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STRONG CONVERGENCE IN TOPOLOGICAL SPACES

MEHMET ÜNVER AND ŞEYHMUS YARDIMCI

Abstract. Study of summability theory in an arbitrary topological space is not

always an easy issue as many of the convergence methods need linear structure in
the space. The concept of statistical convergence is one of the exceptional concepts

of summability theory that can be considered in a topological space. There is a

strong relationship between this convergence method and strong convergence which
is another interesting concept of summability theory. However, dependence of the

strong convergence to the metric, studying similar relationship directly in arbitrary

Hausdorff spaces is not possible. In this paper we introduce a convergence method
which extends the notion of strong convergence to topological spaces. This new

definition not only helps us to investigate a similar relationship in a topological
space but also leads to study a new type of convergence in topological spaces. We

also give a characterization of statistical convergence.

1. Introduction

The classical summability theory, whose main aim is to make a non-convergent se-
quence converge, has been studied mostly in a linear space or in a space that has a group
structure. Since the concept of convergence is one of the main concepts of topology,
study of the summability theory in a topological space is an important subject of func-
tional analysis. Some authors have studied summability theory in a topological space
by assuming either topological space to have a group structure or a linear structure
[1, 2, 3, 4, 5, 6, 7]. However, this assumptions restrict the scope. Therefore introducing
summability methods in a topological space without any linear or group structure has
became a popular problem. One of these methods is statistical convergence that can be
studied in Hausdorff topological spaces without restricting the scope [8, 9, 10, 11]. More
general method in a topological space that is introduced with the help of a probability
distribution defined on the Borel sets of a topological space is distributional convergence
[11, 12].

As the structure of statistical convergence is compatible with topological structure,
i.e., it can be characterized considering the elements of topological base it can be studied
in arbitrary Hausdorff topological spaces whereas similar idea vanishes when the issue
is to study strong convergence whose definition strongly relies on the metric function.
In this paper we study this concept in a topological space by considering a class of
pre-metrics on the space that have some certain properties which are closely related to
elements of topological base.

Let X be a Hausdorff topological space and let A = (ank) be a non-negative regu-
lar summability matrix. Then a sequence x = (xk) in X is said to be A-statistically
convergent to α ∈ X [8, 9, 10] if for any open set U that contains α

lim
n

∑
k:xk 6∈U

ank = 0.
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It is not difficult to see that the definition of A-statistical convergence can be given with
the elements of the base of the topology instead of open sets. Note here that we call a
summability matrix regular when it preserves the limits of the convergent sequences [13].
Considering the base of the usual topology of reals we can easily get the following well-
known definition of the statistical convergence of a real valued sequence [14, 15, 16, 17, 18].
Let x = (xk) be a real sequence and let A = (ank) be a non-negative regular summability
matrix. Then x is said to be A-statistically convergent to the real number L if for any
ε > 0

lim
n

∑
k:|xk−L|>ε

ank = 0.

Let (X, d) be a metric space and let A = (ank) be non-negative regular summability
matrix. Then a sequence x = (xk) in X is said to be A-strongly convergent to α ∈ X
[19, 20, 21, 22] if

lim
n

∑
k

d(xk, α)ank = 0.

2. AT -Strong convergence

The dependence of the definition of strong convergence on the metric functions pre-
vents the concept from being studied in arbitrary topological spaces. Therefore the
well-known relationship [14, 19, 20] between strong convergence and statistical conver-
gence can not be carried to topological spaces directly. However, this relationship is
not basically coming from the usual properties of the metric functions. The motiva-
tion behind the following definition is to consider the necessary properties of the metric
functions to define the concept of strong convergence in topological Lspaces and to get
a similar relationship between this new concept and statistical convergence. Thus, the
study of statistical convergence and more generally the study of summability will be easy
in topological spaces.

Let (X, τ) be a Hausdorff space, let Bα be the family of elements of the base of τ
that contains α ∈ X and let BT (α, ε) := {β ∈ X | T (β, α) < ε}. We denote the set of
functions T : X ×X → [0,∞) that satisfy the following condition with L(X): “For any
ε > 0 and for any α ∈ X there exists Uε ∈ Bα such that Uε ⊂ BT (α, ε)”. Although
any function from L(X) is a pre-metric (see e.g. [23]) on X, the topology τ need not
be pre-metrizable. Here the property that is satisfied by these pre-metrics makes them
somewhat compatible with the topology τ .

Definition 1. Let X be a Hausdorff topological space, let x = (xk) be a sequence in X,
let A = (ank) be a non-negative regular summability matrix and let T ⊂ L(X). Then x
is said to be AT -strongly convergent to point α ∈ X if for any T ∈ T

lim
n

∑
k

T (xk, α)ank = 0,

where we assume that the series is convergent for each positive integer n.

