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Abstract. Universal kinematics as mathematical objects may be interesting for

astrophysics, because there exists a hypothesis that, in the large scale of the Universe,
physical laws (in particular, the laws of kinematics) may be different from the laws
acting in a neighborhood of our solar System. The present paper is devoted to
investigation of self-consistent translational motion of reference frames in abstract

universal kinematics. In the case of self-consistent translational motion we can give
a clear and unambiguous definition of displacement as well as the average and the
instantaneous speed of the reference frame. Hence the uniform rectilinear motion
is a particular case of self-consistent translational motion. So, the investigation of

self-consistently translational motion is technically necessary for definition of classes
of inertially-related reference frames (being in the state of uniform rectilinear mutual
motion) in universal kinematics. In the paper we investigate the correlations between

self-consistent translational motion and definiteness of time direction for reference
frames in universal kinematics.

1. Introduction

The concept of inertial reference frame plays a key role in the classical mechanics and
special relativity theory, because the basic fundamental laws of physics have the simplest
formulation in inertial reference frames. Usually it is supposed that inertial reference
frames belong to a single equivalence class. Namely, any two inertial reference frames
are moving rectilinearly with a constant speed one relatively to another.

In the papers [6, 8–10, 13], we had constructed a new class of abstract mathematical
objects, namely universal kinematics, which are intended for mathematical modeling
of the evolution of physical systems in the framework of various laws of kinematics.
Also in these papers it had been shown that universal kinematics can be applied for
mathematically strict foundation of the kinematics of the special theory of relativity
and its tachyon extensions. Investigation of universal kinematics may be interesting for
Astrophysics, because there exists a hypothesis that, in the large scale of the Universe,
physical laws (in particular, the laws of kinematics) may be different from the laws, acting
in a neighborhood of our solar System (that is, different from those based on Lorentz-
Poincare or Galilean coordinate transformations for inertial reference frames). That
is why, in connection with the statement in the first paragraph, there naturally arises a
problem to study the uniform rectilinear motion of reference frames at the level of abstract
universal kinematics. But, since the uniform rectilinear motion of reference frames is the
motion with constant speed, at first it is reasonable to investigate at an abstract level a
more general case, where the reference frames are moving in a such way that it is possible
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to unambiguously introduce the concept of displacement and, therefore, the medium or
instantaneous speed of one reference frame relatively to another. In the paper [15] this
kind of motion of the reference frames was called self-consistent translational or sc-
translational, where the mathematically strict definition of self-consistent translational
(ie sc-translational) reference frames in universal kinematics was given.

In the present paper we proceed the investigations begun in [15]. In particular, we
investigate correlations between self-consistent translational motion and definiteness of
time direction for reference frames in universal kinematics.

2. Vector universal kinematics and their properties

For further understanding of this paper, main concepts and a notation system for
theories of changeable sets, kinematic sets, and universal kinematics, are needed. These
theories were developed in [4–10]. Some of these papers were published in Ukrainian.
That is why, for the convenience of the reader, main results of these papers were “con-
verted” into English and collected in the preprint [13], where one can find the most
complete and detailed explanation of these theories. Hence, we refer to [13] the reader
who is not familiar with the essential concepts. So, during citation of needed main results
we sometimes will give the dual reference of these results (in one of the papers [4–10] as
well as in [13]).

Definition 1. (a): A kinematic set C is called vector if and only if

∀l ∈ Lk (C) Ls(l) 6= ∅.

(b): A universal kinematics F =
(
C,
←−
Q
)
is called vector if and only if C is a vector

kinematic set.

Using the system of notations accepted in [8–10,13], we deduce the following corollary
of Definition 1.

Corollary 1. A universal kinematics F is vector if and only if ∀l ∈ Lk (F) Ls(l) 6= ∅.

Let C be an arbitrary vector kinematic set or universal kinematics. Then, according to
Definition 1 and Corollary 1, for every reference frame l ∈ Lk (C) the relation Ls(l;C) 6= ∅
holds true. Hence, in accordance with the system of notations accepted in [8–10,13], we
have

∀l ∈ Lk (C) Ps (l;C) 6= ∅.

Moreover, for any reference frame l ∈ Lk (C) and arbitrary elements a1, . . . , an ∈ Zk (l,C),
λ1, . . . , λn ∈ Ps (l;C) the following element is defined:

(λ1a1 + · · ·+ λnan)l,C (n ∈ N) .

Taking into account the abbreviated variants of notations introduced in [8–10, 13],
in the case where the kinematic set or universal kinematics C is known in advance, we
use the notations Ls(l), Ps (l), Zk (l), (λ1a1 + · · ·+ λnan)l instead of Ls(l;C), Ps (l;C),
Zk (l,C), (λ1a1 + · · ·+ λnan)l,C (correspondingly). Moreover in the cases where the

reference frame l ∈ Lk (C) is known from the context, we use the abbreviated notation
λ1a1 + · · ·+ λnan instead of (λ1a1 + · · ·+ λnan)l .

