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SYMMETRIC EXTENSIONS OF SYMMETRIC LINEAR RELATIONS

(OPERATORS) PRESERVING THE MULTIVALUED PART

V. I. MOGILEVSKII

Dedicated to the memory of Professor M. L. Gorbachuk

Abstract. Let H be a Hilbert space and let A be a symmetric linear relation (in
particular, a nondensely defined operator) in H. By using the concept of a boundary

triplet for A∗ we characterize symmetric extensions Ã ⊃ A preserving the multi-
valued part of A. Such a characterization is given in terms of an abstract boundary

parameter and the Weyl function of the boundary triplet. Application of these results
to the Hamiltonian system Jy′ − B(t)y = λ∆(t)y enabled us to describe its matrix
solutions generating the generalized Fourier transform with the nonempty set of
respective spectral functions.

1. Introduction

Let H be a Hilbert space and let T be a closed linear operator in H. Identifying T with
its graph leads to the concept of a linear relation in H (i.e., a subspace in H⊕H), which
turns out to be useful in the spectral theory of linear operators and its applications (see
e.g. [6, 15, 19, 21, 27]). For the linear relation T in H the subspace mulT ⊂ H given by
mulT = {h ∈ H : {0, h} ∈ T} is called the multivalued part of T . Clearly in the case

T ⊂ T̃ one has mulT ⊂ mul T̃ . Note also that T is an operator if and only if mulT = {0}.
Let A be a symmetric linear relation (in particular, nondensely defined operator) in H

with deficiency indices n±(A), let A∗ be its adjoint and let Nλ = ker (A∗−λ), λ ∈ C\R,
be the defect subspace of A. If the operator part of A is densely defined (in particular

if A is a densely defined operator), then mul Ã = mulA for any symmetric extension Ã
of A; otherwise it is not true. The paper is devoted to the problem of characterization

of symmetric extensions Ã ⊃ A such that mul Ã = mulA. For self-adjoint extensions

Ã = Ã∗ this problem has been studied in a number of papers. Namely, let Self0(A) be the

set of all extensions Ã = Ã∗ of A with mul Ã = mulA (in the case of an operator A the

later means that Ã is an operator). In the paper by A. V. S̆traus [30] the class Self0(A)
for an operator A is parameterized by means of unitary operators U : Ni → N−i with
special properties. In the case n+(A) = n−(A) another description of the set Self0(A) is
given by the Krein-Naimark formula for resolvents

(1.1) (Ãθ − λ)−1 = (A0 − λ)−1 + γ(λ)(θ −Q(λ))−1γ∗(λ), λ ∈ C \ R,
whereA0 = A∗

0 is a fixed extension ofA, γ(λ) is a so called γ-field andQ(λ) is aQ-function
of the pair (A,A0). It was shown by H. Langer and B. Textorius in [21] that formula

(1.1) gives a bijective correspondence Ã = Ãθ between all extensions Ã ∈ Self0(A) and
all linear relations θ = θ∗ in the auxiliary Hilbert space H satisfying the admissibility
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condition

(1.2) s− lim
y→∞

1
y
[Q(iy) + (Q(iy)−Q∗(i))(θ −Q(iy))−1(Q(iy)−Q(i))] = 0.

In particular A0 ∈ Self0(A) if and only if

(1.3) s− lim
y→∞

1
y
Q(iy) = 0.

During the last period an approach to the extension theory of symmetric relations A
based on the concept of a boundary triplet for A∗ has been extensively developed (see
[9, 14, 13, 18, 20] and references therein). Such a triplet is of the form Π = {H,Γ0,Γ1},
where H is an auxiliary Hilbert space and Γj are linear mappings from A∗ to H such
that the mapping Γ = (Γ0,Γ1)

⊤ is surjective and the abstract Green identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ), f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗

holds. With each boundary triplet Π one associates the Weyl function M(·) of Π de-
fined by Γ1 ↾ Nλ = M(λ)Γ0 ↾ Nλ, λ ∈ C \ R [14, 22]. It turns out that M(·) be-
longs to the class R[H] of Nevanlinna functions with values in the set B(H) of all
bounded operators in H. A connection between Krein-Naimark formula (1.1) and bound-
ary triplets has been discovered in [14, 22, 11, 12]. Namely, it is shown in these pa-
pers that each boundary triplet {H,Γ0,Γ1} for A∗ gives rise to formula (1.1) with

A0 = ker Γ0, γ(λ) = (Γ0 ↾ Nλ)
−1, θ = ΓÃθ, Q(λ) = M(λ) and the admissibility

condition (1.2) is equivalent to the following two simpler conditions:

(1.4) s− lim
y→∞

1
y
(θ −M(iy))−1 = 0 and s− lim

y→∞
1
y
(θ−1 −M−1(iy))−1 = 0.