The classical strong convergence method is regular due to the regularity of the ma-
trix. As T ⊂ L(X) and the matrix is regular it is not difficult to see that AT -strong
convergence is regular. Besides, the metric on a metrizable topological space X belongs
L(X).

The following example illustrates a CT -strongly convergent sequence in a non-metrizable
Hausdorff space where C = (cnk) is the well known Cesàro matrix defined by cnk = 1

n if
k ≤ n and zero otherwise.
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Example 1. Let τL be the lower limit topology on the set of all real numbers R. It
is known that (R, τL) is not metrizable but it is a Hausdorff space [24]. Consider the
sequence x = (xk) defined by

xk =

{
0, k is a perfect square,
1, otherwise

and consider the family of functions T = {Tr}r≥0 defined for any r ≥ 0 that

Tr(x, y) =

{
x− y, x ≥ y,
r, x < y.

Let Tr ∈ T . For any ε > 0 and for any α ∈ X if we consider Uε = [α, α + ε) ∈ Bα then
for all β ∈ B(ε) we have T (β, α) = β − α < ε. Thus T ⊂ L(X). On the other hand it is
easy to see that x is not convergent in the corresponding topology whereas for any r ≥ 0
we get that

lim
n

∑
k

T (xk, 1)cnk = lim
n

1

n

∑
1≤k≤n
k=j2

r = 0,

which proves that x is CT -strongly convergent to 1.

It is known that in metric spaces if a sequence is A-strongly convergent then it is
A-statistically convergent and if it is bounded and A-statistically convergent then it is
A-strongly convergent [14]. Thus, these two concepts are equivalent over the space of
all bounded sequences. Moreover Khan and Orhan [25] have characterized the A-strong
convergence of a sequence by proving “a real sequence is A-strongly convergent to zero
if and only if it is A-statistically convergent to zero and A-uniformly integrable”. Note
that a real sequence is said to be A-uniformly integrable if

lim
c→∞

sup
n

∑
|xk|>c

|xk| ank = 0,

where A = (ank) is a non-negative regular summability matrix [25].
In this section we extend the mentioned strong relation of the concepts of A-statistical

convergence and A-strong convergence to the Hausdorff topological spaces. Let (X, τ) be
a Hausdorff space. We denote the set of functions T : X ×X → [0,∞) that satisfy the
following condition with Q(X): “For all α ∈ X and for all B ∈ Bα there exists M > 0
such that for all β 6∈ B, T (β, α) > M”.

Theorem 1. Let X be a Hausdorff topological space, let A = (ank) be a non-negative
regular summability matrix and let T ⊂ L(X). Then
i) If x is an AT -strongly convergent sequence to α in X and if T ∩Q(X) 6= ∅ then x is
A-statistically convergent to α.
ii) If x = (xk) is an A-statistically convergent to α in X and if

(2.1) sup
T∈T

sup
k
T (xk, α) <∞,

then x is AT -strongly convergent to α.

Proof. i) Let x be a sequence in X that is AT -strongly convergent to α, let B ∈ Bα and
let T0 ∈ T ∩ Q(X). Then there exists M > 0 such that for all β 6∈ B, T0(β, α) > M .
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Now as T0 is non-negative we have∑
k

T0(xk, α)ank =
∑

k:xk 6∈B

T0(xk, α)ank +
∑

k:xk∈B

T0(xk, α)ank

≥
∑

k:xk 6∈B

T0(xk, α)ank

≥M
∑

k:xk 6∈B

ank.

Thus we get

0 ≤
∑

k:xk 6∈B

ank ≤
1

M

∑
k

T0(xk, α)ank.

Since B is an arbitrary element of the topological base the last inequality implies x is
A-statistically convergent to α.
ii) Suppose that x is A-statistically convergent to α and (2.1) holds. Let T be an
arbitrary element of T . Then for any ε > 0 there exists B ∈ Bα such that for all β ∈ B,
T (β, α) < ε. Thus one can get

(2.2)

0 ≤
∑
k

T (xk, α)ank

=
∑

k:xk 6∈B

T (xk, α)ank +
∑

k:xk∈B

T (xk, α)ank

≤ sup
T∈T

sup
k
T (xk, α)

∑
k:xk 6∈B

ank + ε
∑
k

ank.

Since A is regular and T is arbitrary, (2.2) implies that x is AT -strongly convergent to
α. �

Remark 1. Note that the family T in Example 1 is a subfamily of Q(X). To see that
let Tr ∈ T , α ∈ R and let B ∈ Bα. Then the most general form of B is like [α, γ). Thus
we have for any β 6∈ B that Tr(β, α) > min {r/2, T (γ, α)/2} . Therefore, considering
Theorem 1 one can have that the sequence x = (xk) in Example 1 is CT -statistically
convergent to one.

