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Abstract. We investigate elliptic boundary-value problems for which the maximum
of the orders of the boundary operators is equal to or greater than the order of
the elliptic differential equation. We prove that the operator corresponding to an

arbitrary problem of this kind is bounded and Fredholm between appropriate Hilbert
spaces which form certain two-sided scales and are built on the base of isotropic
Hörmander spaces. The differentiation order for these spaces is given by an arbitrary
real number and positive function which varies slowly at infinity in the sense of
Karamata. We establish a local a priori estimate for the generalized solutions to
the problem and investigate their local regularity (up to the boundary) on these
scales. As an application, we find sufficient conditions under which the solutions

have continuous classical derivatives of a given order.

1. Introduction

Among elliptic boundary-value problems there occur problems with boundary con-
ditions whose orders are equal to or greater than the order of the elliptic differential
equation for which the problem is posed. Such problems appear specifically in acoustic,
hydrodynamics, and the theory of stochastic processes [27, 74, 75]. The known Ventcel’
elliptic boundary-value problem [74] apparently was the first such a problem arisen in
applications. It consists of an elliptic differential equation of the second order and a
boundary condition of the same order and was applied initially to an study of diffusion
processes. A number of papers are devoted to this problem; see, e.g. [11,35,36]. In acous-
tic, of an interest is the elliptic problem that consists of the Helmholtz equation and a
certain boundary condition of the fifth order [27,75]. From the theoretical point of view,
the simplest example of such elliptic problems is the problem consisting of the Laplace
equation and the boundary condition ∂ku/∂νk = g, where k ≥ 2 and ν is a unit vector of
the normal to the boundary of the domain in which the equation is given [10, 69] (some
generalizations of this example are considered in [21,22]). All these elliptic problems are
not regular so that the classical Green formula does not hold for them, which complicates
their investigation.

Basic properties of general elliptic boundary-value problems consist in that these prob-
lems are Fredholm on appropriate pairs of Hölder or positive Sobolev spaces and that their
solutions admit a priory estimates and satisfy the property of increase in smoothness in
these spaces; see, e.g., the fundamental paper by Agmon, Douglis, and Nirenberg [1] and
Agranovich’s survey [2]. These properties relate in particular to the nonregular elliptic
problems mentioned above.

Of great interest in applications are elliptic problems whose right-hand sides are irregu-
lar distributions. Such problems appear specifically in the investigation of Green function
of elliptic problems, study of elliptic problems with power singularities in the right-hand
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sides, in the spectral theory of elliptic differential operators, and the theory of operator-
differential equations; see, e.g., the monographs by Berezansky [7], M. Gorbachuk and
V. Gorbachuk [16], and Roitberg [62]. A corresponding theory for elliptic problems in
spaces of distributions was developed by Berezansky, Krein, and Roitberg [6,7,57,58,62],
Hörmander [17], Lions and Magenes [30], and Schechter [64–67]. Its main achievements
are theorems on complete collections of isomorphisms realized by elliptic problems on
two-sided scales of normed spaces constructed on the base of Sobolev spaces. Briefly
saying, these theorems assert that the operator generated by an elliptic problem sets an
isomorphism between appropriate distribution spaces whose regularity indexes equal s
and s− 2q, respectively, where s is an arbitrary real number and 2q is the even order of
the corresponding elliptic differential equation. Such theorems were proved for regular
elliptic problems, the classical Green formula playing a decisive role in the proofs.

Apparently, the isomorphism theorem by Roitberg [57, 58] is the most meaningful
among these achievements at least because other results can be deduced [59] from this
theorem. Later on, Roitberg and Kostarchuk [24,60,61] extended this isomorphism the-
orem to nonregular elliptic problems, specifically, to problems with boundary conditions
of higher orders with respect to the order of the corresponding elliptic differential equa-
tion [24]. This theorem and its various applications are set forth in the monographs
by Berezansky [7] (for regular elliptic problems), Roitberg [62, 63], Kozlov, Maz’ya and
Rossmann [26], and Agranovich’s survey [2]. As a rule, the isomorphism theorem is
formulated separately for elliptic problems with low orders boundary conditions and
with higher orders ones; see [62, Theorems 4.1.2 and 4.1.3] (or [26, Theorems 3.4.1 and
4.1.4] stated in terms of the Fredholm property). To describe the range of the operator
generated by a nonregular elliptic problem, Kozlov, Maz’ya and Rossmann use a spe-
cial Green formula and corresponding elliptic boundary-value problem with additional
unknown functions in boundary conditions. These formula and problem were consid-
ered first by Lawruk [29]. Note that the mentioned monographs [26, 62] and survey [2]
also examine elliptic problems for systems of differential equations and that the most
general isomorphism theorem of Roitberg’s type is proved by Kozhevnikov [25] for pseu-
dodifferential elliptic problems which form the Boutet de Monvel algebra. Roitberg’s
isomorphism theorem deals with normed function spaces which are certain modifications
of Sobolev spaces. Such Sobolev–Roitberg spaces form two-sided scales of spaces and
coincide with Sobolev spaces for the sufficiently large regularity index. The concept of
Sobolev–Roitberg spaces proved to be fruitful not only for elliptic problems but also for
parabolic and hyperbolic problems [13,63].

Although Sobolev spaces play a fundamental role in the modern theory of partial
differential equations, the Sobolev scale is too course for various problems (see mono-
graphs [17, 18, 47, 52, 53]). There is a necessity to use the classes of function spaces
calibrated with the help of a function parameter, which characterizes the regularity of
functions or distributions more finely than the number parameter used for the classical
Sobolev or Hölder spaces. In 1963 Hörmander [17] introduced a broad and fruitful gener-
alization of Sobolev spaces in this sense and gave applications of the spaces introduced to
investigation of solvability of partial differential equations (see also his monograph [18]).
In the most interest case of Hilbert spaces, the Hörmander space B2,µ consists of all
tempered distributions w in R

n such that µŵ ∈ L2(R
n) and is endowed with the norm

‖w‖B2,µ
:= ‖µŵ‖L2(Rn). Here, µ : Rn → (0,∞) is a sufficiently general weight function,

and ŵ is the Fourier transform of w. During the last decades, Hörmander spaces and
their various generalizations, called spaces of generalized smoothness, are actively inves-
tigated and applied to problems of mathematical analysis, to differential equations and
stochastic processes (see monographs [20,47,52,53,70,72] and references therein).
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Recently Mikhailets and Murach [37–43] built a theory of solvability of regular elliptic
boundary-value problems for the Hörmander spaces Hs,ϕ := B2,µ and their modifications
by Roitberg. In this theory, µ(ξ) = 〈ξ〉sϕ(〈ξ〉) for arbitrary ξ ∈ R

n, whereas s is a real
number and ϕ : [1,∞) → (0,∞) is a Borel measurable function varying slowly in the sense
of Karamata at infinity (as usual, 〈ξ〉 := (1 + |ξ|2)1/2). Every space Hs,ϕ is attached
to the Sobolev scale {Hs = Hs,1 : s ∈ R} with the help of the number parameter s
and is obtained by the interpolation with a function parameter between the Sobolev
spaces Hs−ε and Hs+δ with ε, δ > 0. Using this interpolation method, Mikhailets and
Murach extended all basic theorems on properties of regular elliptic problems from the
Sobolev spaces to the indicated Hörmander spaces. This theory also contains theorems
on solvability of elliptic systems on manifolds in Hörmander spaces [49,77]. It is set forth
in monograph [47] and surveys [44,45]. Nowadays this theory is extended [3–5,51,78] over
the class of all Hilbert spaces that are interpolation spaces between inner product Sobolev
spaces; these interpolation spaces form a subclass of Hörmander spaces B2,µ [46,48]. Note
that Hörmander spaces and interpolation with a function parameter also find applications
to parabolic initial-boundary value problems [31–34].

The goal of the present paper is to develop a version of this theory for nonregular
elliptic problems with boundary conditions of higher orders with respect to the order of
the corresponding elliptic differential equation. We build this version in the framework
of the two-sided scale of Hörmander spaces Hs,ϕ, with −∞ < s < ∞, modified in the
sense of Roitberg. This modification was investigated in [43].

This paper consists of six sections. Section 1 is Introduction. In Section 2, we formu-
late the elliptic problem under consideration and discuss the formally adjoint problem
with respect to the special Green formula. In Section 3, we consider Hörmander spaces
and their modifications in the sense of Roitberg. Section 4 contains the main results
of the paper. They are theorems on the character of solvability of the elliptic problem
on the two-sided scale of Hörmander–Roitberg spaces and on local properties (up to the
boundary) of its generalized solutions in these spaces. Among them is Theorem 4.4 on a
complete collection of isomorphisms in Hörmander–Roitberg spaces. As an application
of these spaces, we give new sufficient conditions under which the generalized solutions
have continuous partial derivatives of a prescribed order. Specifically, we obtain condi-
tions for the generalized solutions to be classical. Section 5 is devoted to the method of
interpolation with a function parameter between Hilbert spaces that play a main role in
the proof of the key Theorem 4.1. The main results are proved in Section 6.

2. Statement of the problem

Let Ω be an open bounded domain in R
n with n ≥ 2. We suppose that its boundary

Γ := ∂Ω is an infinitely smooth closed manifold of dimension n − 1, the C∞-structure
on Γ being induced by R

n. Let ν(x) denote the unit vector of the inward normal to the
boundary Γ at a point x ∈ Γ.

We consider the boundary-value problem

Au = f in Ω,(2.1)

Bju = gj on Γ, j = 1, . . . , q.(2.2)

Here

A := A(x,D) :=
∑

|µ|≤2q

aµ(x)D
µ

is a linear differential operator on Ω = Ω∪ Γ of an arbitrary even order 2q ≥ 2. Besides,
each

Bj := Bj(x,D) :=
∑

|µ|≤mj

bj,µ(x)D
µ

is a linear boundary differential operator on Γ of an arbitrary order mj ≥ 0. All the
coefficients of these operators are complex-valued infinitely smooth functions given on
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Ω and Γ respectively. In the paper, all functions or distributions are supposed to be
complex-valued, and hence all function spaces considered are complex.