3. Coordinate transforms in universal kinematics and coordinate

transform operators

Definition 2. Let Q1,Q2 be any coordinate spaces1, and T1 = (T1,≤1), T2 = (T1,≤2)
(T1,T2 6= ∅) be any linearly ordered sets. Any bijection U from T1 × Zk (Q1) to

1Definition of coordinate space can be found in [6, Definition 3] or [13, Definition 2.14.2].
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T2 × Zk (Q2) (U : T1 × Zk (Q1)←→ T2 × Zk (Q2) ) is called a coordinate transform
operator from (T1,Q1) to (T2,Q2). The set of all coordinate transform operators from
(T1,Q1) to (T2,Q2) is denoted by

Pk (T1,Q1;T2,Q2) .

Directly from Definition 2, using definition of the universal kinematics as well as
system of notations for the universal kinematics (see. [9, 13]), we deduce the following
proposition.

Proposition 1. Let F be an arbitrary universal kinematics and l,m ∈ Lk (F) be any
reference frames of F . Then we have

[m← l,F ] ∈ Pk (Tm(l),BG(l);Tm(m),BG(m)) .

Thus, every universal coordinate transform between reference frames of universal kine-
matics is a coordinate transform operator. Conversely, it turns out that for an arbitrary
coordinate transform operator U there exists a universal kinematics F such that U is a
universal coordinate transform between some reference frames l,m ∈ Lk (F).

Proposition 2 ( [15]). For any coordinate transform operator U ∈ Pk (T1,Q1;T2,Q2)
there exist a universal kinematics F and reference frames l,m ∈ Lk (F) such that

Tm(l) = T1; BG (l,F) = Q1;
Tm(m) = T2; BG (m,F) = Q2;
[m← l] = U .

Moreover in the case where Q1 and Q2 are vector coordinate spaces (that is Ls (Q1) 6= ∅,
Ls (Q2) 6= ∅), the universal kinematics F also is vector.

4. Trajectories generated by the motion of reference frames in the

universal kinematics

Definition 3. Let F be any universal kinematics and l,m ∈ Lk (F) be any reference
frames of F . The trajectory of a point x ∈ Zk (m) (under the motion of the reference
frame m relatively the frame l in the kinematics F) is defined as the following set:

trj[l←m,F ] (x) = {[l←m] (t, x) | t ∈ Tm (m)} ⊆Mk (l) .

Remark 1 (on physical content of the trajectory trj[l←m,F ] (x)). We can think that any
universal kinematics F is some abstract “world”, which not necessarily coincides with
ours. Imagine that in the “world” F there exists a material point with constant co-
ordinates x relatively to some reference frame m ∈ Lk (F). Then trj[l←m,F ] (x) is the

trajectory of the motion of the point x relatively the (other) reference frame l ∈ Lk (F).

In the case where the universal kinematics F is known in advance, we use the abbre-
viated notation

trj[l←m] (x)

instead of trj[l←m,F ] (x).
The next propositions 3 and 4 describe some properties of the trajectories introduced

above. In these propositions, F is an arbitrary universal kinematics and l,m ∈ Lk (F)
are any reference frames of F .

Proposition 3 ( [15]). For arbitrary x, y ∈ Zk (m), the condition x 6= y implies the
relation

trj[l←m] (x) ∩ trj[l←m] (y) = ∅.

Proposition 4 ( [15]). For any element w ∈ Mk (l) there exists a unique element x ∈
Zk (m) such that

w ∈ trj[l←m] (x) .
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5. Self-consistent translational reference frames in universal kinematics

In this section we formulate a strict definition of self-consistent translational refer-
ence frames in universal kinematics. First we present some technical definitions and
propositions, necessary for this aim.

Definition 4. Let F be any vector universal kinematics and l ∈ Lk (F) be any reference
frame of F .

(1) The set

A〈+x; l〉 := {(tm (w) , x + bs (w)) | w ∈ A}

is called a parallel shift of the set A ⊆ Mk (l) by the vector x ∈ Zk (l) (in the
frame l). In the cases where it does not lead to misunderstanding we use the
abbreviated notation

A〈+x〉

instead of A〈+x; l〉.
(2) We say that the set A ⊆ Mk (l) is parallel to the set B ⊆ Mk (l) relatively the

reference frame l (denoted by A ‖F
l

B) if and only if there exists an element

x ∈ Zk (l) such that B = A〈+x〉, that is,

B = {(tm (w) , x + bs (w)) | w ∈ A} .

In the case where the universal kinematics F is known in advance, we use the
abbreviated notation

A ‖l B

instead of A ‖F
l
B.

