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ERGOREGIONS BETWEEN TWO ERGOSPHERES

GREGORY ESKIN AND MICHAEL A. HALL

In blessed memory of Miroslav L’vovich Gorbachuk

Abstract. For a stationary spacetime metric, black holes are spatial regions out of
which disturbances do not propagate. In our previous work an existence and regu-
larity theorem was proven for black holes in two space dimensions, in the case where

the boundary of the ergoregion is a simple closed curve surrounding a singularity.
In this paper we study the case of an annular ergoregion, whose boundary has two
components.

1. Introduction

On R
1+2 ∼= R

1
t × R

2
x, let g be a stationary pseudo-Riemannian (Lorentzian) metric

with signature (+1,−1,−1), and consider the associated wave equation �gu = 0.
As we take the general point of view of analogue spacetimes, we largely ignore issues of

coordinate invariance, working in the global system of coordinates (t, x). For convenience
we sometimes write t = x0, x = (x1, x2), and denote the corresponding components of
the metric gij = gij(x), 0 ≤ i, j ≤ 2. Here, the assumption that g is stationary means
these depend only on x. Inverting the matrix of the gij gives the components of the
inverse metric, gij = gij(x). We assume g00(x) > 0 for all x, which corresponds to the
natural time orientation.

The wave equation is then

(1.1) �gu =

2
∑

i,j=0

1
√

|g(x)|
∂xi [

√

|g(x)|gij(x)∂xju] = 0,

where |g(x)| = | det[gij ]2i,j=0|.
Denote by Ω the ergoregion, which is the set of x ∈ R

2 where g00(x) < 0, i.e. ∂t is not
timelike. In other words, the ergoregion is the region where the spatial part of the wave
operator is not elliptic. Note that by Cramer’s rule and our sign conventions we have
g00(x) = g00(x)∆(x), where ∆ = g11g22 − (g12)2 and g00(x) > 0, so Ω = {∆(x) < 0}.

In [4] we discussed the case of an ergosphere surrounding a singularity. In this paper
we consider the case of an annular domain Ω, i.e. one whose boundary ∂Ω = {∆(x) =
0} consists of two nested Jordan curves, each of which is smooth in the sense that
∂∆/∂x 6= 0 when ∆ = 0. Informally we say that there are “two ergospheres”. Assume
the components of the metric g are defined in a fixed spatial neighborhood of Ω.

1.1. Examples of spacetimes with two ergospheres. An example of a metric in
three space dimensions having two ergospheres is the celebrated Kerr metric, which we
will write in Kerr-Schild coordinates [7], [12], [13].

The Hamiltonian in cylindrical coordinates (ρ, ϕ, z) is given by

H = τ2 − ξ2ρ − ( 1
ρ
ξϕ)

2 − ξ2z +K(−τ + b̂ · ξ̂)2,(1.2)
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where ξ̂ = (ξρ,
1

ρ
ξϕ, ξz), b̂ = (bρ, bϕ, bz), with

K = K(ρ, z) =
2mr3

r4 + a2z2
, bρ =

ρr

r2 + a2
, bϕ =

aρ

r2 + a2
, bz =

z

r
.(1.3)

Here r is defined by the relation

ρ2

r2 + a2
+

z2

r2
= 1.(1.4)

Therefore note that b2ρ + b2ϕ + b2z = 1.
For the Kerr metric it is well known that there are two ergospheres called the outer

ergosphere and inner ergosphere, which occur where K = 1. There are also outer and
inner horizons given by the equations r = r± = m±

√
m2 − a2, assuming 0 < a < m.

Two examples of 2+1 spacetimes with two ergospheres may be obtained by reduction
from the 3+1 dimensional Kerr metric:

• Set z = 0 and ξz = 0 to obtain the Hamiltonian

H1 = τ2 − ξ2ρ − ( 1
ρ
ξϕ)

2 +K(−τ + bρξρ + bϕ(
1

ρ
ξϕ))

2,(1.5)

where K = 2m
r

= 2m√
ρ2−a2

. This corresponds to the equatorial plane of the Kerr

metric.
• Since the Kerr Hamiltonian H is independent of ϕ, we have that ξϕ is constant.