Here and below, we use the standard designations: µ := (µ1, . . . , µn) is a multi-index,
|µ| := µ1 + · · · + µn, D

µ := Dµ1

1 · · ·Dµn
n , Dk := i∂/∂xk for each k ∈ {1, . . . , n}, where

i is imaginary unit and x = (x1, . . . , xn) is an arbitrary point in R
n. We also put

Dν := i∂/∂ν(x).
Throughout the paper, we suppose that the boundary-value problem (2.1), (2.2) is

elliptic in the domain Ω. This means that the differential operator A is properly elliptic
on Ω and that the system of boundary operators B := (B1, . . . , Bq) satisfies Lopatinskii
condition with respect to A on Γ (see, e.g., survey [2, Section 1.2]).

Example 2.1. Consider a boundary-value problem that consists of the partial differen-
tial equation (2.1) (where the operator A is properly elliptic on Ω) and the boundary
conditions

∂k+j−1u

∂ζk+j−1
+

∑

|µ|<k+j−1

bj,µ(x)D
µ = gj on Γ, j = 1, . . . , q.

Here, 0 ≤ k ∈ Z, whereas ζ : Γ → R
n is an infinitely smooth field of vectors ζ(x) which

are nontangential to Γ at every point x ∈ Γ. It is easy to verify that this boundary-value
problem is elliptic in Ω. If k ≤ q, then it is regular elliptic (see, e.g., [71, Subsection 5.2.1,
Remark 4]). Specifically, we may put A := ∆q and ζ(x) := ν(x) for every x ∈ Γ. Here,
as usual, ∆ is the Laplace operator.

Henceforth we suppose that

m := max{m1, . . . ,mq} ≥ 2q.

Put r := m+ 1 for the sake of convenience.
With the problem (2.1), (2.2), we associate the linear mapping

(2.3) u 7→ (Au,B1u, . . . , Bqu) = (Au,Bu), where u ∈ C∞(Ω).

We will investigate properties of an extension by continuity of this mapping on appro-
priate pairs of Hilbert spaces introduced in the next section. To describe the range of
this extension, we need the following special Green formula [26, formula (4.1.10)]:

(Au, v)Ω +

r−2q∑

j=1

(Dj−1
ν Au,wj)Γ +

q∑

j=1

(Bju, hj)Γ

= (u,A+v)Ω +

r∑

k=1

(
Dk−1
ν u,Kkv +

r−2q∑

j=1

R+
j,kwj +

q∑

j=1

Q+
j,khj

)

Γ

for arbitrary u, v ∈ C∞(Ω) and w1, . . . , wr−2q, h1, . . . , hq ∈ C∞(Γ). Here, (·, ·)Ω and
(·, ·)Γ denote the inner products in the Hilbert spaces L2(Ω) and L2(Γ) of square inte-
grable functions over Ω and Γ respectively and later on denote the extension of these
inner products by continuity. As usual, the differential operator A+ is formally adjoint
to A; namely,

(A+v)(x) :=
∑

|µ|≤2q

Dµ
(
aµ(x)v(x)

)
.

Besides, all R+
j,k and Q+

j,k are the tangent differential operators which are adjoint respec-

tively to Rj,k and Qj,k with respect to (·, ·)Γ, with the linear tangent differential operators
Rj,k := Rj,k(x,Dτ ) and Qj,k := Qj,k(x,Dτ ) being taken from the representation of the
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boundary differential operators Dj−1
ν A and Bj in the form

Dj−1
ν A(x,D) =

r∑

k=1

Rj,k(x,Dτ )D
k−1
ν , j = 1, . . . , r − 2q,

Bj(x,D) =
r∑

k=1

Qj,k(x,Dτ )D
k−1
ν , j = 1, . . . , q.

Note that ordRj,k ≤ 2q+ j−k and ordQj,k ≤ mj−k+1, with Rj,k = 0 if k ≥ 2q+ j+1
and with Qj,k = 0 if k ≥ mj + 2. Finally, each Kk := Kk(x,D) is a certain linear
boundary differential operator on Γ of the order ordKk ≤ 2q − k with coefficients from
C∞(Γ). Of course, if k ≥ 2q + 1, then Kk = 0.

Being based on the special Green formula, we consider the following boundary-value
problem in Ω with r − q additional unknown functions on Γ:

A+v = ω in Ω,(2.4)

Kkv +

r−2q∑

j=1

R+
j,kwj +

q∑

j=1

Q+
j,khj = θk on Γ, k = 1, . . . , r.(2.5)

Here, the function v on Ω and r−q functions w1, . . . , wr−2q, h1, . . . , hq on Γ are unknowns.
This problem is called formally adjoint to the problem (2.1), (2.2) with respect to the
special Green formula. The problem (2.1), (2.2) is elliptic in Ω if and only if the formally
adjoint problem (2.4), (2.5) is elliptic in a relevant sense [26, Theorem 4.1.1].

3. Hörmander spaces and their modifications in the sense of Roitberg

Following monograph [47, Sections 1.3, 3.2, and 4.2], we will consider Hörmander
spaces Hs,ϕ and their modifications in the sense of Roitberg and discuss some of their
properties. This spaces are parametrized with an arbitrary real number s and function
parameter ϕ from the class M.

By definition, the class M consists of all Borel measurable functions ϕ : [1,∞) →
(0,∞) that satisfy the following two conditions:

(i) both the functions ϕ and 1/ϕ are bounded on each compact interval [1, b], with
1 < b <∞;

(ii) ϕ(λt)/ϕ(t) → 1 as t→ ∞ for every λ > 0.

Property (ii) means that ϕ is a slowly varying function at infinity in the sense of Kara-
mata [23]. Slowly varying functions are well investigated and have various applica-
tions [9, 68].

A standard example of a function ϕ ∈ M is a continuous function ϕ : [1,∞) → (0,∞)
such that

ϕ(t) := (log t)r1(log log t)r2 . . . (log . . . log︸ ︷︷ ︸
k times

t)rk for t≫ 1.

Here, the integer k ≥ 1 and real numbers r1, . . . , rk are arbitrarily chosen.
This class admits the following description

ϕ ∈ M ⇔ ϕ(t) = exp

(
β(t) +

t∫

1

γ(τ)

τ
dτ

)
for t ≥ 1,

where a bounded Borel measurable function β : [1,∞) → R has a finite limit at infinity,
and a continuous function γ : [1,∞) → R converges to zero at infinity. This description
follows directly from Karamata’s representation theorem (see, e.g., [68, Section 1.2]).
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Let s ∈ R and ϕ ∈ M. We first consider the Hörmander space Hs,ϕ over R
n with

n ≥ 1 and then discuss its versions for Ω and Γ.
By definition, the linear space Hs,ϕ(Rn) consists of all distributions w ∈ S ′(Rn) that

their Fourier transform ŵ is locally Lebesgue integrable over Rn and satisfies the condition
∫

Rn

〈ξ〉2sϕ2(〈ξ〉) |ŵ(ξ)|2 dξ <∞.

Here, as usual, S ′(Rn) denotes the linear topological space of all tempered distributions
on R

n, and 〈ξ〉 := (1+ |ξ|2)1/2 is the smoothed modulus of ξ ∈ R
n. The space Hs,ϕ(Rn)

is endowed with the inner product

(w1, w2)Hs,ϕ(Rn) :=

∫

Rn

〈ξ〉2sϕ2(〈ξ〉) ŵ1(ξ) ŵ2(ξ) dξ

and the corresponding norm

‖w‖Hs,ϕ(Rn) := (w,w)
1/2
Hs,ϕ(Rn).

This space is complete and separable with respect to this norm and is embedded contin-
uously in S ′(Rn). The set C∞

0 (Rn) of test functions is dense in Hs,ϕ(Rn).
The space Hs,ϕ(Rn) is an isotropic Hilbert case of the spaces Bp,µ introduced and

investigated by Hörmander [17, Section 2.2] (see also his monograph [18, Section 10.1]).
Namely, Hs,ϕ(Rn) = Bp,µ if p = 2 and µ(ξ) ≡ 〈ξ〉sϕ(〈ξ〉). Note that the inner product
Hörmander spaces B2,µ coincide with the spaces introduced and investigated by Volevich
and Paneah in [76, Section 2].

In the case of ϕ(t) ≡ 1, the space Hs,ϕ(Rn) becomes the inner product Sobolev space
Hs(Rn) of order s. Generally,

(3.1) Hs+ε(Rn) →֒ Hs,ϕ(Rn) →֒ Hs−ε(Rn) for every ε > 0,

with embeddings being continuous [47, Lemma 1.5]. They show that, the numeric pa-
rameter s characterizes the main regularity of distributions w ∈ Hs,ϕ(Rn), whereas the
function parameter ϕ sets certain supplementary regularity. Specifically, if ϕ(t) → ∞ [or
ϕ(t) → 0] as t → ∞, the parameter ϕ will define supplementary positive [or negative]
regularity. Thus, we can say that ϕ refines the main regularity s in the class

{Hs,ϕ(Rn) : s ∈ R, ϕ ∈ M}

of function Hilbert spaces. This class is selected in [37] and is called the refined Sobolev
scale over Rn [47, Section 1.3.3].

Note [17, Theorem 2.2.9] that the spaces Hs,ϕ(Rn) and H−s,1/ϕ(Rn) are mutually
dual with respect to the extension by continuity of the inner product in L2(R

n). Here,
the second space is well defined because ϕ ∈ M ⇔ 1/ϕ ∈ M.

The Hilbert spaces Hs,ϕ(Ω) and Hs,ϕ(Γ) are introduced in a standard way with the
help of Hs,ϕ(Rn). Let us give the corresponding definitions.