Proposition 5 ( [15]). Let F be any vector universal kinematics and l ∈ Lk (F) be any
reference frame of F . Then the following statements hold:

(1) A〈+0〉 = A (for an arbitrary set A ⊆ Mk (l)), where 0 = 0l = 0l,F is the zero
vector of the linear space generated by the linear structure Ls(l);

(2)
(
A〈+x〉

)〈+y〉
= A〈+(x+y)〉 (for every A ⊆ Mk (l) and x, y ∈ Zk (l)), in particular,

(
A〈+x〉

)〈+(−x)〉
= A〈+0〉 = A;

(3) The binary relation ‖
l
is an equivalence relation on the set 2Mk(l) = {A |A ⊆Mk (l)}

(i.e., ‖
l
is a reflexive, symmetric, and transitive relation on 2Mk(l)).

Definition 5. Let F be any universal kinematics.

(1) We say that a reference frame m ∈ Lk (F) is trajectory-regular relatively to the
reference frame l ∈ Lk (F) (in the kinematics F) if and only if the following
condition is fulfilled:
(a): for each x ∈ Zk (m) the trajectory trj[l←m] (x) is an abstract trajectory

from Tm(l) to Zk (l) (that is, ∀w1,w2 ∈ trj[l←m] (x) the equality tm (w1) =

tm (w2) leads to the equality bs (w1) = bs (w2) (and therefore to the equality
w1 = w2).

In the next two items F is any vector universal kinematics.
(2) We say that a reference frame m ∈ Lk (F) is self-consistent quasitranslational

(the abbreviated name for the term is sc-quasitranslational) relatively to the
reference frame l ∈ Lk (F) (in the kinematics F), if and only if the following
condition is satisfied:
(b): for every x, y ∈ Zk (m) the relation trj[l←m] (x) ‖l trj[l←m] (y) is true.

(3) A reference framem ∈ Lk (F) is called self-consistent translational (the shortened
name of the term is sc-translational) relatively to the reference frame l ∈ Lk (F)
(in kinematics F) if and only if m is sc-quasitranslational and trajectory-regular
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relatively l in the kinematics F , that is, if and only if the both above conditions
(a) and (b) are satisfied.

Note that further we will use the abbreviated variants of the terms, introduced in
the items 2 and 3 of Definition 5 (that is we will use the terms “sc-quasitranslational”
and “sc-translational” instead of “self-consistent quasitranslational” and “self-consistent
translational” correspondingly).

Remark 2. In the paper [15] it is explained that on a physical level Definition 5 can
describe reference frames connected with solid bodies being in the state of translational
motion in the framework of the laws of the classical mechanics. Also in [15] it is shown
that in the framework of the relativity theory the highlighted above conclusion is not
true in the general case. This effect is stipulated by the fact that the Lorentz length
contraction can not be uniform in the accelerated reference frames, and so a rigid non-
inertial reference frame does not look like rigid in a “fixed” inertial frame [20,21].

6. Sign-definiteness of time leads to trajectory-regularity

In the papers [11, 12, 14], the notion of time direction between reference frames of
universal kinematics had been introduced. Below we recall and complement the definition
of this notion.

Definition 6. Let F be any universal kinematics.

(1) We say that a reference frame m ∈ Lk (F) is time-positive in F relatively to the
reference frame l ∈ Lk (F) (notated by m ⇑+F l) if and only if for an arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and tm (w1) <l tm (w2) it is true
that tm ([m← l] w1) <m tm ([m← l] w2).

(2) We say that a reference frame m ∈ Lk (F) is time-negative in F relatively to
the reference frame l ∈ Lk (F) (denoted by m ⇓−F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and tm (w1) <l tm (w2) we have
tm ([m← l] w1) >m tm ([m← l] w2).

(3) We say that a reference frame m ∈ Lk (F) is time-sign-defined in F relatively to
the reference frame l ∈ Lk (F) (denoted by m m±F l) if and only if at least one of

the relations m ⇑+F l or m ⇓−F l is fulfilled.

Remark 3 (on physical content of Definition 6). According to Remark 1, we can imagine
that any universal kinematics F is some abstract “world”. In every such a “world” F
there exists a fixed for this “world” set of reference frames Lk (F). We will agree that
for any reference frame l ∈ Lk (F) the arrows of a clock, fixed in the frame l are rotating
clockwise relatively to the frame l. We say that the reference frame m ∈ Lk (F) is time-
positive (time-negative) relatively to the reference frame l ∈ Lk (F) if and only if the
observer in the reference frame m (fixed relatively to m) observes that the arrows of the
clock, fixed in the frame l, are rotating clockwise (counterclockwise) in the frame m,
correspondingly.

Proposition 6. If a reference frame l ∈ Lk (F) is time-sign-defined relatively to the
reference frame m ∈ Lk (F) in the kinematics F , then m is trajectory-regular relatively
to the frame l in F .