On the other hand the family of functions T = {Tr}r≥0 defined for any r ≥ 0 by

Tr(x, y) =

{
x− y, x ≥ y,

1
r+1 , x < y

is a subfamily of L(X)∩Q(X) that satisfies (2.1). In fact, sup
r≥0

sup
k
Tr(xk, 1) = 1.

Consider a metric space (X, d). As d ∈ L(X)∩Q(X), considering T = {d} we see that
any bounded sequence satisfies (2.1). Thus we obtain the following corollary immediately:

Corollary 1. Let (X, d) be a metric space and let A = (ank) be a non-negative regular
summability matrix. Then
i) If a sequence in X is A-strongly convergent to point α ∈ X then it is A-statistically
convergent to α.
ii) If a bounded sequence in X is A-statistically convergent to point α ∈ X then it is
A-strongly convergent to α.

We remark again here that Corollary 1 is a well-known result of summability theory
(see e.g [14]).

As mentioned before the concept of strong convergence is characterized with the help
of the concept of uniform integrability. However, in arbitrary topological spaces the
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idea can not be conducted in a similar way. Following theorem generalizes this idea in
topological spaces. In the theorem we use a condition which is similar to the concept of
(an,k)-compactly uniform integrability of [26].

Theorem 2. Let X be a Hausdorff topological space, let A = (ank) be a non-negative
regular summability matrix and let T ⊂ L(X)∩Q(X).
i) If a sequence x = (xk) in X is AT -strongly convergent to α ∈ X then for any T ∈ T
and for any ε > 0 there exists a compact subset KT of X such that

sup
n

∑
xk 6∈KT

T (xk, L)ank < ε

holds.
ii) If a sequence x = (xk) in X is A-statistically convergent to α ∈ X and if for any
ε > 0 and for any T ∈ T there exists a compact subset K of X such that

sup
n

∑
xk 6∈K

T (xk, L)ank < ε

holds and for any compact subset E of X and T ∈ T there exists M > 0 such that
sup
xk∈E

T (xk, α) < M then x is AT -strongly convergent to α.

Proof. i) Assume that x is AT -strongly convergent to α. Then for any given T ∈ T and
for any given ε > 0 there exists n0(T, ε) such that

(2.3)
∑
k

T (xk, α)ank < ε,

whenever n > n0. As the series are convergent, for n = 1, 2, . . . , n0 there exists k0(T )
such that ∑

k>k0

T (xk, α)ank < ε.

Now consider the compact subset KT = {x1, x2, . . . , xk0} . Then it is obvious that for
any n = 1, 2, . . . , n0

(2.4) 0 ≤
∑

xk 6∈KT

T (xk, α)ank ≤
∑
k>k0

T (xk, α)ank < ε.

Thus from (2.3) and (2.4) we get that

sup
n

∑
xk 6∈KT

T (xk, L)ank < ε.

ii) Let x = (xk) be a sequence in X that is A-statistically convergent to α, let ε > 0 and
let T ∈ T . From the hypothesis there exists a compact subset K of X such that

sup
n

∑
xk 6∈K

T (xk, L)ank < ε/2

and there exists M > 0 such that sup
xk∈K

T (xk, α) < M . On the other hand as T ∈ L(X)

there exists Uε ∈ Bα such that Uε ⊂ BT (α, ε/2). Now one can write for any positive
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integer n that∑
xk∈K

T (xk, α)ank ≤
∑

xk∈K∩Vε

T (xk, α)ank +
∑

xk∈K\Uε

T (xk, α)ank

≤ ε

2

∑
k

ank + sup
xk∈K

T (xk, α)
∑
xk 6∈Uε

ank

<
ε

2

∑
k

ank +M
∑
xk 6∈Uε

ank.

Clearly this implies∑
k

T (xk, α)ank ≤
∑
xk∈K

T (xk, α)ank +
∑
xk 6∈K

T (xk, α)ank

≤ ε

2

∑
k

ank +M
∑
xk 6∈Vε

ank + sup
n

∑
xk 6∈K

T (xk, α)ank

<
ε

2

∑
k

ank +M
∑
xk 6∈Uε

ank + ε/2.

Now from the A-statistical convergence of x and the last inequality we have

0 ≤ lim sup
n

∑
k

T (xk, α)ank < ε.

Since ε > 0 is arbitrary we get

lim
n

∑
k

T (xk, α)ank = 0.

Therefore, x is AT -strongly convergent to α. �

Remark 2. Let (X, ‖‖) be a finite dimensional normed space and let A = (ank) be a
non-negative regular summability matrix. If x = (xk) is a bounded sequence in X then
it is obvious that

sup
n

∑
xk 6∈K

‖xk − α‖ ank = 0,

where K =

{
x ∈ X : ‖x‖ ≤ sup

k
‖xk‖

}
. Note that K is compact. On the other hand, we

get for any compact subset E of X that

sup
xk∈E

‖xk − α‖ ≤ ‖α‖+ sup
k
‖xk‖ .