In the case θ = B ∈ B(H) conditions (1.4) are equivalent to a unique condition

(1.5) s− lim
y→∞

1
y
(B −M(iy))−1 = 0.

In the present paper we extend the above results to symmetric extension Ã of a

symmetric linear relation A in H. It turns out that for symmetric extensions Ã of A the

criterions for mul Ã = mulA differ essentially from those for self-adjoint extensions.
For a Hilbert space H let Ru[H] be the set of operator-functions M(·) ∈ R[H] such

that ImM(λ) ≥ αλIH with αλ > 0, λ ∈ C+, and let RΠ[H] be the set of allM(·) ∈ Ru[H]
such that

s− lim
y→+∞

1
iy
M(iy) = 0 and lim

y→+∞
y Im(M(iy)h, h) = +∞, 0 6= h ∈ H.(1.6)

Assume that H is decomposed as H = H′ ⊕ Ḣ and let

(1.7) M(λ) =

(
M1(λ) M2(λ)
M3(λ) M4(λ)

)
: H′ ⊕ Ḣ → H′ ⊕ Ḣ, λ ∈ C+

be the block representation of an operator-function M(·) ∈ Ru[H]. Then for each ope-

rator function K(·) ∈ R[Ḣ] the equality (the Redheffer transform)

mK(λ) =M1(λ)−M2(λ)(K(λ) +M4(λ))
−1M3(λ), λ ∈ C+(1.8)

defines the operator-function mK(·) ∈ Ru[H′]. Moreover, we show in the paper that if
mK(·) satisfies

s− lim
y→+∞

1
y
mK(iy) = 0(1.9)

for some K ∈ RΠ[H], then it satisfies (1.9) for any K ∈ RΠ[H]. This fact enables us to
introduce the following definition.



154 V. I. MOGILEVSKII

Definition 1.1. Let a Hilbert space H be decomposed as H = H′ ⊕ Ḣ. An operator-
function M(·) ∈ Ru[H] with the block representation (1.7) is referred to the class

Ru0[H′ ⊕Ḣ] if for some (and hence for all) K(·) ∈ RΠ[Ḣ] the operator-function mK(·) ∈
Ru[H′] of the form (1.8) satisfies (1.9).

Next assume that a symmetric relation A in H has equal deficiency indices and let
{H,Γ0,Γ1} be a boundary triplet for A∗. Then according to [18, 22] the abstract bound-
ary conditions

Ãθ := {f̂ ∈ A∗ : {Γ0f̂ ,Γ1f̂} ∈ θ}
give a parametrization Ã = Ãθ of all symmetric extensions Ã of A by means of symmetric

linear relations θ = ΓÃ in H. If in particular H′ is a closed subspace in H and θ =

{0} ⊕ H′, then Ȧ := Ãθ is given by

Ȧ = {f̂ ∈ A∗ : Γ0f̂ = 0, Γ1f̂ ∈ H′}.(1.10)

Moreover, if B(= θ) is a bounded symmetric operator from H′ to H, then

ÃB = {f̂ ∈ A∗ : Γ0f̂ ∈ H′, Γ1f̂ −BΓ0f̂ = 0}.(1.11)

In terms of the γ-field γ(λ) and Q-function Q(λ) =M(λ) of the pair (A,A0) the extension

Ȧ of the form (1.10) can be defined as follows. Let N′
i = γ(i)H′(⊂ Ni) and let U : Ni →

N−i be a unitary operator, which defines A0 by means of the Von Neumann formula.

Then Ȧ is defined by the same formula with the isometry V = U ↾ N′
i.

The criterions for mul Ȧ = mulA and mul ÃB = mulA are given in the following two
theorems proved in the paper.

Theorem 1.2. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, let M(·) ∈ Ru[H] be

the Weyl function of Π, let H be decomposed as H = H′ ⊕Ḣ and let Ȧ by the symmetric
extension (1.10) of A. Then mul Ȧ = mulA if and only if M(·) ∈ Ru0[H′ ⊕ Ḣ].

Theorem 1.3. Let Π and M(·) be the same as in Theorem 1.2. Moreover, let H =

H′⊕Ḣ, let B be a bounded symmetric operator from H′ to H with the block representation
B = (B1, B2)

⊤ : H′ → H′ ⊕ Ḣ, let M(λ) has the block representation (1.7) and let

(1.12) N(λ) =
(

(B1 −M1(λ))
−1 (B1 −M1(λ))

−1(B∗
2 −M2(λ))

(B2 −M3(λ))(B1 −M1(λ))
−1 M4(λ) + (B2 −M3(λ))(B1 −M1(λ))

−1(B∗
2 −M2(λ))

)
.

Then N(·) ∈ Ru[H] and the symmetric extension ÃB of A given by (1.11) satisfies

mul ÃB = mulA if and only if N(·) ∈ Ru0[H′ ⊕ Ḣ].