Proof. Suppose that l,m ∈ Lk (F) and l ⇑+F m. Consider any elements x ∈ Zk (m) and
w1,w2 ∈ trj[l←m] (x) such that

(1) tm (w1) = tm (w2) .

Let us prove that w1 = w2.
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Assume the contrary, w1 6= w2. Since w1,w2 ∈ trj[l←m] (x), then, by Definition 3, the

time points t1, t2 ∈ Tm (m) exist such that

(2) w1 = [l←m] (t1, x) ; w2 = [l←m] (t2, x) .

According to [9, equalities (6), (7)] or [13, equalities (3.3), (3.4)], the mapping [l←m] is
a bijection between Mk (m) and Mk (l). So, since w1 6= w2, using (2), we deduce t1 6= t2.
Hence only the following two cases are possible: t1 <m t2 or t1 >m t2. But, taking
into account the relation l ⇑+F m and equalities (2), by Definition 6 (item 1) in the case
t1 <m t2 we obtain

tm (w1) = tm ([l←m] (t1, x)) <l [l←m] (t2, x) = tm (w2) .

Similarly in the case t1 >m t2 we deduce

tm (w1) >l tm (w2) .

Thus, in the both cases we have tm (w1) 6= tm (w2), which contradicts the equality (1).
Hence, our assumption is wrong. That is why, we have w1 = w2.

In the case l ⇓−F m the proof is similar. �

Combining Definition 5 (item 3) and Proposition 6, we deduce the following theorem.

Theorem 1. Let F be any vector universal kinematics. If a reference frame m ∈ Lk (F)
is sc-quasitranslational relatively to the reference frame l ∈ Lk (F) and the reference
frame l is time-sign-defined relatively to m, then the reference frame m is sc-translational
relatively to l in the kinematics F .

In general, a statement converse to Proposition 6 is not true. And the next example
is designed to affirm this fact. First we introduce one notation needed for a presentation
of this example.

Notation 1. Let d ∈ N be any natural number. We further denote by R̂d the (vector)
coordinate space generated by the space R

d, that is, a coordinate space for which the
following conditions are satisfied:

1) Zk
(
R̂d

)
= R

d;

2) Ps
(
R̂d

)
= R;

3) (x + y)
R̂d

= (x1 + y1, . . . , xd + yd), where x = (x1, . . . , xd) ∈ R
d, y = (y1, . . . , yd) ∈

R
d;
4) (λx)

R̂d
= (λx1, . . . , λxd), x = (x1, . . . , xd) ∈ R

d, λ ∈ R;

5) 〈x, y〉
R̂d

= x1y1 + · · · + xdyd, x = (x1, . . . , xd) ∈ R
d, y = (y1, . . . , yd) ∈ R

d, in

particular, ‖x‖
R̂d

=
√
〈x, x〉

R̂d
=

√
x21 + · · ·+ x2d (where 〈x, y〉

R̂d
and ‖x‖

R̂d
are the inner

product and the norm in the coordinate space R̂d, correspondingly).
In particular for the case d = 1 we denote

R̂ := R̂1.

Example 1. Let T (t) : R 7→ R be any bijective and non-monotonous mapping from R

onto R. For example, we may put

T (t) :=

{
1
t
, t > 0

t, t ≤ 0
(t ∈ R) .

The non-monotonicity of the mapping T ensures the existence of t1, t2, t3, t4 ∈ R, for
which the following conditions holds true:

(3) t1 < t2, t3 < t4, T (t1) < T (t2) , T (t3) > T (t4) .
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Since the mapping T is a bijection of R onto itself, the mapping

(4) U (t, x) := (T (t), x)
(
(t, x) ∈ R

2
)

is a bijection between R
2. Hence,

U ∈ Pk
(
Rord, R̂; Rord, R̂

)
,

where Rord = (R,≤) is the linearly ordered set generated by the standard linear order
relation ≤ on R. So, according to Proposition 2, there exist a vector universal kinematics
F and reference frames l,m ∈ Lk (F) such that

Tm(l) = Tm(m) = Rord;(5)

BG (l,F) = BG (m,F) = R̂;(6)

[l←m,F ] = U .(7)

Taking into account the denoted system for the universal kinematics (see [9, 13]) and
formula (6), we get

Zk (l,F) = Zk (m,F) = Zk
(
R̂

)
= R.

Thus, according to (5), we have

Tm(l) = Tm(m) = R;

Mk (l) = Tm (l)× Zk (l) = R× R = R
2; Mk (m) = R

2.