Considering T = {‖.‖} all these imply that Corollary 1 is a consequence of Theorem 2
whenever the space is finite dimensional normed space. Here opposite to the classical
case Theorem 1 can not be obtained from Theorem 2 in arbitrary Hausdorff spaces as

for given T ∈ T the set

{
x ∈ X : T (x, α) ≤ sup

T∈T
sup
k
T (xk, α)

}
does not have to be even

compact. Note also that last theorem is a generalization of Theorem 2.1 of [25] for
sequences in the topological spaces. For the sake of completeness we give the sketch of
proof of that result with the help of Theorem 2.

Corollary 2. A real sequence is A-strongly convergent to zero if and only if it is A-
statistically convergent to zero and A-uniformly integrable.

Proof. Note that we study in the usual topology of real numbers and so we consider
the absolute value metric. If x is A-strongly convergent to zero then it is A-statistically
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convergent to zero. Considering T = {|.|}, from Theorem 2 for any ε > 0 there exists a
compact subset K of R such that

sup
n

∑
xk 6∈K

|xk| ank < ε.

As K is bounded there exists c0 > 0 such that K ⊂ [−c, c] whenever c > c0. Thus we
can write

sup
n

∑
|xk|>c

|xk| ank ≤ sup
n

∑
xk 6∈K

|xk| ank < ε.

As c0 = c0(ε) the last inequality implies that

lim
c→∞

sup
n

∑
|xk|>c

|xk| ank = 0.

Conversely if x is A-uniformly integrable then for any ε > 0 there exists c0 > 0 such that

sup
n

∑
|xk|>c

|xk| ank < ε,

whenever c > c0 which implies

sup
n

∑
xk 6∈K

|xk| ank < ε,

where K = [−c, c]. On the other hand for any compact subset E of R it is obvious that
sup
xk∈E

|xk| <∞. Now if we consider this fact together with the compactness of K one can

get from Theorem 2 that x is A-strongly convergent to zero. �

The final theorem of this chapter is a characterization of statistical convergence.

Theorem 3. Let X be a Hausdorff topological space, let A = (ank) be a non-negative
regular summability matrix, let T ∈ L(X)∩Q(X) and let x = (xk) be a sequence in X.
Then x is A-statistically convergent to α ∈ X if only if

(2.5) lim
n

∑
k

T (xk, α)

1 + T (xk, α)
ank = 0.

Proof. Assume that x is A-statistically convergent to α and let ε > 0. As T ∈ L(X)
there exists Uε ∈ Bα such that Uε ⊂ BT (α, ε). Then we have∑

k

T (xk, α)

1 + T (xk, α)
ank =

∑
xk 6∈Uε

T (xk, α)

1 + T (xk, α)
ank +

∑
xk∈Uε

T (xk, α)

1 + T (xk, α)
ank

≤
∑
xk 6∈Uε

ank + ε
∑
xk∈Uε

ank

≤
∑
xk 6∈Uε

ank + ε.

Therefore (2.5) holds.
Conversely, assume that (2.5) holds and let B ∈ Bα. Since T ∈ Q(X) there exists

M > 0 such that for all β 6∈ B, T (β, α) > M . Thus one can get∑
xk 6∈B

ank ≤
1 +M

M

∑
xk 6∈B

T (xk, α)

1 + T (xk, α)
ank

≤ 1 +M

M

∑
k

T (xk, α)

1 + T (xk, α)
ank,

which finishes the proof. �
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We obtain the following characterization of statistical convergence of real sequences
immediately.

Corollary 3. Let x = (xk) be a real sequence and let A = (ank) be a nonnegative regular
summability matrix. Then x is A-statistically convergent to real number L if and only if

lim
n

∑
k

|xk − L|
1 + |xk − L|

ank = 0.

3. Conclusion

Study of summability theory in topological spaces is an interesting subject of func-
tional analysis. However, it is not an easy issue to study summability in topological
spaces due to the lack of linearity. Even so there are some summability methods that
can be defined in topological spaces. One of these methods is statistical convergence
whose definition mainly depends on the base of the topology. Considering strong con-
vergence in metric spaces some well known necessary conditions and sufficient conditions
for statistical convergence have been obtained by several authors. In this paper we de-
fine a convergence method, AT -strong convergence, which is a generalization of strong
convergence in topological spaces via a class of particular functions. We obtain some
relationships between statistical convergence and AT -strong convergence similar to the
classical case. Finally, using a function of this particular class we obtain a new charac-
terization of statistical convergence.
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