By definition, the linear space Hs,ϕ(Ω) consists of the restrictions of all distributions
w ∈ Hs,ϕ(Rn) to the domain Ω. The norm in Hs,ϕ(Ω) is defined by the formula

‖u‖Hs,ϕ(Ω) := inf
{
‖w‖Hs,ϕ(Rn) : w ∈ Hs,ϕ(Rn), w = u in Ω

}
,

where u ∈ Hs,ϕ(Ω). The spaceHs,ϕ(Ω) is Hilbert and separable with respect to this norm
and is embedded continuously in the linear topological space D′(Ω) of all distributions
on Ω; besides, the set C∞(Ω) is dense in Hs,ϕ(Ω) [47, Theorems 3.1 and 3.3(i)].

Briefly saying, the linear space Hs,ϕ(Γ) consists of all distributions on Γ that yield
elements of Hs,ϕ(Rn−1) in local coordinates on Γ. Let us give a detailed definition. From
the C∞-structure on Γ, we arbitrarily choose a finite atlas formed by certain local charts
αj : R

n−1 ↔ Γj , where j = 1, . . . ,κ. Here, the open sets Γ1, . . . ,Γκ form a covering of
Γ. We also choose functions χj ∈ C∞(Γ), where j = 1, . . . ,κ, that form a partition of
unity on Γ subject to the condition suppχj ⊂ Γj .
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By definition, the linear space Hs,ϕ(Γ) consists of all distributions h ∈ D′(Γ) such
that (χjh)◦αj ∈ Hs,ϕ(Rn−1) for each j ∈ {1, . . . ,κ}. Here, of course, D′(Γ) is the linear
topological space of all distributions on Γ, and (χjh) ◦ αj denotes the representation of
the distribution χjh in the local chart αj . The space Hs,ϕ(Γ) is endowed with the norm

‖h‖Hs,ϕ(Γ) :=

( κ∑

j=1

‖(χjh) ◦ αj‖
2
Hs,ϕ(Rn−1)

)1/2

.

This space is Hilbert and separable with respect to this norm and does not depend
(up to equivalence of norms) on our choice of the atlas and the partition of unity on
Γ [47, Theorem 2.21]. The space Hs,ϕ(Γ) is embedded continuously in D′(Γ), and the
set C∞(Γ) is dense in Hs,ϕ(Γ).

Note [47, Theorem 2.3(v)] that the spaces Hs,ϕ(Γ) and H−s,1/ϕ(Γ) are mutually dual
(up to equivalence of norms) with respect to the form (·, ·)Γ, which is an extension by
continuity of the inner product in L2(Γ). Specifically, the form (h, v)Γ is well defined
for arbitrary h ∈ Hs,ϕ(Γ) and v ∈ C∞(Γ) and is equal to the value of the distribution
h ∈ D′(Γ) on the test function v.

We have the classes of Hilbert spaces

(3.2) {Hs,ϕ(Ω) : s ∈ R, ϕ ∈ M} and {Hs,ϕ(Γ) : s ∈ R, ϕ ∈ M}.

These classes respectively contain the inner product Sobolev spaces Hs(Ω) := Hs,1(Ω)
and Hs(Γ) := Hs,1(Γ) of any order s ∈ R. We have the dense compact embeddings

(3.3) Hs+ε,ϕ1(Ω) →֒ Hs,ϕ(Ω) and Hs+ε,ϕ1(Γ) →֒ Hs,ϕ(Γ) whenever ε > 0,

with s ∈ R and ϕ,ϕ1 ∈ M being arbitrary; see [47, Theorems 2.3(iii) and 3.3(iii)].
Discuss a connection between the scales (3.2). Let s > 1/2 and ϕ ∈ M; then the trace

mapping u 7→ u ↾ Γ, where u ∈ C∞(Γ), extends uniquely (by continuity) to a bounded
operator RΓ : Hs,ϕ(Ω) → Hs−1/2,ϕ(Γ), and this operator is surjective [47, Theorem 3.5].
Thus, for every distribution u ∈ Hs,ϕ(Ω), its trace RΓu on Γ is well defined. But
it is impossible to define this trace reasonably in the case where s < 1/2. Namely,
the above trace mapping cannot be extended to a continuous linear operator from the
whole Sobolev space Hs(Ω) of order s < 1/2 to the linear topological space D′(Γ) (see,
e.g., [47, Remark 3.5]).

Hence, we cannot investigate the boundary-value problem (2.1), (2.2) in the case
where u ranges over the whole space Hs,ϕ(Ω) with s < m + 1/2. To study this prob-
lem for arbitrary real s, we have to use certain modifications of the Hörmander space
Hs,ϕ(Ω). We denote these modifications by Hs,ϕ,(k)(Ω), with 1 ≤ k ∈ Z, and introduce
them by analogy with Roitberg’s [57,58] construction applied to Sobolev spaces (see also
monographs [7, Chapter III, Section 6], [62, Section 2.1], and survey [2, Section 7.9]).
Roitberg’s approach was extended to the refined Sobolev scale by Mikhailets and Murach
in [43] and [47, Section 4.2].

Let, as above, s ∈ R and ϕ ∈ M. We previously need to introduce a certain Hilbert
space denoted by Hs,ϕ,(0)(Ω). Put Hs,ϕ,(0)(Ω) := Hs,ϕ(Ω) if s ≥ 0. But, if s < 0, we let
Hs,ϕ,(0)(Ω) denote the completion of C∞(Ω) with respect to the Hilbert norm

‖u‖Hs,ϕ,(0)(Ω) := sup

{
|(u, v)Ω|

‖v‖H−s,1/ϕ(Ω)

: v ∈ H−s,1/ϕ(Ω), v 6= 0

}
.

Thus, given s < 0, we have the Hilbert rigging of the space L2(Ω) with the positive
space H−s,1/ϕ,(0)(Ω) = H−s,1/ϕ(Ω) and the negative space Hs,ϕ,(0)(Ω) (as to the notion
and general properties of Hilbert riggings, see, e.g., [7, Chapter I, Section 1]). For every
s ∈ R, the spaces Hs,ϕ,(0)(Ω) and H−s,1/ϕ,(0)(Ω) are mutually dual with respect to the
form (·, ·)Ω, which is an extension by continuity of the inner product in L2(Ω) (if s = 0,
the duality is fulfilled up to equivalence of norms); see [47, Theorem 3.9(iii)]. Specifically,
the form (u, v)Ω is well defined for arbitrary u ∈ Hs,ϕ,(0)(Ω) and v ∈ C∞(Ω).

The negative space Hs,ϕ,(0)(Ω), where s < 0, admits the following description. Con-
sider the mapping u 7→ Ou where u ∈ C∞(Ω) and (Ou)(x) := u(x) for x ∈ Ω and
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(Ou)(x) := 0 for x ∈ R
n \ Ω. If s < 0, this mapping extends uniquely (by continuity) to

an isomorphism O between the Hilbert space Hs,ϕ,(0)(Ω) and the subspace
{
v ∈ Hs,ϕ(Rn) : supp v ⊆ Ω

}

of Hs,ϕ(Rn). This fact is a special case of the result proved in [76, Section 3.4] (see
also [47, Subsection 3.2.3]).

Now, let 1 ≤ k ∈ Z, and give a definition of the Hilbert space Hs,ϕ,(k)(Ω). Put

Ek := {j − 1/2 : j ∈ Z, 1 ≤ j ≤ k}.

If s ∈ R \ Ek, we let Hs,ϕ,(k)(Ω) denote the completion of C∞(Ω) with respect to the
Hilbert norm

‖u‖Hs,ϕ,(k)(Ω) :=

(
‖u‖2Hs,ϕ,(0)(Ω) +

k∑

j=1

‖(Dj−1
ν u)↾Γ‖2Hs−j+1/2,ϕ(Γ)

)1/2

.

If s ∈ Ek, we define the space H
s,ϕ,(k)(Ω) by means of the interpolation between Hilbert

spaces. Namely, put

(3.4) Hs,ϕ,(k)(Ω) :=
[
Hs−1/2,ϕ,(k)(Ω), Hs+1/2,ϕ,(k)(Ω)

]
t1/2

.

A definition of this interpolation is given in Section 5.
In the Sobolev case of ϕ(t) ≡ 1, the space Hs,ϕ,(k)(Ω) was introduced by Roitberg

[57, 58]. Therefore we say that Hs,ϕ,(k)(Ω) is a modification of the Hörmander space
Hs,ϕ(Ω) in the sense of Roitberg or, briefly, is a Hörmander–Roitberg space. The number
k is called the index of this modification. If ϕ(t) ≡ 1, we will omit the index ϕ in the
designations of the spaces introduced in this section and below. Specifically, Hs,(k)(Ω) :=
Hs,1,(k)(Ω) is a Sobolev–Roitberg space.

The space Hs,ϕ,(k)(Ω) with s ∈ R \ Ek admits the following description [47, Theo-
rem 4.11(i)]: the linear mapping

Tk : u 7→
(
u, u↾Γ, . . . , (Dk−1

ν u)↾Γ
)
, where u ∈ C∞(Ω),

extends uniquely (by continuity) to an isometric linear operator

Tk : Hs,ϕ,(k)(Ω) → Hs,ϕ,(0)(Ω)⊕
k⊕

j=1

Hs−j+1/2,ϕ(Γ) =: Πs,ϕ,(k)(Ω,Γ),

whose range consists of all vectors

(u0, u1, . . . , uk) ∈ Πs,ϕ,(k)(Ω,Γ)

such that uj = RΓD
j−1
ν u0 for each j ∈ {1, . . . , k} subject to s > j − 1/2. If s ∈ Ek,

this mapping extends uniquely to a bounded linear operator Tk from Hs,ϕ,(k)(Ω) to
Πs,ϕ,(k)(Ω,Γ), but we cannot assert that this operator is isometric and that its range
consists of all the vectors indicated above [47, Remark 4.6].