Consider any element x ∈ R = Zk (m). According to (7) and Definition 3, we get

trj[l←m] (x) = {[l←m] (t, x) | t ∈ Tm (m)}

= {[l←m] (t, x) | t ∈ R} = {U (t, x) | t ∈ R}

= {(T (t), x) | t ∈ R} = {(τ, x) | τ ∈ R} .(8)

Using (8) it is easy to verify that for arbitrary w1,w2 ∈ trj[l←m] (x) we have bs (w1) =

bs (w2). So, condition (a) of Definition 5 is readily fulfilled, and, according to item 1
of this definition, the reference frame m is trajectory-regular relatively to the reference
frame l (in the kinematics F).

But, from the other hand, the reference frame l is not time-sign-defined relatively to
the reference frame m in F . And now our aim is to verify this fact. Choose any fixed
number x ∈ R. Denote

wi := (ti, x)
(
i ∈ 1, 4

)
,

where m,n = {m, . . . , n} (∀m,n ∈ N, m ≤ n). Then, applying (3), (4), (7), we deduce
that

tm (w1) = t1 < t2 = tm (w2) ; tm (w3) < tm (w4) ;

tm ([l←m] w1) = tm (U (t1, x)) = tm ((T (t1) , x))

= T (t1) < T (t2) = tm ([l←m] w2) ;

tm ([l←m] w3) > tm ([l←m] w4) .

So, according to Definition 6, the reference frame l is not time-positive or time-negative
relatively to the reference frame m in F . Thus, l is not time-sign-defined relatively m in
F , despite the fact that m is trajectory-regular relatively l in F .

Now we have seen that in the general case Proposition 6 can not be inverted. But,
despite this, it turns out that under some additional conditions of topological type, a
statement converse to this proposition becomes true. To formulate these topological
conditions as well as to prove the declared result we need to introduce some auxiliary



114 YA. I. GRUSHKA

concepts and to prove some auxiliary, technical results. This will be done in the next
section.

7. Auxiliary topological concepts and results

7.1. Auxiliary concepts and facts from the theory of linearly ordered topo-
logical spaces. Let T = (T,≤) be any linearly ordered set. Recall [2] that every such
linearly ordered set can be equipped with the natural “internal” topology Tpi [T] gener-
ated by the base consisting of open sets of the kind

(i): (−∞,∞) = T;
(ii): (τ,∞) = {t ∈ T | t > τ}, where τ ∈ T;
(iii): (−∞, τ) = {t ∈ T | t < τ}, where τ ∈ T;
(iv): (τ1, τ2) = {t ∈ T | τ1 < t < τ2}, where τ1, τ2 ∈ T, τ1 < τ2.

Let F be an arbitrary universal kinematics and l ∈ Lk (F) be any reference frame
of F . Further we denote by Tpi(l) the internal topology of the linearly ordered set
Tm (l) = (Tm (l) ,≤l), i.e.,

Tpi (l) := Tpi [Tm (l)] .

We say that a topological space (X ,SX ) is connected (where SX ⊆ 2X is the
topology on the space X ) if and only if X can not be represented as a union X =
X1 ∪X2 of two disjoint non-empty open subsets X1,X2 ∈ SX (cf [3, Corollary 6.1.2
and remark after it]). Also we denote by card (M) the cardinality of any set M.

Lemma 1. Suppose that the following holds true::
1) T1 = (T1,≤1); T2 = (T2,≤2) are linearly ordered sets, and card (T1) > 1.
2) T1 is a connected topological space in the topology Tpi [T1].
3) f : T1 7→ T2 is a continuous injective mapping (i.e., a continuous invertible func-

tion) from the topological space (T1,Tpi [T1]) to the topological space (T2,Tpi [T2]).
Then the function f is strictly monotone (that is, strictly increasing or strictly de-

creasing on T1).

Proof. Since, by the conditions of the lemma, card (T1) > 1, the linearly ordered set T1

contains at least one non-maximal element.
Let τ ∈ T1 be an arbitrary non-maximal element. Since T1 is a connected topological

space, according to [16, Lemma 3.1, item (d)], the interval (τ,+∞) is a connected set
in T1. The function f is continuous. So, according to [3, Theorem 6.1.3], it maps the
set (τ,+∞), connected in T1, into the set f ((τ,+∞)), connected in the space T2. Since
the function f is an injective mapping, we have that f ((τ,+∞)) 6∋ f (τ). Hence, the set
f ((τ,+∞)) is contained in the union of two open sets,

(9) f ((τ,+∞)) ⊆ (f(τ),+∞) ∪ (−∞, f(τ)) .

Taking into account the established above fact that the set f ((τ,+∞)) is connected, we
see that (9) is possible only in the following two cases:

(a): f ((τ,+∞)) ⊆ (f(τ),+∞) or
(b): f ((τ,+∞)) ⊆ (−∞, f(τ)).