If we set ξϕ = 0, then we obtain the Hamiltonian

H2 = τ2 − ξ2ρ − ξ2z +K(−τ + bρξρ + bzξz)
2(1.6)

This corresponds to a reduction by rotational symmetry.

Related to the first situation we consider so-called acoustic metrics with Hamiltonians

H =
(

τ +Aξρ +B( 1
ρ
ξϕ)

)2

− ξ2ρ − ( 1
ρ
ξϕ)

2(1.7)

with A = A(ρ), B = B(ρ) (cf [11], [4]). Here the ergosphere is where A2 + B2 = 1, and
we consider the case where the ergoregion in an annular domain between ρ = ρ− and
ρ = ρ+.

Another example is the optical (Gordon) metric [8], [5], whose inverse metric tensor
has components

gij = ηij + (n(x)2 − 1)uiuj ,

where ηij is the inverse of the Minkowski metric tensor with signature (+1,−1,−1);
n(x) is the index of refraction, which describes the propagation of light in a moving

dielectric; (u0, u1, u2, u3) = (1 − |w|2
c2

)(1, w
c
) is the 4-velocity of the medium flow, with

w(x) = (w1, w2, w3) the velocity of the dielectric; and c is the speed of light in a vacuum.
The Gordon Hamiltonian is given by

H = τ2 −∑3

j=1
ξ2j + (n(x)2 − 1)

(

∑3

j=1
ujξj

)2

.(1.8)

The plan of the paper is as follows. In Section 2 we review the role of so-called ‘zero-
energy’ null geodesics. In Section 3 we analyze the first example above of a reduction of
the Kerr metric. In Section 4 we generalize the results of Section 3 to the case of acoustic
metrics.

In Section 5, we study acoustic metrics where we allow double roots and more than two
horizons. In Section 6, we prove some results for a general metric on a 2+1 dimensional
spacetime with two ergospheres, and we describe the behavior of the zero energy null
geodesics. In Section 7 we study the case where both ergospheres are also horizons.
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2. Zero energy null geodesics in the ergoregion

On the cotangent space T ∗
R

1+2 we use global coordinates (t, x, τ, ξ), often denoting
t = x0, x = (x1, x2), τ = ξ0, and ξ = (ξ1, ξ2).

As in the analysis of [2], [4], the main idea will be to analyze the dynamics of the
zero energy null geodesics. Recall that for a point x ∈ Ω, the forward light-cone at x
consists of null-bicharacteristics with increasing t. Its spatial projection is a cone based at
x ∈ R

2, whose edges correspond to null-bicharacteristics with τ = 0 (thus ‘zero energy’).
These edges may be described by pair of smooth, autonomous vector fields X± = X±(x),
x ∈ Ω, which give the corresponding null-geodesic flow parameterized by t.

Explicitly, let σ(x, ξ) =
∑2

i,j=0
gij(x)ξiξj be the symbol of �g, and consider a general

bicharacteristic curve (x, ξ) = (x(t), ξ(t)) ∈ T ∗
R

1+2, parameterized by t, i.e.

dxi

dt
=

∂ξiσ(x, ξ)

∂τσ(x, ξ)
=

∑2

j=0
2gij(x)ξj

∑2

j=0
g0j(x)ξj

,

dξi
dt

=
∂xiσ(x, ξ)

∂τσ(x, ξ)
=

∑2

i,j=0
∂xigij(x)ξiξj

∑2

j=0
g0j(x)ξj

.