We have the class {
Hs,ϕ,(k)(Ω) : s ∈ R, ϕ ∈ M

}

of Hilbert spaces. They are separable [47, Theorem 4.12(i)]. We may say that this class
is a two-sided scale of Hörmander–Roitberg spaces with respect to the number parameter
s. Note that

(3.5) Hs,ϕ,(k)(Ω) = Hs,ϕ(Ω) for every s > k − 1/2

up to equivalence of norms [47, Theorem 4.12(iii)].
We have the dense compact embedding

(3.6) Hs+ε,ϕ1,(k)(Ω) →֒ Hs,ϕ,(k)(Ω) whenever ε > 0,

with s ∈ R and ϕ,ϕ1 ∈ M being arbitrary; see [47, Theorem 4.12(iv)]. Specifically,

Hs+ε,(k)(Ω) →֒ Hs,ϕ,(k)(Ω) →֒ Hs−ε,(k)(Ω) whenever ε > 0.
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Therefore we can put

H−∞,(k)(Ω) :=
⋃

s∈R, ϕ∈M

Hs,ϕ,(k)(Ω) =
⋃

s∈R

Hs,(k)(Ω).

The linear space H−∞,(k)(Ω) is endowed with the topology of inductive limit. Note that
the space H−∞,(k)(Ω) does not lie in D′(Ω). However, its part

Hk−1/2+(Ω) :=
⋃

s>k−1/2,
ϕ∈M

Hs,ϕ,(k)(Ω) =
⋃

s>k−1/2,
ϕ∈M

Hs,ϕ(Ω)

lies in D′(Ω). Here, the second equality is due to (3.5). Note that properties (3.5) and
(3.6) and, hence, these designations are also valid in r = 0 case [47, Theorem 3.9].

The Hörmander–Roitberg spaceHs,ϕ,(k)(Ω) is suitable in the theory of boundary-value
problems for arbitrary s ∈ R due to the following fact.

Proposition 3.1. Let an integer k ≥ 1. Suppose that L is a linear differential operator
on Ω of order ℓ ≤ k with coefficients from C∞(Ω). Then the mapping u 7→ Lu, where
u ∈ C∞(Ω), extends uniquely (by continuity) to a bounded linear operator

L : Hs,ϕ,(k)(Ω) → Hs−ℓ,ϕ,(k−ℓ)(Ω) for all s ∈ R and ϕ ∈ M.

Besides, suppose that K is a boundary linear differential operator on Γ of order ̺ ≤ k−1
with coefficients from C∞(Γ). Then the mapping u 7→ Ku, where u ∈ C∞(Ω), extends
uniquely (by continuity) to a bounded linear operator

K : Hs,ϕ,(k)(Ω) → Hs−̺−1/2,ϕ(Γ) for all s ∈ R and ϕ ∈ M.

In the case of ϕ(t) ≡ 1, this proposition is proved by Roitberg [62, Lemma 2.3.1 and
Corollary 2.3.1]. The general situation is derived from this case by interpolation with
the help of Proposition 5.1 given in Section 5 (cf. [47, Proof of Theorem 4.13]). Note
that the cases ℓ = 0 and ̺ = 0 are admissible in Proposition 3.1. Specifically, the
operator of multiplication by an arbitrary function from C∞(Ω) is bounded on every
space Hs,ϕ,(k)(Ω).

Remark 3.2. We also need the following version of the assertion of Proposition 3.1 con-
cerning the operator L: let the assumption of this proposition about L be fulfilled; then
the mapping u 7→ Lu, where u ∈ C∞(Ω), extends uniquely (by continuity) to a bounded
linear operator

L : Hs,ϕ,(k)(Ω) → Hs−ℓ,ϕ,(q)(Ω) whenever 0 ≤ q ≤ k − ℓ and q ∈ Z.

Here, s ∈ R and ϕ ∈ M are arbitrary. This version follows from Proposition 3.1 and the
inequality

(3.7) ‖v‖Hs−ℓ,ϕ,(q)(Ω) ≤ c ‖v‖Hs−ℓ,ϕ,(k−ℓ)(Ω) for all v ∈ C∞(Ω),

which is used for v := Lu. Here, c is a certain positive number not depending on v.
If s − ℓ /∈ Ek−ℓ, this inequality is evident, with c = 1. For the rest s, it is ob-
tained by interpolation with the help of Proposition 5.1 stated in Section 5. Namely,
let s− ℓ ∈ Ek−ℓ. Since the identity mapping on C∞(Ω) extends uniquely to bounded
operators from Hs−ℓ∓1/4,(k−ℓ)(Ω) to Hs−ℓ∓1/4,(q)(Ω), this mapping extends uniquely to
a bounded operator from the space

[
Hs−ℓ−1/4,(k−ℓ)(Ω), Hs−ℓ+1/4,(k−ℓ)(Ω)

]
ψ
= Hs−ℓ,ϕ,(k−ℓ)(Ω)

to the space [
Hs−ℓ−1/4,(q)(Ω), Hs−ℓ+1/4,(q)(Ω)

]
ψ
= Hs−ℓ,ϕ,(q)(Ω).
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Here, ψ is the interpolation parameter from Proposition 5.1 in which ε := δ := 1/4.
These equalities of spaces are valid up to equivalence of norms due to Proposition 5.1.
This gives inequality (3.7) in the case of s− ℓ ∈ Ek−ℓ.

4. Main results

Given s ∈ R and ϕ ∈ M, we define the Hilbert space

Hs−2q,ϕ,(r−2q)(Ω,Γ) := Hs−2q,ϕ,(r−2q)(Ω)⊕

q⊕

j=1

Hs−mj−1/2,ϕ(Γ).

According to Proposition 3.1, mapping (2.3) extends uniquely (by continuity) to a
bounded linear operator

(4.1) (A,B) : Hs,ϕ,(r)(Ω) → Hs−2q,ϕ,(r−2q)(Ω,Γ).

The main results of the paper concern the properties of this operator, which corresponds
to the elliptic boundary-value problem (2.1), (2.2). We will formulate them in this
section.

Let N denote the set of all solutions u ∈ C∞(Ω) to the boundary-value problem (2.1),
(2.2) in the homogeneous case where f = 0 in Ω and each gj = 0 on Γ. Similarly, let N⋆
denote the set of all solutions

(v, w1, . . . , wr−2q, h1, . . . , hq) ∈ C∞(Ω)× (C∞(Γ))r−q

to the formally adjoint boundary-value problem (2.4), (2.5) in the homogeneous case
where ω = 0 in Ω and each θk = 0 on Γ. Since both problems (2.1), (2.2) and (2.4), (2.5)
are elliptic, both spaces N and N⋆ are finite-dimensional [26, Corollary 4.1.1].

Theorem 4.1. The bounded operator (4.1) is Fredholm for arbitrary s ∈ R and ϕ ∈ M.
Its kernel is equal to N , and its range consists of all vectors

(f, g1, . . . , gq) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ)

such that

(4.2)
(f0, v)Ω +

r−2q∑

j=1

(fj , wj)Γ +

q∑

j=1

(gj , hj)Γ = 0

for every (v, w1, . . . , wr−2q, h1, . . . , hq) ∈ N⋆,

where (f0, f1, . . . , fr−2q) := Tr−2qf . The index of operator (4.1) equals dimN − dimN⋆
and therefore does not depend on s and ϕ.

In view of this theorem, we recall that a linear bounded operator T : E1 → E2,
where E1 and E2 are Banach spaces, is called Fredholm if its kernel kerT and co-kernel
E2/T (E1) are both finite-dimensional. If this operator is Fredholm, its range is closed in
E2 (see, e.g., [19, Lemma 19.1.1]), and its index

indT := dimkerT − dim(E2/T (E1))

is well defined and finite.
Note that if s > m + 1/2, the Fredholm bounded operator (4.1) acts between the

(non-modified) Hörmander spaces

(A,B) : Hs,ϕ(Ω) → Hs−2q,ϕ(Ω)⊕

q⊕

j=1

Hs−mj−1/2,ϕ(Γ).

This is due to (3.5) in view of r = m+ 1.
If N = {0} and N⋆ = {0}, operator (4.1) is an isomorphism between the spaces

Hs,ϕ,(r)(Ω) and Hs−2q,ϕ,(r−2q)(Ω,Γ). In the general situation, this operator induces
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an isomorphism between their certain subspaces of finite co-dimension. We build the
isomorphism with the help of the next fact.

Lemma 4.2. For arbitrary s ∈ R and ϕ ∈ M, we have the following decompositions of
the spaces Hs,ϕ,(r)(Ω) and Hs−2q,ϕ,(r−2q)(Ω,Γ) in the direct sum of their subspaces:

(4.3) Hs,ϕ,(r)(Ω) = N ∔
{
u ∈ Hs,ϕ,(r)(Ω) : (u0, ω)Ω = 0 for all ω ∈ N

}

and

(4.4)
Hs−2q,ϕ,(r−2q)(Ω,Γ)

= G∔
{
(f, g1, . . . , gq) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ) : (4.2) is true

}
.

Here, u0 is the initial component of the vector Tru = (u0, u1, . . . , ur). Besides, G is a
certain finite-dimensional space such that dimG = dimN⋆ and G ⊂ C∞(Ω)× (C∞(Γ))q

and that G does not depend on s and ϕ.

Remark 4.3. Let ϕ ∈ M and assume that s < 1/2 + 2q. Then Tr−2q is an isometric

isomorphism between the spaces Hs−2q,ϕ,(r−2q)(Ω) and Πs−2q,ϕ,(r−2q)(Ω,Γ). Therefore
we can choose

G :=
{
(T−1
r−2q(v, w1, . . . , wr−2q), h1, . . . , hq)

: (v, w1, . . . , wr−2q, h1, . . . , hq) ∈ N⋆
}

in decomposition (4.4). Indeed, the chosen spaceG and the second summand in (4.4) have
the trivial intersection, and dimG = dimN⋆ is equal to the codimension of the second
summand in view of Theorem 4.1. However, this choice is impossible for s ≥ 1/2 + 2q
because the space

{(v, w1, . . . , wr−2q) : (v, w1, . . . , wr−2q, h1, . . . , hq) ∈ N⋆}

does not lie generally in Tr−2q(H
s−2q,ϕ,(r−2q)(Ω)) for these s.