Consider case (a). Let us prove that

(10) ∀τ1 >1 τ f ((−∞, τ1)) ⊆ (−∞, f (τ1)) ,

where τ1 >1 τ means that τ <1 τ1 and τ <1 τ1 means that τ ≤1 τ1 and τ 6= τ1. Consider
any τ1 >1 τ . Similarly to the cases (a)–(b) we can prove that for element τ1 the following
alternative take place:

(a1): f ((−∞, τ1)) ⊆ (−∞, f (τ1)) or
(b1): f ((−∞, τ1)) ⊆ (f (τ1) ,+∞).
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Assume that Condition (b1) is satisfied. Since τ1 >1 τ , we have τ ∈ (−∞, τ1). Therefore,
by condition (b1), we have

(11) f (τ) >2 f (τ1) .

From the other hand, we have assumed the case (a). So, we get

(12) f (τ) <2 f (τ1) .

But inequalities (11) and (12) can not be fulfilled together. The last contradiction shows,
that Condition (b1) can not hold. Hence Condition (a1) holds (for each value τ1 ∈ T1

such that τ1 >1 τ). Thus, (10) is proved.
From relation (10) and Condition (a) it follows that the function f is strictly increasing

on the set [τ,+∞) = {t ∈ T1 | t ≥1 τ}. Similarly we can verify that in the case (b) the
function f is strictly decreasing on [τ,+∞).

Thus, the function f is strictly monotone on [τ,+∞). Since τ is an arbitrary non-
maximal element of T1, the function f is strictly monotone on every interval [τ2,+∞)
such that τ2 ≤ τ . Since τ is a non-maximal element of T1, the interval [τ,+∞) contains
at least two elements. Therefore, if the function f is strictly increasing on [τ,+∞), it
will be strictly increasing on every interval [τ2,+∞) such that τ2 ≤ τ . That is, it will be
strictly increasing on T1. Similarly, if the function f is strictly decreasing on [τ,+∞),
then it is strictly decreasing on T1. �

7.2. Some information from the theory of separately continuous mappings. Let
(X ,SX ), (Y ,SY ) and (Z ,SZ ) be topological spaces, where SS ⊆ 2S is a topology
on the topological space S (S ∈ {X ,Y ,Z }). By C(X ,Y ) we denote the collection
of all continuous mappings from X to Y . For a mapping f : X ×Y 7→ Z and a point
(x, y) ∈X × Y we write

fx(y) := fy(x) := f(x, y).

Recall [17] that a mapping f : X × Y 7→ Z is reffered to as separately continuous if
and only if fx ∈ C(Y ,Z ) and fy ∈ C(X ,Z ) for every point (x, y) ∈ X × Y (see
also [19,22]). The set of all separately continuous mappings f : X ×Y 7→ Z is denoted
by CC (X × Y ,Z ) [17, 19,22].

For next considerations we need the following lemma.

Lemma 2. Let T1 = (T1,≤1), T2 = (T2,≤2) be linearly ordered sets and (X ,SX ) be
a topological space. Suppose the following conditions:

(a): topological spaces T1 and X are connected (where Ti are considered as topo-
logical spaces with the topology Tpi [Ti] (i ∈ 1, 2));

(b): the mapping f : T1 ×X 7→ T2 is separately continuous;
(c): for every x ∈X the mapping fx(t) = f (t, x) (t ∈ T1) is injective on T1.

Then one and only one of the following alternative assertions is true:

(1) the function fx(t) is strictly increasing on T1 for each x ∈X ;
(2) the function fx(t) is strictly decreasing on T1 for each x ∈X .

Proof. We do not consider the case where card (T1) = 1, because in this case the function
fx(t) is strictly increasing and strictly decreasing on T1 simultaneously, according to the
rules of formal logic.

So, further we assume that

(13) card (T1) > 1.

Consider any fixed x ∈ X . In accordance with conditions of the lemma, fx(t) is
an injective continuous mapping from T1 to T2. Hense from Lemma 1 we deduce the
following:
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(10): fx is a strictly monotone mapping from the linearly ordered set T1 = (T1,≤1)
into the linearly ordered set T2 (for every element x ∈X ).

So, it remains to prove that the direction of monotonicity for the function fx does not
depend on the element x ∈X .

Further we consider T2×T2 as a topologicas space with the Tychonoff topology on the
square of the topological space (T2, Tpi [T2]). According to Condition (13), the elements
t0, t1 ∈ T1 exist such that t0 <1 t1. Consider a function Φ : X 7→ T2 ×T2, defined by

Φ(x) := (fx (t0) ,fx (t1)) ∈ T2 ×T2 (x ∈X ) .

Using conditions (b) and (a) of the lemma as well as [18, Theorem 3.3], we see that the
function Φ is a continuous mapping from the connected topological space X into the
topological space T2 × T2. Hence, according to [3, Theorem 6.1.3], the range R (Φ) =
Φ (X ) is connected set in T2 ×T2. Since t0 6= t1, according to Statement (10), we have
fx (t0) 6= fx (t1) (∀x ∈ X ). Therefore, the set R (Φ) = Φ (X ) (connected in T2 ×T2)
is included into the union of two disjoint sets,

Φ (X ) ⊆ U1 ∪U2, where(14)

U1 = {(τ1, τ2) ∈ T2 ×T2 | τ1 <2 τ2} ;

U2 = {(τ1, τ2) ∈ T2 ×T2 | τ1 >2 τ2} .