(2.1)

Note that as the metric is stationary, ξ0 = τ is constant. Then for a null-bicharacteristic
with τ = 0 we have the characteristic equation

2
∑

i,j=1

gij(x)ξiξj = 0.(2.2)

We may solve for ξ1 to obtain ξ1 = −g12±
√
−∆

g11 ξ2, and substituting this relation and τ = 0

into the above, we obtain

dxi

dt
= 2

gi1−g12±
√
−∆

g11 + gi2

g01−g12±
√
−∆

g11 + g02
= 2

g11gi2 − g12gi1 ± gi1
√
−∆

g11g02 − g12g01 ± g01
√
−∆

=: X±,i(x).(2.3)

Note that the choice of sign is arbitrary, but we may make a consistent choice throughout
the ergoregion. To analyze the examples introduced in Section 1, we will study the
dynamics of the vector fields X±.

We recall from the analysis of [4] the following fact:

Lemma 2.1. If γ is a limit cycle for one of the vector fields X±, then γ is a horizon.

3. The case of the equatorial plane for the Kerr metric

We consider our first example of a 2+1 spacetime obtained by reduction from the Kerr
metric. Recall that we set z = 0 and ξz = 0 to obtain the Hamiltonian

H = τ2 − ξ2ρ − ( 1
ρ
ξϕ)

2 +K(−τ + bρξρ + bϕ(
1

ρ
ξϕ))

2,(3.1)

where K = 2m
r

= 2m√
ρ2−a2

. We consider the region a < ρ <
√
4m2 + a2.

We calculate

1

2
Hτ = τ −K(−τ + bρξρ + bϕ(

1

ρ
ξϕ)),

1

2
Hξρ = −ξρ +K(−τ + bρξρ + bϕ(

1

ρ
ξϕ))bρ,

1

2
Hξϕ = − 1

ρ
( 1
ρ
ξϕ) +K(−τ + bρξρ + bϕ(

1

ρ
ξϕ))(

1

ρ
bϕ)
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and therefore the zero energy null geodesic flow is given by

dρ

dt
=

−ξρ +K(bρξρ + bϕ(
1

ρ
ξϕ))bρ

−K(bρξρ + bϕ(
1

ρ
ξϕ))

,

dϕ

dt
=

− 1

ρ
( 1
ρ
ξϕ) +K(bρξρ + bϕ(

1

ρ
ξϕ))(

1

ρ
bϕ)

−K(bρξρ + bϕ(
1

ρ
ξϕ))

.

(3.2)

The characteristic equation is

(Kb2ρ − 1)ξ2ρ + 2Kbρbϕξρ(
1

ρ
ξϕ) +K(b2ϕ − 1)( 1

ρ
ξϕ)

2 = 0.(3.3)

Solving for ξρ in terms of ξϕ yields

ξρ =
−Kbρbϕ ±

√

K2b2ρb
2
ϕ − (Kb2ρ − 1)(Kb2ϕ − 1)

Kb2ρ − 1
( 1
ρ
ξϕ)

=
−Kbρbϕ ±

√

K(b2ρ + b2ϕ)− 1

Kb2ρ − 1
( 1
ρ
ξϕ).

(3.4)

The equation for zero energy null bicharacteristics becomes

dρ±

dt
=

±(Kb2ρ − 1)
√

K(b2ρ + b2ϕ)− 1

∓Kbρ
√

K(b2ρ + b2ϕ)− 1−Kbϕ
.(3.5)

The (+) family are the solutions for the positive square root in (3.4), and similarly
for the (−) family.

Theorem 3.1. The (+) family produces two horizons, while the (−) family does not

produce any.