Let P and Q respectively denote the projectors of the spaces

Hs,ϕ,(r)(Ω) and Hs−2q,ϕ,(r−2q)(Ω,Γ)

onto the second summands in (4.3) and (4.4) parallel to the first summands. Evidently,
these projectors are independent of s and ϕ.

Theorem 4.4. For arbitrary s ∈ R and ϕ ∈ M, the restriction of mapping (4.1) to the
subspace P (Hs,ϕ,(r)(Ω)) is an isomorphism

(4.5) (A,B) : P (Hs,ϕ,(r)(Ω)) ↔ Q(Hs−2q,ϕ,(r−2q)(Ω,Γ)).

This statement is a theorem on a complete collection of isomorphisms generated by
the elliptic problem under consideration in Hörmander–Roitberg spaces. This collection
is complete in the sense that the number parameter s ranges over the whole real axis.

Let us consider some important properties of the generalized solutions to the elliptic
boundary-value problem (2.1), (2.2). Assume that

(f, g) := (f, g1, . . . , gq) ∈ H−∞,(r−2q)(Ω)× (D′(Γ))q.

A vector u ∈ H−∞,(r)(Ω) is called a (strong) generalized solution (in the sense of Roit-
berg) of this problem if (A,B)u = (f, g), where (A,B) is operator (4.1) for some param-
eters s ∈ R and ϕ ∈ M. Of course, this definition is reasonable, i.e. it does not depend
on s and ϕ. Besides, remark that

H−∞,(r−2q)(Ω)× (D′(Γ))q =
⋃

s∈R, ϕ∈M

Hs,ϕ,(r−2q)(Ω).
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Theorem 4.5. Let s ∈ R, ϕ ∈ M, and a real number σ > 0. Suppose that functions
χ, η ∈ C∞(Ω) satisfy the condition η = 1 in a neighbourhood of suppχ. Then there
exists a number c = c(s, ϕ, σ, χ, η) > 0 that an arbitrary vector u ∈ Hs,ϕ,(r)(Ω) satisfies
the estimate

(4.6) ‖χu‖Hs,ϕ,(r)(Ω) ≤ c
(
‖η(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖ηu‖Hs−σ,ϕ,(r)(Ω)

)
.

Here, c does not depend on u. If σ ≤ 1, we may replace η with χ in the first summand
on the right of (4.6).

As to this theorem, we note first that the multiplication by η ∈ C∞(Ω) or η ↾ Γ is
a bounded operator on every space Hθ,ϕ,(k)(Ω) or Hθ,ϕ(Γ), where θ ∈ R, ϕ ∈ M, and
1 ≤ k ∈ Z; see [47, Theorem 4.13(i) and Lemma 2.5]. Hence, all terms of (4.6) are well
defined and finite, we naturally interpreting η(A,B)u as (ηAu, (η ↾Γ)B1u, . . . , (η ↾Γ)Bqu).

In the case of χ(·) ≡ η(·) ≡ 1, inequality (4.6) is a global a priori estimate of the
generalized solution u to the elliptic boundary-value problem (2.1), (2.2). In the general
situation, this inequality is a local a priori estimate (up to Γ) of u. Indeed, for every
nonempty open subset of Ω, we can choose functions χ and η which satisfy the condition
of Theorem 4.5 and whose supports lie in this subset.

Now we pay our attention to a local regularity up to Γ of the generalized solutions. Let
V be an arbitrary open subset of Rn that has a nonempty intersection with the domain Ω.
We set Ω0 := Ω ∩ V and Γ0 := Γ ∩ V (the case of Γ0 = ∅ is possible). Let us introduce
local analogs of the spaces Hs,ϕ,(k)(Ω) and Hs,ϕ(Γ), with s ∈ R, ϕ ∈ M, and 1 ≤ k ∈ Z.

By definition, the space H
s,ϕ,(k)
loc (Ω0,Γ0) consists of all vectors u ∈ H−∞,(k)(Ω) such that

χu ∈ Hs,ϕ,(k)(Ω) for an arbitrary function χ ∈ C∞(Ω) with suppχ ⊂ Ω0 ∪Γ0. Similarly,
the space Hs,ϕ

loc (Γ0) consists of all distributions h ∈ D′(Γ) such that χh ∈ Hs,ϕ(Γ) for
every function χ ∈ C∞(Γ) with suppχ ⊂ Γ0. Put

H
s−2q,ϕ,(r−2q)
loc (Ω0,Γ0) := H

s−2q,ϕ,(r−2q)
loc (Ω0,Γ0)×

q∏

j=1

H
s−mj−1/2,ϕ
loc (Γ0).

Theorem 4.6. Suppose that u ∈ H−∞,(r)(Ω) is a generalized solution to the elliptic
boundary-value problem (2.1), (2.2) in which

(f, g) ∈ H
s−2q,ϕ,(r−2q)
loc (Ω0,Γ0)

for some parameters s ∈ R and ϕ ∈ M. Then u ∈ H
s,ϕ,(r)
loc (Ω0,Γ0).

If Ω0 = Ω and Γ0 = Γ, then the equalities H
s,ϕ,(r)
loc (Ω0,Γ0) = Hs,ϕ,(r)(Ω) and

H
s−2q,ϕ,(r−2q)
loc (Ω0,Γ0) = Hs−2q,ϕ,(r−2q)(Ω,Γ) hold true. Therefore, Theorem 4.6 states

in this case that the regularity of u increases globally, i.e. on the whole closed domain Ω.
If Γ0 = ∅, this theorem becomes an assertion about increase in local smoothness of u in
neighbourhoods of inner points of Ω.

In the Sobolev case of ϕ(t) ≡ 1, Theorems 4.1, 4.4, 4.5, and 4.6 are proved in Roit-
berg’s monographs [62, Chapter 4 and Section 7.2]. However, Roitberg does not use the
formally adjoint problem (2.4), (2.5) for the description of the range of the Fredholm
operator (4.1). This is done in Kozlov, Maz’ya and Rossmann’s monograph [26, Sec-
tion 4.1] for elliptic problems with additional unknown functions in boundary conditions
(see also [63, Subsection 2.7.4]). Note that Isomorphism Theorem 4.4 in the Sobolev
case was established by Kostarchuk and Roitberg [24, Theorem 5] (without involving
the formally adjoint problem). Apparently, Vainberg and Grushin [73, Section 4] showed
first that it is necessary to use the expression of the form

r−2q∑

j=1

(fj , wj)Γ
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in the description (4.2) of the domain of (A,B) in the m ≥ 2q case under consideration.
Elliptic problems with additional unknown functions in boundary conditions, specifically
the formally adjoint problem (2.4), (2.5), are investigated in Hörmander spaces in [12,50],
the orders of boundary conditions being less than 2q.

As an application of Theorem 4.6, we will obtain sufficient conditions under which the
generalized solution u ∈ H−∞,(r)(Ω) yields a function from Cp(Ω0 ∪Γ0) for some integer
p ≥ 0. It is naturally to admit the following agreement for u ∈ H−∞,(r)(Ω): in the case
of Γ0 6= ∅ we write u ∈ Cp(Ω0 ∪ Γ0) if an only if χu ∈ Hr−1/2+(Ω) ∩ Cp(Ω) for every
function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0 ∪ Γ0. Note the inclusion χu ∈ Hr−1/2+(Ω)
ensures that χu is a distribution in Ω, for which the condition χu ∈ Cp(Ω) makes
sense. Besides, considering the case of Γ0 = ∅, we write u ∈ Cp(Ω0) if and only if
(χu)0 ∈ H−1/2+(Ω)∩Cp(Ω) for every function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0. Here,
(χu)0 denotes the initial component of the vector Tr(χu), whereas Tr is the operator
introduced in Section 3.

Theorem 4.7. Let 0 ≤ p ∈ Z, and assume that p > r− (n+ 1)/2 in the case of Γ0 6= ∅.
Suppose that the condition of Theorem 4.6 is fulfilled for s := p + n/2 and a certain
function ϕ ∈ M subject to

(4.7)

∞∫

1

dt

t ϕ2(t)
<∞.

Then u ∈ Cp(Ω0 ∪ Γ0).

Remark 4.8. Condition (4.7) is sharp in Theorem 4.7. This means the following: let
0 ≤ p ∈ Z and ϕ ∈ M; then it follows from the implication

(4.8)

(
u ∈ H−∞,(r)(Ω), (A,B)u ∈ H

p+n/2−2q,ϕ,(r−2q)
loc (Ω0,Γ0)

)

=⇒ u ∈ Cp(Ω0 ∪ Γ0)

that ϕ satisfies condition (4.7).

If we stated a version of Theorem 4.7 in the framework of Sobolev–Roitberg spaces,
we would suppose that

(f, g) ∈ H
s−2q,(r−2q)
loc (Ω0,Γ0) for some s > p+ n/2.

This assumption is stronger than that made in Theorem 4.7 in terms of Hörmander–
Roitberg spaces.

We also give a sufficient condition under which the generalized solution u to problem
(2.1), (2.2) is classical, i.e., u ∈ C2q(Ω)∩Cm(Uσ ∪ Γ) for some σ > 0, where Uσ :=

{
x ∈

Ω : dist(x,Γ) < σ
}
. If the solution u is classical, the left-hand sides of this problem are

calculated with the help of classical partial derivatives and are continuous functions on
Ω and Γ respectively.