We will prove that the sets U1 and U2 are open. Suppose, that (τ1, τ2) ∈ U1. Then we
have τ1 <2 τ2. If there exists an element τ̃ ∈ T2 such that τ1 <2 τ̃ <2 τ2, then the set

Ũ = (−∞, τ̃)×(τ̃ ,∞) is open inT2×T2 (according to definition of the Tychonoff product
topology, see [18]). Moreover, it contains the point (τ1, τ2) and satisfies the condition

Ũ ⊆ U1. In the case where the point τ , satisfying τ1 <2 τ̃ <2 τ2, does not exist, the
sets (−∞, τ1] = (−∞, τ2) and [τ2,∞) = (τ1,∞) are open in T2. Hence in this case the

set Ũ = (−∞, τ1] × [τ2,∞) is open in T2 × T2. Moreover, we have (τ1, τ2) ∈ Ũ ⊆ U1.

Thus, we have seen that in the both cases for every point (τ1, τ2) ∈ U1 the set Ũ exists

such that Ũ is open in T2 ×T2 and (τ1, τ2) ∈ Ũ ⊆ U1. This means that the set U1 is
open in T2 ×T2. Similarly it can be proved that the set U2 is open in T2 ×T2. Above
we have proved that the set Φ (X ) is connected. So, since the sets U1, U2 are open, the
inclusion (14) is possible only in the following two cases:

(a): Φ(X ) ⊆ U1;
(b): Φ(X ) ⊆ U2.

In the case (a) we have

fx (t0) <2 fx (t1) (∀x ∈X ) .

Therefore, according to Statement (10), we see that the function fx is strictly increasing
on T1 for each x ∈X . Similarly in the case (b) fx is strictly decreasing on T1 for each
x ∈X . �

7.3. Some classes of universal kinematics. In the next definition we introduce some
classes of universal kinematics, needed for presentation of the main results of the paper.

Definition 7. Let F be an arbitrary universal kinematics. We say that F belongs to
the class:
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(V) if and only if F is a vector universal kinematics in the sense of Definition 1, that
is, if and only if for any reference frame l ∈ Lk (F) the condition Ls (l) 6= ∅ holds;

(T) if and only if for each reference frame l ∈ Lk (F) the condition T p (l) 6= ∅ is satisfied
(the universal kinematics of class (T) is also called topological);

(C0) if and only if for each reference frame l ∈ Lk (F) the ordered pair (Tm (l) ,Tpi (l))
is a connected topological space, (the universal kinematics of class (C0) is also
called time-connected);

(C1) if and only if for each reference frame l ∈ Lk (F) the ordered pair (Zk (l) , T p (l)) is
a connected topological space (the universal kinematics of class (C1) is also called
by space-connected).

We say that a universal kinematics F belongs to the combined class (α1, . . . , αn)
(where n ∈ N, αi ∈ {“V”, “T”, “C0”, “C1”} (i ∈ 1, n)), if and only if F belongs all
classes (α1), . . . ,(αn) simultaneously. In particular:

(TV) We say that a universal kinematics F is topological-vector, if and only if F belongs
to the class (TV), that is, if and only if for any reference frame l ∈ Lk (F) the
conditions Ls (l) 6= ∅ and T p (l) 6= ∅ are fulfilled.

8. Conditions under which trajectory-regularity leads to

sign-definiteness of time

Let F be an arbitrary topological universal kinematics, l ∈ Lk (F) any reference frame
of F and (X ,SX ) any topological space. We say that a mapping f : Mk (l) 7→ X is sepa-
rately continuous relatively space and time variables if and only if f ∈ CC (Tm (l)× Zk (l) ,X ),
where Tm (l) and Zk (l) are considered as topological spaces with the topologies Tpi (l)
and T p (l), correspondingly.

Proposition 7. Let a reference frame m ∈ Lk (F) be trajectory-regular relatively to the
frame l ∈ Lk (F) in a topological universal kinematics F . Impose also the following
additional conditions:

(a): The topological spaces (Tm (m) ,Tpi (m)) and (Zk (m) , T p (m)) are connected.
(b): The mapping Mk (m) ∋ w 7−→ tm ([l←m] w) ∈ Tm (l) is separately continu-

ous relatively to the space and time variables (where Tm (l) is considered as a
topological space with the topology Tpi (l)).

Then the reference frame l ∈ Lk (F) is time-sign-defined relatively to the reference frame
m ∈ Lk (F) in the kinematics F (ie l m±F m).

