and let D : U → V be a closed operator. Then we write U∗(D) to
denote the smallest sub-LK∗-algebroid over C of U(H) that contains the objects U and
V and the operator D ∈ Hom(U, V )U∗(D).

Recall (see [13]) that an algebroid C is called a C∗-category if each morphism set is a
Banach algebra, and

• Composition of morphisms satisfies the inequality

‖xy‖ ≤ ‖x‖ · ‖y‖, x ∈ Hom(V,W )C , y ∈ Hom(U, V )C .

• There are conjugate linear maps Hom(U, V )C → Hom(V,U)C , written x 7→ x∗

such that (xy)∗ = y∗x∗ if x and y are composable morphisms, and (x∗)∗ = x for
any morphism x.

• The C∗-identity ‖xx∗‖ = ‖x‖2 holds for any morphism x.
• If x ∈ Hom(U, V )C , then the composite xx∗ is a positive element of the
C∗-algebra Hom(V, V )C .

We call a C∗-category additive if there is a 0 object, 0, and for any two objects U
and V there is a biproduct (in the sense of category theory; see for example [16, 23])
U ⊕ V . As shown in [18], any C∗-category C has an additive completion C⊕. Objects of
the additive completion C⊕ are formal strings

U1 ⊕ U2 ⊕ · · · ⊕ Um, Ui ∈ Ob(C).
Let us write

(U1 ⊕ U2 ⊕ · · · ⊕ Um) ∨ (V1 ⊕ V2 ⊕ · · · ⊕ Vn) = U1 ⊕ U2 ⊕ · · · ⊕ Um ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vn
and let (U1 ⊕ U2 ⊕ · · · ⊕ Um) ∧ (V1 ⊕ V2 ⊕ · · · ⊕ Vn) be the largest string W1 ⊕ · · · ⊕Wr

such that
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• Wi = Uai = Vbi for some ai and bi.
• If i ≤ j, then ai ≤ aj and bi ≤ bj .

If no such string exists, we set (U1 ⊕ U2 ⊕ · · · ⊕ Um) ∧ (V1 ⊕ V2 ⊕ · · · ⊕ Vn) = 0. The
following is then straightforward to check.

Proposition 3.5. Let C be a C∗-category. For U, V ∈ Ob(C⊕), write U ≤ V if U ∨ V =
U . Then, with the above lattice structure on the objects, C⊕ is an LK∗-category in which
every object is dense.

We conclude our examples by looking at how to make new LK∗-categories out of old
ones. The first construction is fairly obvious.

Proposition 3.6. Let A be a C∗-algebra. Let C and D be LK∗-categories over A. Then
we have an LK∗-category C ⊕ D over A where

• Ob(C ⊕ D) is the set of formal pairs U ⊕ U ′ where U ∈ Ob(C) and U ′ ∈ Ob(D).
• Hom(U ⊕ U ′, V ⊕ V ′)C⊕D = Hom(U, V )C ⊕Hom(U ′, V ′)D.

Proof. Say U ⊕ U ′ ≤ V ⊕ V ′ if U ≤ U ′ and V ≤ V ′. Then we have a lattice structure
defined by writing

U ⊕ U ′ ∨ V ⊕ V ′ = (U ∨ V )⊕ (U ′ ∨ V ′), U ⊕ U ′ ∧ V ⊕ V ′ = (U ∧ V )⊕ (U ′ ∧ V ′).

We can write iU⊕U ′,V⊕V ′ = iU,V ⊕ iU ′,V ′ . If x ∈ Hom(U, V ) and y ∈ Hom(U ′, V ′),
with W ≤ V and W ′ ≤ V ′, we can define

(x⊕y)−1[W⊕W ′] = x−1[W ]⊕y−1[W ′], (x⊕y(x⊕y)−1[W⊕W ′] = x|x−1[W ]⊕y|y−1[W ′].

Call U ⊕ U ′ dense if U is dense in C and U ′ is dense in D. Given x ⊕ y ∈ Hom(U ⊕
U ′, V ⊕ V ′)C⊕D, define (x⊕ y)∗ = x∗ ⊕ y∗.

Then the required axioms are easy to check. �

The following is similar.

Proposition 3.7. Let A and B be C∗-algebras. Let C be an LK∗-category over A, and
D be an LK∗-categories over B. Then we have an LK∗-category C⊕D over A⊕B where

• Ob(C ⊕ D) is the set of formal pairs U ⊕ U ′ where U ∈ Ob(C) and U ′ ∈ Ob(D).
• Hom(U ⊕ U ′, V ⊕ V ′)C⊕D = Hom(U, V )C ⊕Hom(U ′, V ′)D.

Finally, let V and W be locally convex vector spaces over C with topologies defined
by the families of seminorms {pa | a ∈ A} and {qb | b ∈ B} respectively. Recall (see for
example [21]) that we can define a family of seminorms {pa ⊗ qb | a ∈ A, b ∈ B} on the
tensor product V ⊗W by the formula

pa ⊗ qb(x) = inf{ n
max
j=1

pa(uj) · qb(vj) | x =

n∑
j=1

uj ⊗ vj}.