Proof. With the (+) family, the denominator of (3.5) does not vanish, while the numer-
ator is zero when Kb2ρ − 1 = 0. Since we have K = 2m

r
, bρ = r

ρ
, this happens when

r = m±
√
m2 − a2. These zeros are limiting cycles, and the limiting cycle is an horizon

in each case.
With the (−) family, since the denominator vanishes we reorganize (3.5) to get

dρ−

dt
=

−
√

K(b2ρ + b2ϕ)− 1(Kbρ
√

K(b2ρ + b2ϕ)− 1 +Kbϕ)

K2(b2ρ + b2ϕ)
,(3.6)

which is negative everywhere in the ergoregion. Thus ρ−(t) is strictly decreasing, and
there is no horizon generated by the (−) family. �

4. Acoustic metrics I

We consider a metric of the form

H = (τ +Aξρ +B( 1
ρ
ξϕ))

2 − ξ2ρ − ( 1
ρ
ξϕ)

2(4.1)

with A = A(ρ), B = B(ρ). The ergospheres are where A2 + B2 = 1. We assume that
this happens at ρ = ρ− and ρ = ρ+, and that A2 +B2 > 1 on the interval ρ ∈ (ρ−, ρ+).

We calculate
1

2
Hτ = (τ +Aξρ +B( 1

ρ
ξϕ)),

1

2
Hξρ = (τ +Aξρ +B( 1

ρ
ξϕ))A− ξρ,

1

2
Hξϕ = (τ +Aξρ +B( 1

ρ
ξϕ))

1

ρ
B − 1

ρ
( 1
ρ
ξϕ).

(4.2)
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Thus for τ = 0

dρ

dt
=

(Aξρ +B
ξϕ
ρ
)A− ξρ

Aξρ +B
ξϕ
ρ

,

dϕ

dt
=

(Aξρ +B
ξϕ
ρ
)B
ρ
− ξϕ

ρ2

Aξρ +B
ξϕ
ρ

.

(4.3)

We get the characteristic equation

(A2 − 1)ξ2ρ + 2ABξρ(
1

ρ
ξϕ) + (B2 − 1)( 1

ρ
ξϕ)

2 = 0,

which leads to

ξρ =
−AB ±

√
A2 +B2 − 1

A2 − 1
( 1
ρ
ξϕ).(4.4)

We assume there are two values ρ = ρi, i = 1, 2, such that ρ− < ρ1 < ρ2 < ρ+ and
A(ρi) = −1, and we then claim that these are the horizons.

Let start with the case when A < 0 and B > 0. Substituting (4.4) into (4.3), we get

dρ+

dt
=

(A2 − 1)
√
A2 +B2 − 1

A
√
A2 +B2 − 1−B

,

dϕ+

dt
=

1

ρ
·
√
A2 +B2 − 1(AB −

√
A2 +B2 − 1)

A
√
A2 +B2 − 1−B

(4.5)

and

dρ−

dt
=

A(A2 +B2 − 1)−B
√
A2 +B2 − 1

A2 +B2
,

dϕ−

dt
=

1

ρ
·
√
A2 +B2 − 1(−AB −

√
A2 +B2 − 1)

−A
√
A2 +B2 − 1−B

=
1

ρ
· (A

√
A2 +B2 − 1−B)(B2 − 1)

(−AB +
√
A2 +B2 − 1)(A2 +B2)

.

(4.6)

To derive the above we use that

(A
√

A2 +B2 − 1−B)(−A
√

A2 +B2 − 1−B) = −(A2 +B2)(A2 − 1),

(−AB +
√

A2 +B2 − 1)(−AB −
√

A2 +B2 − 1) = (A2 − 1)(B2 − 1).
(4.7)

Theorem 4.1. Suppose A < 0 and B > 0. Then the (+) family generates two horizons

at ρ = ρ1 and ρ = ρ2, while the (−) family generates no horizons.

The proof is the same as the proof of Theorem 3.1, with the horizons ρ = ρ1, ρ = ρ2
generated by the (+) family when A(ρ1) = A(ρ2) = −1, and no horizons generated by
the (−) family.