Theorem 4.9. Suppose that a vector u ∈ H−∞,(r)(Ω) is a generalized solution to the
elliptic boundary-value problem (2.1), (2.2) in which

f ∈ H
n/2,ϕ1,(r−2q)
loc (Ω, ∅) ∩Hm−2q+n/2,ϕ2,(r−2q)(Uσ,Γ),(4.9)

gj ∈ Hm−mj+(n−1)/2,ϕ2(Γ), with j = 1, . . . , q,(4.10)

for certain parameters ϕ1, ϕ2 ∈ M that satisfy condition (4.7) with ϕ := ϕ1 and ϕ := ϕ2

respectively. Then u is a classical solution.

We will prove Theorems 4.1, 4.4–4.7, 4.9 and Lemma 4.2 and justify Remark 4.8 in
Section 6.
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5. Interpolation between Hilbert spaces

The Hilbert spaces considered in Section 3 have an important interpolation property,
which will play a key role in our proof of Theorem 1. Namely, every Hörmander space
Hs,ϕ(G), where s ∈ R, ϕ ∈ M, and G ∈ {Rn,Ω,Γ}, can be obtained by the interpola-
tion with an appropriate function parameter between the Sobolev spaces Hs−ε(G) and
Hs+δ(G) with ε, δ > 0. A similar result holds true for the Hörmander–Roitberg spaces
Hs,ϕ,(k)(Ω).

Therefore we will recall the definition of the interpolation with a function parameter
between Hilbert spaces. This interpolation method was introduced by Foiaş and Lions
[14, p. 278]. We restrict the presentation to the case of separable Hilbert spaces, which
will be enough for our purposes. We follow monograph [47, Section 1.1].

Let X := [X0, X1] be an ordered pair of separable complex Hilbert spaces that satisfy
the following two conditions: X1 is a dense manifold in X0, and there is a number c > 0
such that ‖w‖X0

≤ c ‖w‖X1
for every w ∈ X1 (briefly saying, the dense continuous

embedding X1 →֒ X0 holds). This pair is called admissible. As is known [30, Chapter 1,
Section 1], for X there exists a positive-definite self-adjoint operator J on X0 with the
domain X1 such that ‖Jw‖X0

= ‖w‖X1
for every w ∈ X1. This operator is uniquely

determined by the pair X and is called a generating operator for X.
Let B denote the set of all Borel measurable functions ψ : (0,∞) → (0,∞) such that ψ

is bounded on every compact interval [a, b] with 0 < a < b <∞ and that 1/ψ is bounded
on every closed semiaxis [r,∞) with r > 0.

Given ψ ∈ B, we consider the operator ψ(J), which is defined (and positive-definite) in
X0 as the Borel function ψ of the positive-definite self-adjoint operator J . Let [X0, X1]ψ
or, simply, Xψ denote the domain of the operator ψ(J) endowed with the inner product

(w1, w2)Xψ := (ψ(J)w1, ψ(J)w2)X0
and the corresponding norm ‖w‖Xψ = (w,w)

1/2
Xψ

.

The space Xψ is Hilbert and separable. The continuous and dense embedding Xψ →֒ X0

holds true.
A function ψ ∈ B is called an interpolation parameter if and only if the following

condition is fulfilled for all admissible pairs X = [X0, X1] and Y = [Y0, Y1] of Hilbert
spaces and for an arbitrary linear mapping T given on X0: if the restriction of T to Xj

is a bounded operator T : Xj → Yj for each j ∈ {0, 1}, the restriction of T to Xψ is
also a bounded operator T : Xψ → Yψ. If ψ is an interpolation parameter, we say that
the Hilbert space Xψ is obtained by the interpolation with the function parameter ψ of
the pair X = [X0, X1] (or between X0 and X1). We also say that the bounded operator
T : Xψ → Yψ is obtained by the interpolation with the parameter ψ of the bounded
operators T : X0 → Y0 and T : X1 → Y1. In this case, the dense and continuous
embeddings X1 →֒ Xψ →֒ X0 hold.

Note that a function ψ ∈ B is an interpolation parameter if and only if ψ is pseu-
doconcave in a neighbourhood of +∞ [47, Section 1.1.9]. The latter condition means
that there exists a concave function ψ1 : (b,∞) → (0,∞), where b ≫ 1, such that both
functions ψ/ψ1 and ψ1/ψ are bounded on (b,∞). This fundamental result follows from
Peetre’s theorem [55,56] about description of all interpolation functions of positive order
(see also [8, Section 5.4]).

Specifically, the power function ψ(t) ≡ tθ is an interpolation parameter if and only if
0 ≤ θ ≤ 1. In this case the exponent θ ∈ [0, 1] is considered as a number parameter of the
interpolation (see [28, Chapter IV, Section 1, Subsection 10] or [30, Chapter 1, Sections 2
and 5]). This method of interpolation between spaces was historically first and belongs to
Lions and S. Krein. It is used in definition (3.4) of certain Hörmander–Roitberg spaces.

Let us formulate the above-mentioned interpolation property of the Hörmander spaces
and their modifications in the sense of Roitberg.
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Proposition 5.1. Let a function ϕ ∈ M and positive real numbers ε and δ be given.
Define a function ψ ∈ B by the formula

ψ(t) =

{
tε/(ε+δ)ϕ(t1/(ε+δ)) if t ≥ 1,

ϕ(1) if 0 < t < 1.

Then ψ is an interpolation parameter, and
[
Hs−ε(G), Hs+δ(G)

]
ψ
= Hs,ϕ(G) for every s ∈ R

with equivalence of norms. Here, G ∈ {Rn,Ω,Γ}; if G = R
n, the equality of norms

holds. Besides, let an integer k ≥ 1, and assume that at least one of the inequalities
s− ε > k − 1/2 and s+ δ < k + 1/2 is satisfied in the case of odd k. Then

[
Hs−ε,(k)(Ω), Hs+δ,(k)(Ω)

]
ψ
= Hs,ϕ,(k)(Ω) for every s ∈ R

with equivalence of norms.

This proposition is a collection of the results proved in [47, Theorems 1.14, 2.2, 3.2,
and 4.22]. We also need the following two general properties of the interpolation [47,
Theorems 1.7 and 1.5].

Proposition 5.2. Let X = [X0, X1] and Y = [Y0, Y1] be two admissible pairs of Hilbert
spaces. Suppose that a linear mapping T is given on X0 and satisfies the following
condition: the restrictions of T to the spaces X0 and X1 are Fredholm bounded operators
T : X0 → Y0 and T : X1 → Y1 respectively, and these operators have the same kernel and
the same index. Then, for an arbitrary interpolation parameter ψ ∈ B, the restriction of
T to Xψ is also a Fredholm bounded operator T : Xψ → Yψ with the same kernel and the
same index; the range of this operator is equal to Yψ ∩ T (X0).

Proposition 5.3. Let [X
(k)
0 , X

(k)
1 ], where k = 1, . . . , p, be a finite collection of admissible

pairs of Hilbert spaces. Then, for every function ψ ∈ B, we have

[ p⊕

k=1

X
(k)
0 ,

p⊕

k=1

X
(k)
1

]

ψ

=

p⊕

k=1

[
X

(k)
0 , X

(k)
1

]
ψ

with equality of norms.

6. Proofs of the main results

In this section we will prove the results formulated in Section 4.

Proof of Theorem 4.1. In the Sobolev case of ϕ(t) ≡ 1, this theorem is proved in Roit-
berg’s monograph [62, Theorem 4.1.3] excepting the indication of the relation of N⋆ to
the formally adjoint problem (2.4), (2.5). Roitberg states only that N⋆ in (4.2) is a
certain finite-dimensional space which lies in C∞(Ω)× (C∞(Γ))r−q and does not depend
on s ∈ R. It follows from this that

(6.1)
(A,B)(Hs,(r)(Ω)) = Hs−2q,(r−2q)(Ω,Γ) ∩ (A,B)(Hs−ε,(r)(Ω))

for arbitrary s ∈ R and ε > 0.

The indicated description of the range of the Fredholm operator (4.1) with the help of
the formally adjoint problem (2.4), (2.5) is given in Kozlov, Maz’ya and Rossmann’s
monograph [26, Theorem 4.1.4] on the additional assumption that s ∈ Z. In the case of
fractional s, this description follows directly from property (6.1) considered for s−ε ∈ Z.
Thus, the conclusion of Theorem 4.1 is true in the Sobolev case for every real s.
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Assuming ϕ ∈ M, we will deduce Theorem 4.1 from the Sobolev case with the help
of the interpolation with a function parameter. Namely, let s ∈ R and ϕ ∈ M. Choose
a number ε ∈ (0, 1/2), and consider the bounded linear operators

(6.2) (A,B) : Hs∓ε,(r)(Ω) → Hs∓ε−2q,(r−2q)(Ω,Γ).

Owing to Theorem 4.1 in the Sobolev case, they are Fredholm, have the common kernel
N and the same index dimN − dimN⋆. Besides,

(6.3) (A,B)(Hs∓ε,(r)(Ω)) =
{
(f, g) ∈ Hs∓ε−2q,(r−2q)(Ω,Γ) : (4.2) is true

}
.

Let ψ be the interpolation parameter from Proposition 5.1 where δ := ε. Applying the
interpolation with the function parameter ψ to operators (6.2) and using Proposition 5.2,
we obtain the Fredholm bounded operator

(6.4)
(A,B) :

[
Hs−ε,(r)(Ω), Hs+ε,(r)(Ω)

]
ψ

→
[
Hs−ε−2q,(r−2q)(Ω,Γ),Hs+ε−2q,(r−2q)(Ω,Γ)

]
ψ
.

This operator is a restriction of the mapping (6.2) defined on Hs−ε,(r)(Ω).
Let us describe the interpolation spaces in (6.4) with the help of Proposition 5.1. Since

0 < ε < 1/2, both numbers s ∓ ε satisfy at least one of the inequalities s ∓ ε > r − 1/2
and s∓ ε < r + 1/2. Hence, owing to Proposition 5.1, we have the equality

[
Hs−ε,(r)(Ω), Hs+ε,(r)(Ω)

]
ψ
= Hs,ϕ,(r)(Ω).