Proof. Denote

f (t, x) := tm ([l←m] (t, x)) , t ∈ Tm (m) , Zk (m) .

Then for every x ∈ Zk (m) we obtain a mapping fx : Tm (m) 7→ Tm (l), acting by the
formula, fx (t) := tm ([l←m] (t, x)) (t ∈ Tm (m)). We will prove that the mapping fx

is injective on Tm (m). Assume that fx (t1) = fx (t2) for some t1, t2 ∈ Tm (m). Then
we obtain

tm (w1) = tm (w2) ,(15)

where wi = [l←m] (ti, x) (i ∈ 1, 2). According to Definition 3, we have, w1,w2 ∈
trj[l←m] (x). So, by Definition 5 (item 1), from (15) we obtain the equality w1 = w2.
Therefore,

[l←m] (t1, x) = [l←m] (t2, x) .

Thence, using [9, equalities (6), (7)] or [13, equalities (3.3), (3.4)], we receive that (t1, x) =
(t2, x), i.e., t1 = t2. Thus for every t1, t2 ∈ Tm (m) the equality fx (t1) = fx (t2) implies
t1 = t2, and so fx is an injective mapping from Tm (m) to Tm (l). Moreover, according
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to condition (b) of the proposition, the mapping f : Tm (m) × Zk (m) 7→ Tm (l) is
separately continuous. Hence using condition (a) of the proposition and Lemma 2, we
see that one and only one of the following alternative statements is true:

(1) the function fx(t) is strictly increasing on Tm (m) for each x ∈ Zk (m);
(2) the function fx(t) is strictly decreasing on Tm (m) for each x ∈ Zk (m).

In the case of statement 1, we have l ⇑+F m (according to Definition 6, item 1) and,

similarly, in the case of statement 2 we obtain l ⇓−F m. So, in the both cases we deduce,

l m±F m. �

Let F be a topological-vector universal kinematicsis. Taking into account the defini-
tion of a coordinate space (see. [6, Definition 3] or [13, Definition 2.14.2]) as well as the
system of notations in the theory of universal kinematicsis (see [13, Subsection 22.2]) we
assure that for any reference frame l ∈ Lk (F) the set Zk (l) forms a topological vector
space with the topology T p (l) and linaear algebraic operations generated by the linear
structure Ls (l). It is known that every topological vector space is connected [1, Theo-
rem 3.1]. Hence, applying Proposition 7 as well as Definition 5 (item 3), we deduce the
following theorem, “converse’ to Theorem 1.

Theorem 2. Let F be an arbitrary topological-vector universal kinematics.
If a reference frame m ∈ Lk (F) is sc-translational relatively to the reference frame

l ∈ Lk (F) and the following additional conditions are fulfilled:

(a): the topological space (Tm (m) ,Tpi (m)) is connected;
(b): the mapping Mk (m) ∋ w 7−→ tm ([l←m] w) ∈ Tm (l) is separately continuous

relatively to the space and time variables;

then the reference frame l is time-sign-defined relatively the reference frame m in the
kinematics F (ie l m±F m).

Definition 8. We say that a topological universal kinematics F is C-regular (or of class(
C1

1

)
) if and only if:

(1) The kinematics F is of the class (C0C1) (that is, for each reference frame
l ∈ Lk (F) the ordered pairs (Tm (l) ,Tpi (l)) and (Zk (l) , T p (l)) are connected
topological spaces.

(2) For any reference frames l,m ∈ Lk (F) the mappingMk (m) ∋ w 7−→ tm ([l←m] w) ∈
Tm (l) is separately continuous relatively to the space and time variables.

As it was said before, every topological vector space is connected. So we get the
following proposition.

Proposition 8. A topological-vector universal kinematics F is C-regular if and only
if F is of class (C0) (that is, for each reference frame l ∈ Lk (F) the ordered pair
(Tm (l) ,Tpi (l)) is a connected topological space) and for any reference frames l,m ∈
Lk (F) the mapping Mk (m) ∋ w 7−→ tm ([l←m] w) ∈ Tm (l) is separately continuous
relatively to the space and time variables.

Using propositions 6, 7 and Definition 8, we obtain the following corollary.

Corollary 2. A reference frame m ∈ Lk (F) of a C-regular topological universal kine-
matics F is trajectory-regular relatively to a reference frame l ∈ Lk (F) in the kinematics
F if and only if l m±F m (that is, if and only if the frame l is time-sign-defined relatively
to the frame m in F).

Using Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 3. Let F be a C-regular topological-vector universal kinematics. A reference
frame m ∈ Lk (F) is sc-translational relatively to the reference frame l ∈ Lk (F) in
kinematics F if and only if the following conditions are satisfied:
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(1) the frame m is sc-quasitranslational relatively l in kinematics F ;
(2) l m±F m.
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