Consider now the case when A < 0 and B < 0. Then analogous to (4.6), (4.7) we
obtain

dρ+

dt
=

A(A2 +B2 − 1) +B
√
A2 +B2 − 1

A2 +B2
,

dϕ+

dt
=

1

ρ
· (A

√
A2 +B2 − 1 +B)(B2 − 1)

(−AB −
√
A2 +B2 − 1)(A2 +B2)

(4.8)



ERGOREGIONS BETWEEN TWO ERGOSPHERES 103

and

dρ−

dt
=

−(A2 − 1)
√
A2 +B2 − 1

−A
√
A2 +B2 − 1−B

,

dϕ−

dt
=

1

ρ
· −AB

√
A2 +B2 − 1− (A2 +B2 − 1)

−A
√
A2 +B2 − 1−B

.

(4.9)

Thus we have:

Theorem 4.2. Suppose A < 0 and B < 0. Then the (+) family generates no horizons

since dρ+

dt
< 0 on (ρ−, ρ+), while the (−) family generates two horizons at ρ = ρi, i = 1, 3

where A(ρ1) = A(ρ2) = −1.

In the case when A < 0 and B changes sign between the two roots of A = −1, we
have:

Theorem 4.3. Suppose A(ρ1) = A(ρ2) = −1 and ρ0 ∈ (ρ1, ρ2) is such that B(ρ0) = 0,
with B(ρ) > 0 when ρ < ρ0 and B(ρ) < 0 when ρ > ρ0. Then the (+) family produces

one horizon, and the (−) family also produces one horizon.

Proof: Split into the intervals (ρ−, ρ0) and (ρ0, ρ+). Each subinterval contains one
root of A = −1. By the analysis in Theorem 4.1 the (+) family generates an horizon in
the first subinterval while the (−) family does not, and by the analysis in Theorem 4.2
the (−) family generates an horizon in the second subinterval while the (+) family does
not. This proves Theorem 4.3.

5. Acoustic metrics II

In this section we wish to consider cases when A = −1 has more than two roots, or
when it has roots of higher multiplicity.

Example 5.1. The case when a = m is called the extremal Kerr metric. In this case the
outer and inner horizons coincide in a single horizon r = m.

More generally consider the case when A = −1 has a double root A(ρ1) = −1, A′(ρ1) =
0, with say A′′(ρ1) > 0. A(ρ) + 1 = C(ρ)(ρ− ρ1)

2, C(ρ) > 0. Suppose B > 0.
We have that for equation (4.5), ρ+(t) ≡ ρ1 is a solution and therefore a horizon. Also

dρ+

dt
> 0 when ρ 6= ρ1, so ρ+(t) will spiral toward ρ1 from below as t → +∞, or from

above when t → −∞. Note that when ρ approaches ρ1, the trajectory spirals as a power
instead of logarithmically as in the case of a simple root.

Now consider the case when A = −1 has more than two simple roots. There must be
an even number 2m roots ρ1, ρ2, . . . , ρ2m−1, ρ2m.

Take ρj , ρj+1. If B > 0 on [ρj , ρj+1] then this is the same as the case of Theorem
4.1, so ρ = ρj , ρ = ρj+1 are horizons coming from the (+) family, while there are no
horizons from the (−) family in this interval. If B < 0 then as in Theorem 4.2 ρ = ρj ,
ρ = ρj+1 are horizons from the (−) family while there are none for the (+) family. If
B changes sign then one of ρ = ρj , ρ = ρj+1 is a horizon from the (+) family, and the
other a horizon from the (−) family as in Theorem 4.3.

If A is always positive, we have the same picture when A(ρ) = 1, and the horizons are
white.

Remark 5.2. Note that our definition of a horizon is local. We say that a horizon is a
black hole horizon if null geodesics cannot move from inside to outside, and a white hole
horizon if they cannot move from outside to inside.
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6. The general case

In this section we obtain several results in the general case. As in Section 2 we consider
a general metric g and we assume there are two ergospheres Γ1 and Γ2.

We assume the boundary is never characteristic, so that the (+) and (−) families are
transversal to the boundary. It follows from transversality that as t increases one family
starts on each Γi and the other ends, i = 1, 2.