Besides,
[
Hs−ε−2q,(r−2q)(Ω,Γ),Hs+ε−2q,(r−2q)(Ω,Γ)

]
ψ

=
[
Hs−2q−ε,(r−2q)(Ω), Hs−2q+ε,(r−2q)(Ω)

]
ψ

⊕

q⊕

j=1

[
Hs−mj−1/2−ε(Γ), Hs−mj−1/2+ε(Γ)

]
ψ

= Hs−2q,ϕ,(r−2q)(Ω)⊕

q⊕

j=1

Hs−mj−1/2,ϕ(Γ)

= Hs−2q,ϕ,(r−2q)(Ω,Γ)

in view of Proposition 5.3. These equalities of spaces are fulfilled with equivalence of
norms.

Hence, the Fredholm bounded operator (6.4) is operator (4.1). According to Propo-
sition 5.2, the kernel and index of (4.1) coincide respectively with the common kernel
N and index dimN − dimN⋆ of operators (6.2). Moreover, owing to (6.3), the range of
(4.1) is equal to

Hs−2q,ϕ,(r−2q)(Ω,Γ) ∩ (A,B)(Hs−ε,(r)(Ω))

=
{
(f, g) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ) : (4.2) is true

}
.

Thus, the Fredholm operator (4.1) has all the properties stated in Theorem 4.1. �

Proof of Lemma 4.2. Decomposition (4.3) is demonstrated in the same way as that used
in the proof of [47, Lemma 4.4, formula (4.90)], where the case of even r is considered
(see also the proofs of [62, Lemmas 4.1.1 and 4.1.2] in the Sobolev case). Let us establish
decomposition (4.4).

We first examine the case where s = r and ϕ(t) ≡ 1. Consider the orthogonal sum

(6.5) Hr−2q,(r−2q)(Ω,Γ) = G0 ⊕
{
(f, g) ∈ Hr−2q,(r−2q)(Ω,Γ) : (4.2) is true

}
.
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Here, G0 is a finite-dimensional subspace of Hr−2q,(r−2q)(Ω,Γ) due to Theorem 4.1. Since
the linear manifold C∞(Ω)×(C∞(Γ))q is dense inHr−2q,(r−2q)(Ω,Γ), it follows from (6.5)
by [15, Lemma 2.1] that there exists a finite-dimensional subspaceG of C∞(Ω)×(C∞(Γ))q

that formula (4.4) holds true in the case considered. Owing to Theorem 4.1, we have the
equality dimG = dimN⋆.

Decomposition (4.4) remains true for this subspace G in the general situation of arbi-
trary s ∈ R and ϕ ∈ M. Indeed, since G ⊂ C∞(Ω)× (C∞(Γ))q, we have the equalities

G ∩
{
(f, g) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ) : (4.2) is true

}

= G ∩
{
(f, g) ∈ Hr−2q,(r−2q)(Ω,Γ) : (4.2) is true

}
= {0}.

Besides, owing to Theorem 4.1, the dimension of G equaled dimN⋆ coincides with the
codimension of the second summand in (4.4). �

Proof of Theorem 4.4. By virtue of Theorem 4.1, the bounded linear operator (4.5) is a
bijection. Therefore, this operator is an isomorphism according to the Banach theorem
on inverse operator. �

Proof of Theorem 4.5. In the case of χ(·) ≡ η(·) ≡ 1, this theorem follows from Theo-
rem 4.1 and Petre’s lemma [54, Lemma 3]. Namely, according to this lemma, estimate
(4.6) in this case is a consequence of the facts that the bounded operator (4.1) has
a finite-dimensional kernel and closed range and that the embedding Hs,ϕ,(r)(Ω) →֒
Hs−σ,ϕ,(r)(Ω) is compact. Thus, there exists a number c = c(s, ϕ, σ) > 0 such that

(6.6) ‖u‖Hs,ϕ,(r)(Ω) ≤ c
(
‖(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖u‖Hs−σ,ϕ,(r)(Ω)

)

for arbitrary u ∈ Hs,ϕ,(r)(Ω).
Let us prove Theorem 4.5 in the general situation. Owing to (3.6), we may restrict

ourselves to the case of 1 ≤ σ ∈ Z. In this case, we will prove the theorem by induction
in σ.

Let us deduce Theorem 4.5 in the σ = 1 case from the global estimate (6.6). Choose
a vector u ∈ Hs,ϕ,(r)(Ω) arbitrarily. Replacing u with χu in (6.6) and taking σ := 1, we
get the estimate

(6.7) ‖χu‖Hs,ϕ,(r)(Ω) ≤ c0
(
‖(A,B)(χu)‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖χu‖Hs−1,ϕ,(r)(Ω)

)
.

Here, the positive number c0 := c(s, ϕ, 1) does not depend on u (and χ).
Interchanging the operator of the multiplication by χ with the differential operators

A and B1, . . . , Bq, we write the equalities

(6.8)
(A,B)(χu) = (A,B)(χηu) = χ(A,B)(ηu) + (A′, B′)(ηu)

= χ(A,B)u+ (A′, B′)(ηu).

Here, A′ is a linear differential operator on Ω of order ordA′ ≤ 2q − 1, whereas B′ :=
(B′

1, . . . , B
′
q) is a collection of boundary linear differential operators on Γ such that

ordB′
j ≤ mj − 1 for each j ∈ {1, . . . , q}. All the coefficients of A′ and each B′

j are

infinitely smooth on Ω and Γ respectively. Being evident for u ∈ C∞(Ω), equalities (6.8)
extend over all u ∈ Hs,ϕ,(r)(Ω) by closure due to Proposition 3.1 and Remark 3.2, with
all terms of these equalities being considered as elements of Hs−2q,ϕ,(r−2q)(Ω,Γ).

Specifically,

(6.9) ‖(A′, B′)(ηu)‖Hs−2q,ϕ,(r−2q)(Ω,Γ) ≤ c1‖ηu‖Hs−1,ϕ,(r)(Ω).

Besides,

(6.10) ‖χu‖Hs−1,ϕ,(r)(Ω) = ‖χηu‖Hs−1,ϕ,(r)(Ω) ≤ c2‖ηu‖Hs−1,ϕ,(r)(Ω).
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Here and below in the proof, we let c1, c2, . . . , c7 denote some positive numbers that do
not depend on u. Applying formulas (6.8)–(6.10) to (6.7), we obtain the inequalities

(6.11)

‖χu‖Hs,ϕ,(r)(Ω) ≤ c0
(
‖χ(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ)

+ ‖(A′, B′)(ηu)‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖χu‖Hs−1,ϕ,(r)(Ω)

)

≤ c3
(
‖χ(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖ηu‖Hs−1,ϕ,(r)(Ω)

)
.

Thus, we have justified the last sentence of Theorem 4.5. Estimate (4.6) in the σ = 1
case follows from (6.11) due to the inequality

‖χ(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) = ‖χη(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ)

≤ c4‖η(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ).

We now choose an integer λ ≥ 1 arbitrarily and assume that Theorem 4.5 holds in
the case of σ = λ. Let us deduce this theorem in the case of σ = λ + 1. Let, as above,
the functions χ, η satisfy the assumption of this theorem. We can choose a function η1 ∈
C∞(Ω) such that η1 = 1 in a neighbourhood of suppχ and that η = 1 in a neighbourhood
of supp η1. According to our assumption, an arbitrary vector u ∈ Hs,ϕ,(r)(Ω) satisfies
the estimate

‖χu‖Hs,ϕ,(r)(Ω) ≤ c5
(
‖η1(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) + ‖η1u‖Hs−λ,ϕ,(r)(Ω)

)
.

Here,

‖η1(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ) = ‖η1η(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ)

≤ c6‖η(A,B)u‖Hs−2q,ϕ,(r−2q)(Ω,Γ).

Besides,

‖η1u‖Hs−λ,ϕ,(r)(Ω) ≤ c7
(
‖η(A,B)u‖Hs−λ−2q,ϕ,(r−2q)(Ω,Γ) + ‖ηu‖Hs−λ−1,ϕ,(r)(Ω)

)

due to Theorem 4.5 in the σ = 1 case just proved. These three bounds immediately
imply the required estimate (4.6) in the case of σ = λ+1. By induction, Theorem 4.5 is
proved for every integer σ ≥ 1. �

Proof of Theorem 4.6. First we will prove Theorem 4.6 in the case where Ω0 = Ω and
Γ0 = Γ. By Theorem 4.1, the vector (f, g) := (A,B)u satisfies condition (4.2). Besides,
(f, g) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ) by the hypothesis of Theorem 4.6 in the case considered.
Therefore, (f, g) ∈ (A,B)(Hs,ϕ,(r)(Ω)) due to Theorem 4.1. Thus, there exists a vector
v ∈ Hs,ϕ,(r)(Ω) such that (A,B)v = (f, g). Then (A,B)(u− v) = 0; hence, w := u− v ∈
N ⊂ C∞(Ω) by Theorem 4.1. Therefore, u = v+w ∈ Hs,ϕ,(r)(Ω). Theorem 4.6 is proved
in the case considered.

Let us now prove Theorem 4.6 in the general situation. We will previously show that,
under the hypothesis of this theorem, the following implication holds for every integer
k ≥ 1:

(6.12) u ∈ H
s−k,ϕ,(r)
loc (Ω0,Γ0) =⇒ u ∈ H

s−k+1,ϕ,(r)
loc (Ω0,Γ0).