We call the locally convex topology on V ⊗W defined by this set of seminorms the
projective topology.

Proposition 3.8. Let C be an LK∗-category over a C∗-algebra A. Let B be another
C∗-algebra. Then we have an LK∗-category C⊗B over A⊗B with objects, dense objects
and lattice structure the same as in C, and morphism sets

Hom(U, V )C⊗B = Hom(U, V )C ⊗B

equipped with the projective topology.
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Proof. We can define an A ⊗ B-bimodule structure on a morphism set Hom(U, V )C⊗B
by writing

(a⊗ b)(x⊗ b′) = ax⊗ bb′, (x⊗ b′)(a⊗ b) = xa⊗ b′b.
If U ∈ Ob(C)0, and x ∈ Hom(U, V )C , b ∈ B, we define (x⊗b)∗ = x∗⊗b∗. The required

axioms are easy to check. �

Example 3.9. Consider the unbounded operator d
dx on L2(R). Then we define the LK∗-

algebroid of differential operators on R, Ψ(R), to be the tensor product

U∗
(
d

dx

)
⊗ C0(R).

The above is a foundation for further examples of LK∗-algebroids of differential ope-
rators.

4. States and representations

Definition 4.1. Let C be an LK∗-algebroid over a C∗-algebra A. Then a representation
of C is an LK∗-functor (ρ, θ) : (C, A)→ (U(H),B(H)) for some Hilbert space H. We call
ρ faithful if it is injective on each morphism set.

The major result of this section is that any LK∗-algebroid has a faithful representation.
This is a generalisation of the corresponding result for C∗-algebras (see [12]) through the
well-known GNS construction. Indeed, the proof is conceptually very similar to the
C∗-algebra result, and its generalisation to C∗-categories in [13, 19]

First of all, let V ∈ Ob(C). Let MV be the direct limit of the locally convex vector
spaces Hom(U, V )C , where U ∈ Ob(C)0, and if U ′ ≤ U , we can identify x ∈ Hom(U, V )C
with xiU ′,U ∈ Hom(U ′, V )C . This limit makes sense, and is a vector space because of
the lattice algebroid structure.

Similarly, if V ≤ V ′, we identify x ∈ Hom(U, V )C with iV,V ′x ∈ Hom(U, V ′)C . Si-
milarly, if U ′ ≤ U , we can identify x ∈ Hom(U, V )C with xiU ′,U ∈ Hom(U ′, V )C . The
following therefore makes sense.

Definition 4.2. Let C be an LK∗-algebroid over a C∗-algebra A. Let V ∈ Ob(C)0. Then
a state on V is a continuous linear map σ : MV → C such that σ(1V ) = 1 for the identity
1V ∈ Hom(V, V )C , and σ(p) ≥ 0 if p ∈MV is positive.

In particular, note that σ(xx∗) ≥ 0 for all x ∈MV .

Proposition 4.3. Let x, y ∈MU . Then σ(xy∗) = σ(yx∗).

Proof. Let λ ∈ C. Then we know that

0 ≤ σ((x+ λy)(x+ λy)∗) = σ(xx∗) + |λ|2σ(yy∗) + λσ(yx∗) + λσ(xy∗).

Now the sum σ(xx∗) + |λ|2σ(yy∗) is a real number so the sum λσ(yx∗) + λσ(xy∗) is
also real. Taking λ = 1, and λ = i, we see, respectively, that

Imσ(yx∗) = − Imσ(xy∗), Re σ(yx∗) = Reσ(xy∗).

The result now follows. �

Proposition 4.4. Let x, y ∈MU . Then

|σ(xy∗)|2 ≤ σ(xx∗)σ(yy∗).

Proof. The result is obvious if σ(xy∗) = 0. So let σ(xy∗) 6= 0. Let λ ∈ R, and define

α =
λσ(xy∗)

|σ(xy∗)|
.
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By the above σ((x+ αy)(x+ αy)∗) ≥ 0, so

λ2σ(yy∗) + 2λ|σ(xx∗)|+ σ(xx∗) ≥ 0

for all λ ∈ R. Consideration of the descriminant of this quadratic yields the desired
result. �

For a state σ on V , set

NV = {x ∈MV | σ(xx∗) = 0}

and let π : MV → MV /NV be the quotient map. Then by the above two propositions,
we have an inner product on the space MV /NN defined by the formula

〈π(x), π(y)〉 = σ(yx∗).

We can complete the quotient space MV /NV to obtain a Hilbert space HV .

Lemma 4.5. Let C be an LK∗-algebroid over a C∗-algebra A. Let V ∈ Ob(C)0. Let σ
be a state on V . Then for all x ∈MV and a ∈ A we have

‖π(xa)‖ ≤ ‖π(x)‖ · ‖a‖.

Proof. Set

b =
aa∗

‖a‖2
.