We have all permutations of (+) and (−) starting and ending on Γ1 and Γ2. For
concreteness assume (+) starts on Γ1 and (−) ends there. For Γ2, we can have that (+)
starts and (−) ends, or the opposite.

Let (+) starts on both Γ1 and Γ2. Then any (+) trajectory starting on Γ1 cannot end
on Γ2. Thus by the Poincaré-Bendixson theorem (cf. [6]), it approaches some limit cycle
γ+
1 , which must be a horizon by Lemma 2.1. Also any (+) trajectory starting on Γ2

approaching some limit cycles γ+
2 . Note γ+

1 and γ+
2 may coincide. Similarly if (−) family

ends both on Γ1 and Γ2 there is at least one limiting cycle belonging to (−) family. Thus
we get

Theorem 6.1. Suppose one of the families starts on both Γ1 and Γ2. Then to each of

the (+) and (−) families corresponds at least one event horizon.

In the case where (+) starts on Γ1 and ends on Γ2 one can not make a definite
conclusion: it may be no event horizons produced by either family, or it may be some.
The situation could be as in Section 4.

The total contribution is the sum of the contributions of the (+) and (−) family.
Thus, we have

Theorem 6.2. If the (+) family starts on one ergosphere and ends on the other, then it

may be that the (+) family does not generate any event horizon. In this case (−) family

also starts on one ergosphere and ends on another. Thus it can be no event horizon

produced by (−) family.

Now we shall compare Theorems 6.1 and 6.2 with the results of Section 4. We start
first with Theorem 4.3 where A < 0 and B(ρ) changes sign: Say B(ρ0) = 0, with B(ρ) > 0
when ρ− < ρ < ρ0, B(ρ) < 0 when ρ0 < ρ < ρ+. Consider the (+) family, for which we
have (cf. (4.5))

dρ+

dt
≈ −B2

√
A2 +B2 − 1

A
√
A2 +B2 − 1−B

≈ B
√

A2 +B2 − 1 > 0(6.1)

near ρ = ρ− since A2 + B2 − 1 ≈ 0, B > 0. Therefore ρ+(t) starts at ρ = ρ−. Also
dρ+

dt
< 0 near ρ = ρ+ since B < 0 near ρ = ρ+.

Thus ρ+(t) starts on both ergospheres at ρ = ρ−, ρ = ρ+. Hence the conditions of
Theorem 6.1 are satisfied and so there are event horizons corresponding to both the (+)
and (−) families. This was directly argued in Theorem 4.3.

Consider now the case when in (4.5) we have B > 0 on [ρ−, ρ+]. Then it follows from

(6.1) that dρ+

dt
> 0 near ρ = ρ− and dρ+

dt
> 0 near ρ = ρ+. Therefore the (+) family

starts at ρ = ρ− and ends at ρ = ρ+. Also (−) family ends at ρ = ρ− and starts at
ρ = ρ+. Therefore the conditions of Theorem 6.2 are satisfied. The results of Theorem
6.2 are in agreement with the result of Theorem 4.1.

Now we shall describe, for definiteness, the phase portrait of (+) family in Ω.
Consider first the case of Theorem 4.3 or more generally of Theorem 6.1 with one

(+) horizon only. Thus we have the event horizon ρ = ρ1 where ρ− < ρ1 < ρ0 and
A(ρ1) = −1, B(ρ1) > 0. It follows from (4.5) at ρ = ρ1 that

dϕ+

dt
=

1

ρ+
B(ρ1)(−B(ρ1)−B(ρ1))

−B(ρ1)−B(ρ1)
=

1

ρ1
B(ρ1).(6.2)
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Thus dϕ+

dt

∣

∣

∣

ρ=ρ1

> 0. This means that the periodic (+) trajectory ρ = ρ1 is traversed

counterclockwise as t increases. Any (+) trajectory γ+
1 starting at ρ = ρ− approaches the

horizon ρ = ρ1 spiraling counterclockwise. Analogously any (+) trajectory γ+
2 starting

at ρ = ρ+ will also approach the horizon ρ = ρ1 spiraling counterclockwise.
Consider now the more involved case of (+) trajectories in the conditions of Theorem

4.1. We have two event horizons ρ− < ρ1 < ρ2 < ρ+. As in (4.1) we have dϕ+

dt
> 0 when

ρ = ρ1, i.e. the periodic trajectory ρ = ρ1 is traversed counterclockwise as t increases.