We arbitrarily choose an integer k ≥ 1 and suppose that the premise of this implication is
true. Then χu ∈ Hs−k,ϕ,(r)(Ω) for every function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0∪Γ0.
Choose a function η ∈ C∞(Ω) such that η = 1 in a neighbourhood of suppχ. Owing to
(6.8), we have the equality

(6.13) (A,B)(χu) = χ(A,B)u+ (A′, B′)(ηu),

in which the differential operators A′ and B′ are the same as that in the proof of Theo-
rem 4.5. Here,

(6.14) χ(A,B)u = χ(f, g) ∈ Hs−2q,ϕ,(r−2q)(Ω,Γ)
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due to the hypothesis of Theorem 4.6. Besides, ηu ∈ Hs−k,ϕ,(r)(Ω) by the premise, which
implies the inclusion

(6.15) (A′, B′)(ηu) ∈ Hs−k−2q+1,ϕ,(r−2q)(Ω,Γ)

due to Proposition 3.1 and Remark 3.2. Owing to formulas (6.13)–(6.15), we have the
inclusion

(6.16) (A,B)(χu) ∈ Hs−k+1−2q,ϕ,(r−2q)(Ω,Γ).

Hence, χu ∈ Hs−k+1,ϕ,(r)(Ω) according to Theorem 4.6 proved above in the global case

of Ω0 = Ω and Γ0 = Γ. Thus, u ∈ H
s−k+1,ϕ,(r)
loc (Ω0,Γ0) because of the arbitrariness of

the function χ used. Implication (6.12) is proved.
Using this implication, we can prove Theorem 4.6 in the general case. According to

the condition u ∈ H−∞,(r)(Ω) and embedding (3.6), there exists an integer ℓ ≥ 1 such
that

u ∈ Hs−ℓ,ϕ,(r)(Ω) ⊂ H
s−ℓ,ϕ,(r)
loc (Ω0,Γ0).

Therefore, using (6.12) successively for k = ℓ, k = ℓ− 1, ..., and k = 1, we arrive at the

required inclusion u ∈ H
s,ϕ,(r)
loc (Ω0,Γ0). �

To prove Theorem 4.7, we make use of the following corollary from Hörmander’s
embedding theorem [17, Theorem 2.2.7]: let 0 ≤ p ∈ Z and ϕ ∈ M; then

(6.17)

∞∫

1

dt

t ϕ2(t)
<∞ ⇐⇒ Hp+n/2,ϕ(Ω) →֒ Cp(Ω),

the embedding being compact (see [47, Theorem 3.4]). Property (6.17), so to say, refines
the well-known Sobolev’s embedding theorem, which asserts that

s > p+ n/2 ⇐⇒ Hs(Ω) →֒ Cp(Ω).

Proof of Theorem 4.7. By Theorem 4.6, we have the inclusion

(6.18) u ∈ H
p+n/2,ϕ,(r)
loc (Ω0,Γ0).

We first consider the case of Γ0 6= ∅. Then p > r − (n + 1)/2 by the hypothesis of
Theorem 4.7. Owing to property (6.18), equality (3.5), condition (4.7), and equivalence
(6.17), we obtain the inclusion

χu ∈ Hp+n/2,ϕ,(r)(Ω) = Hp+n/2,ϕ(Ω) ⊂ Hr−1/2+(Ω) ∩ Cp(Ω)

for every function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0 ∪ Γ0. Thus, u ∈ Cp(Ω0 ∪ Γ0).
Turn to the case of Γ0 = ∅. According to (6.18), (4.7), and (6.17), we have the

inclusion

(χu)0 ∈ Hp+n/2,ϕ,(0)(Ω) = Hp+n/2,ϕ(Ω) ⊂ H−1/2+(Ω) ∩ Cp(Ω)

for every function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0. Thus, u ∈ Cp(Ω0). �

Proof of Theorem 4.9. Theorem 4.7 in the case of p := 2q, ϕ := ϕ1, Ω0 := Ω, and
Γ0 := ∅ asserts that condition (4.9) implies the inclusion u ∈ C2q(Ω). Besides, owing to
the same theorem in the case of p := m, ϕ := ϕ2, Ω0 := Uσ, and Γ0 := Γ, we conclude
that conditions (4.9) and (4.10) entail the inclusion u ∈ Cm(Uσ ∪ Γ). Note that the
assumption p > r − (n + 1)/2 made in this theorem in the Γ0 6= ∅ case is fulfilled for
p = m. Thus, the solution u is classical. �
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Completing this section, we will justify Remark 4.8. Let 0 ≤ p ∈ Z and ϕ ∈ M, and
assume that implication (4.8) holds true. We must show that ϕ satisfies (4.7). Choose an
open ball V subject to the condition V ⊂ Ω0, and make use of a bounded linear operator

Υ : Hp+n/2,ϕ(V ) → Hp+n/2,ϕ,(r)(Ω)

such that (Υv)0 = v in V for every v ∈ Hp+n/2,ϕ(V ). Here, as above, (Υv)0 is the initial
component of the vector Tr(Υv), with Tr being the operator introduced in Section 3.
We will build Υ in the next paragraph. Choosing v ∈ Hp+n/2,ϕ(V ) arbitrarily, we put
u := Υv in implication (4.8). Since the vector u ∈ Hp+n/2,ϕ,(r)(Ω) satisfies the premise
of this implication, the inclusion u ∈ Cp(Ω0∪Γ0) holds true. Specifically, (χu)0 ∈ Cp(Ω)
for every function χ ∈ C∞(Ω) such that suppχ ⊂ Ω0 and that χ = 1 on V . Observing
that

v = (Υv)0 = u0 = χu0 = (χu)0 in V,

we arrive at the inclusion v ∈ Cp(V ). Thus, Hp+n/2,ϕ(V ) →֒ Cp(V ), which implies the
required condition (4.7) due to equivalence (6.17) in which V is taken instead of Ω. We
have justified Remark 4.8.

Let us build the operator Υ. To this end we need a linear mapping K : L2(V ) →
L2(R

n) such that Kv = v in V for every v ∈ L2(V ) and that the restriction of this
mapping to every Sobolev space Hσ(V ) of order σ ∈ [0, p + n] is a bounded operator
from Hσ(V ) to Hσ(Rn). This extension mapping is given, e.g., in [71, Theorem 4.2.3].
We also choose a function η ∈ C∞

0 (Rn) such that supp η ⊂ Ω and η = 1 on V . Put

Υv := T−1
r

(
(ηKv)↾Ω, 0, . . . , 0︸ ︷︷ ︸

r times

)
)

for every v ∈ L2(V ).

The element Υv ∈ H0,(r)(Ω) is well defined because the vector ((ηKv) ↾ Ω, 0, . . . , 0)
belongs to Tr(H

0,(r)(Ω)) = Π0,(r)(Ω,Γ). Hence, we have the linear mapping v 7→ Υv

from H0(V ) = L2(V ) to H0,(r)(Ω). It follows from the definition of this mapping that
(Υv)0 = v in V for every v ∈ L2(V ). Besides, the restriction of the mapping to Hσ(Ω)
is a bounded operator

(6.19) Υ : Hσ(V ) → Hσ,(r)(Ω) for every σ ∈ [0, p+ n] \ Er.

This follows from the implication

v ∈ Hσ(V ) =⇒ ((ηKv)↾Ω, 0, . . . , 0) ∈ T−1
r (Hσ,(r)(Ω)),

which holds because the function ηKv ∈ Hσ(Rn) vanishes near Γ. Applying the inter-
polation with a function parameter to operators (6.19), we can prove that the mapping
Υ acts continuously from Hs,ϕ(V ) to Hs,ϕ,(r)(Ω) for every s ∈ (0, p + n) and ϕ ∈ M.
Namely, choose a number ε ∈ (0, 1/4) such that s∓ ε ∈ [0, p+ n] \ Er, and let ψ be the
interpolation parameter from Proposition 5.1 in the case of δ = ε. Applying the interpo-
lation with the function parameter ψ to the bounded linear operators (6.19) considered
for σ = s ∓ ε, we conclude by Proposition 5.1 that a restriction of the mapping Υ is a
bounded operator

Υ : Hs,ϕ(V ) =
[
Hs−ε(V ), Hs+ε(V )

]
ψ

→
[
Hs−ε,(r)(Ω), Hs+ε,(r)(Ω)

]
= Hs,ϕ,(r)(Ω).

Thus, the required operator Υ is built.
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8. J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss., vol. 223, Springer,

Berlin, 1976.
9. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl.,

vol. 27, Cambridge University Press, Cambridge, 1989.
10. A. V. Bitsadze, On the Neumann problem for harmonic functions, Dokl. Math. 41 (1990), no.

2, 193–195.

11. V. Bonnaillie-Noel, M. Dambrine, F. Herau, and G. Vial, On generalized Ventcel’s type boundary

conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal. 42 (2010), no. 2,
931–945.

12. I. S. Chepurukhina and A. A. Murach, Elliptic problems in the sense of B. Lawruk on two-sided

refined scales of spaces, Methods Funct. Anal. Topology 21 (2015), no. 1, 6–21.
13. S. D. Eidel’man and N. V. Zhitarashu, Parabolic Boundary Value Problems, Oper. Theory Adv.

Appl., vol. 101, Birkhäuser, Basel, 1998.
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73. B. R. Vainberg and V. V. Grushin, Uniformly nonelliptic problems, II (Russian), Mat. Sb.

73(115) (1967), no. 1, 126–154 (English translation in: Sb. Math. 2 (1967), 111–133).

74. A. D. Ventcel, On boundary conditions for multi-dimensional diffusion processes, Theory
Probab. Appl. 4 (1959), 164–177.

75. V. A. Veshev and D. P. Kouzov, Influence of the medium on the vibrations of plates joined at

right angles, Acoustical Physics 23 (1977), no. 3, 206–211.

76. L. R. Volevich and B. P. Paneah, Certain spaces of generalized functions and embedding the-

orems (Russian), Uspekhi Mat. Nauk 20 (1965), no. 1, 3–74 (English translation in: Russian
Math. Surveys 20 (1965), no. 1, 1–73).

77. T. Zinchenko, Elliptic operators on refined Sobolev scales on vector bundles, Open Math. 15
(2017), 907–925.

78. T. N. Zinchenko and A. A. Murach, Douglis–Nirenberg elliptic systems in Hörmander spaces,
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