Then ‖b‖ = 1, so 1− b is positive. Hence, by functional calculus on the C∗-algebra A,
we have c ∈ A such that c2 = 1− b. Observe

(cx)(cx)∗ = x(1− b)x∗

so

σ(x(1− b)x∗) ≥ 0

from which it follows that

σ(xx∗) ≥ σ(xbx∗) = σ

(
xaa∗x∗

‖a‖2

)
and the result follows. �

Similarly

‖π(ax)‖ ≤ ‖a‖ · ‖π(x)‖.
It follows that we have a representation θ : A→ B(HV ) defined by writing

θ(a)(π(x)) = π(ax).

Theorem 4.6. Let C be an LK∗-category over a C∗-algebra A, and let U ∈ Ob(C)0. Let
σ be a state on U . Then there is a representation ρ : C → U(H) for some Hilbert space
H, and an element u ∈ H such that ‖u‖ = 1, and

σ(x) = 〈u, ρ(x)u〉

for all x ∈MU .

Proof. Let U ≤ W . Define a state on V by σW (x) = σ(x|x1[W ]) if x ∈ MW . Then we
can form a Hilbert space HW by the above process. Let H = limU≤W HW . We have a
representation θ : A→ B(H) defined as above.

By the second axiom for the partial involution, for any dense object V , π[MV ] is a
dense subset of H. Let ρ(V ) = π[MV ]. Let x ∈ Hom(V,W )C . Then we have an operator
Mx : π(MV )→ π(MW ) defined by the formula

Mxπ(y) = π(xy).
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Let (un,Mxun) → (u, v) as n → ∞, with respect to the norm on HV ⊕HW defined
by the inner product. Set un = π(yn), u = π(y), and v = π(z). Then we have

(π(yn), π(xyn))→ (π(y), π(z))

as n→∞, that is to say

σ((yn − y)(yn − y)∗)→ 0, σ((xyn − z)(xyn − z)∗)→ 0

as n→∞.
From the first of these and proposition 4.4, we see that σ((xyn−xy)(xyn−xy))∗)→ 0

as n→∞. Combining this with the second of the above limits, we see that xy−z ∈ NV ,
and hence that (u, v) belongs to the graph of Mx. In other words, we have shown that
Mx is a closed operator.

Let 1U ∈ Hom(U,U)C be the identity. Set u = π(1U ). Then

‖u‖2 = σ(1) = 1

and

〈u, ρ(x)u〉 = 〈π(1U ), π(x1U )〉 = σ(x).

It is now routine to check that (ρ, θ) is a represenation of C. �

Lemma 4.7. Let C be an LK∗-category, and let U be a dense object. Let x ∈ MU ,
x 6= 0. Then we have a state, σ, on U such that σ(xx∗) > 0.

Proof. Let M+
U be the set of positive elements of the locally convex vector space MU .

Let MR
U be the smallest real vector space containing M+

U . Then M+
U is a closed convex

subspace of MR
U . Hence, by the second geometric form of the Hahn-Banach theorem, we

have a continuous linear map ϕ : MR
U → R and real numbers α, β ∈ R such that

ϕ(−xx∗) < β < ϕ(y)

for all y ∈M+
U .

Taking y = 0, we see that β < 0, so ϕ(xx∗) > 0. Suppose ϕ(y) < 0 for some y ∈M+
U .

Let λ = β
ϕ(y) > 0. Then λy is positive, and ϕ(λy) = β, which contradicts the above

inequality. Therefore ϕ(y) ≥ 0 for all y ∈M+
U .

Let ψ(z) = 1
ϕ(1)ϕ(z) for z ∈ MR

U . Then ψ(y) ≥ 0 if y is positive, ψ(1) = 1, and

ψ(xx∗) > 0.

Extend ψ to a complex linear functional ψ̃ : MR
U + iMR

U → C by the formula

ψ̃(u+ iv) = ψ(u) + iψ(v).

Then by the Hahn-Banach theorem there is a continuous linear extension σ : MU → C
of ψ̃. By construction, σ is a state with σ(xx∗) > 0. �

Theorem 4.8. Let C be an LK∗-category over a C∗-algebra A. Then we have a faithful
representation (ρ, θ).

Proof. Pick V ∈ Ob(C)0. Let σ be a state on V . Then by the above, we have a repre-
sentation (ρσ, θσ) on a Hilbert space H, and a vector u ∈ H such that

σ(x) = 〈u, ρ(x)u〉

for all x ∈MV .
Let Σ be the set of states on U . Let

ρV = ⊕σ∈Σρσ, θV = ⊕σ∈Σθσ.

Let x ∈ Hom(U, V )C . Then by the above lemma, we have a state σ with σ(xx∗) > 0.
It follows that ρ(x) 6= 0.
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Hence, if we define

ρ = ⊕V ∈Ob(C)0ρV , θ = ⊕V ∈Ob(C)0θV ,
then (ρ, θ) is a faithful representation, and we are done. �
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