At ρ = ρ2 we have also dϕ+

dt
= 1

ρ2
B(ρ2) > 0 since B(ρ) > 0 for all ρ− < ρ < ρ+.

Therefore the horizon ρ = ρ2 is also traversed counterclockwise. Let γ+
0 be any (+)

trajectory starting at ρ = ρ−. It will approach ρ = ρ1 spiraling counterclockwise as
t → +∞. Consider any (+) trajectory γ+

2 ending at ρ = ρ+. It will approach ρ = ρ2 as
t → −∞, spiraling clockwise around the horizon ρ = ρ2. Note that ρ = ρ2 is traversed
counterclockwise as t → +∞ and the direction is reversed when t → −∞. Consider
any (+) trajectory between ρ = ρ1 and ρ = ρ2. It approaches ρ = ρ1 when t → +∞
spiraling counter clockwise around ρ = ρ1 and approaches ρ = ρ2 when t → −∞ spiraling
clockwise around ρ = ρ2.

7. Characteristic ergospheres

Consider a domain Ω between two ergospheres Γ1 and Γ2 that are also event horizons.
Note that Γ1 and Γ2 are characteristic curves for the spatial part of �g, but there do
not exist null geodesics which travel around them. It was shown in [4] that (+) and (−)
families approach Γ1 and Γ2 when t → +∞ and t → −∞. Consider, for example, the (+)
family. Suppose for definiteness that any (+) null-geodesic approaches Γ1 as t → −∞
and approaches Γ2 as t → +∞. For short, we will say that γ+ “starts” on Γ1 and γ+
“ends” on Γ2. The situation here is similar to that of Section 6.

Suppose now that every null geodesic of the (+) family approaches Γ1 when t → +∞
and also approaches Γ2 when t → +∞, i.e. “ends” on Γ1 and “ends” on Γ2. Then
the null geodesics of the (−) family “start” on Γ1 and Γ2. Then as in Section 6 (cf.
Theorem 6.1) using the Poincaré-Bendixson theorem we obtain that there exists at least
one horizon belonging to the (+) family and one horizon belonging to the (−) family.

In the case when null-geodesics of one family “start” on one ergosphere and “end” on
the other, there may be no event horizon (cf. Theorem 6.2).

As an example of two characteristic ergospheres consider the Hamiltonian (1.6), i.e.
the reduction of 3 + 1 dimensional Kerr metric when ξϕ = 0 and ϕ is a constant. It was

shown in [3] that r = r+ and r = r− are two ergospheres where r± = m±
√
m2 − a2, 0 <

a < m, and r is defined as in (1.4). Since r = r+ and r = r− are event horizons in 3 + 1
Kerr metric they are also event horizons in 2 + 1 reduction. Since there are no event
horizons between r = r− and r = r+ the null-geodesics of one family travels from r−
to r+ when t changed from −∞ to +∞ and for another family it travels from r+ to r−
when −∞ < t < +∞.

Remark 7.1. In this paper we consider the case when the ergosphere is either not cha-
racteristic at any point or totally characteristic. In this case, event horizon curves belong
to either the (+) or (−) family. Therefore the total set of event horizons is a sum of
the contributions of the (+) and (−) families. In the general case some points of each
ergosphere can be characteristic (cf. [4]). Then as in [4] the event horizon consists of
curves belonging to either the (+) or (−) family. Note that as in [4] it may happen that
an event horizon has corners as the result of intersecting arcs from different families.
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