In the case H′ = H one has Ȧ = A0(= ker Γ0) and the condition M(·) ∈ Ru0[H′ ⊕ Ḣ]
in Theorem 1.2 turns into condition (1.3) (with Q(λ) = M(λ)). Moreover, in this case

the operator B in Theorem 1.3 is a bounded self-adjoint operator in H, ÃB = Ã∗
B ,

N(λ) = (B −M(λ))−1 and the condition N(·) ∈ Ru0[H′ ⊕ Ḣ] in this theorem takes the
form (1.5).

We also specify criterions for mul Ãθ = mulA in the case of a general symmetric θ
and for θ with the closed domain (see Theorems 3.9 and 3.11).

Actually the above results with certain modifications are obtained for symmetric re-
lations A with arbitrary (possibly unequal) deficiency indices. To this end we use a
boundary triplet {H0 ⊕H1,Γ0,Γ1} for A∗ with possibly unequal Hilbert spaces H0 and
H1 (see [24, 25]).

In the last section the obtained results are applied to Hamiltonian systems. Namely,
we characterise matrix solutions of such systems generating the generalized Fourier trans-
form with the nonempty set of respective spectral functions.
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2. Linear relations and boundary triplets

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note separable Hilbert spaces; B(H1,H2) is the set of all bounded linear operators de-
fined on H1 with values in H2; B(H) := B(H,H); A ↾ L is a restriction of the operator
A ∈ B(H1,H2) onto the linear manifold L ⊂ H1; C+ (C−) is the open upper (lower)

half-plane of the complex plane. If H is a subspace in H̃, then PH(∈ B(H̃)) denote the

orthoprojection in H̃ onto H and PH̃,H(∈ B(H̃,H)) is the same orthoprojection con-

sidered as an operator from H̃ to H. Moreover, IH,H̃ ∈ B(H, H̃) denote the operator

embedding H into H̃.
Recall that a linear relation T : H0 → H1 from a Hilbert space H0 to a Hilbert space

H1 is a linear manifold in the Hilbert space H0 ⊕H1. If H0 = H1 =: H one speaks of a
linear relation T in H. The set of all closed linear relations from H0 to H1 (in H) will

be denoted by C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified

with its graph grT ∈ C̃(H0,H1).

For a linear relation T ∈ C̃(H0,H1) we denote by domT, ranT, kerT and mulT the
domain, range, kernel and the multivalued part of T respectively; moreover, we denote

by T−1(∈ C̃(H1,H0)) and T
∗(∈ C̃(H1,H0)) the inverse and adjoint linear relations of T .

2.2. Linear relations from a Hilbert space to its subspace. In the following H0

is a Hilbert space, H1 is a subspace in H0, H2 := H0 ⊖H1, P1 := PH0,H1
and P2 = PH2

.

For a linear relation θ ∈ C̃(H0,H1) we let

gθ(ĥ) = 2Im(h1, h0)H0
+ ||P2h0||2, ĥ = {h0, h1} ∈ θ.

Definition 2.1. [23]. A linear relation θ ∈ C̃(H0,H1) belongs to the class Dis0(H0,H1),

Ac0(H0,H1) or Sym0(H0,H1) if gθ(ĥ) ≥ 0, gθ(ĥ) ≤ 0 or gθ(ĥ) = 0, ĥ ∈ θ, respectively. A

relation θ ∈ C̃(H0,H1) belongs to the class Dis(H0,H1) or Ac(H0,H1) if it belongs to the

class Dis0(H0,H1) or Ac0(H0,H1) respectively and there is not an extension θ̃ ⊃ θ, θ̃ 6= θ
in the corresponding class. We also let Self(H0,H1) = Dis(H0,H1) ∩Ac(H0,H1).

Let JH0,H1
∈ B(H0 ⊕H1) be an operator defined by

JH0,H1
=




0 0 −IH1

0 −iIH2
0

IH1
0 0


 : H1 ⊕H2︸ ︷︷ ︸

H0

⊕H1 → H1 ⊕H2︸ ︷︷ ︸
H0

⊕H1.(2.1)

Then J∗
H0,H1

= J−1
H0,H1

= −JH0,H1
and hence the equality

[ĥ, k̂] = (iJH0,H1
ĥ, k̂), ĥ, k̂ ∈ H0 ⊕H1(2.2)

defines the indefinite inner product [·, ·] in H0 ⊕H1. Since

[ĥ, ĥ] = gθ(ĥ), ĥ = {h0, h1} ∈ θ,(2.3)

it follows that the relation θ ∈ C̃(H0,H1) belongs to the class Dis0(H0,H1), Ac0(H0,H1)
or Sym0(H0,H1) if and only if it is a nonnegative, nonpositive or neutral subspace in
the space H0 ⊕ H1 with the product (2.2) respectively [5]. Moreover, θ belongs to the
class Dis(H0,H1) or Ac(H0,H1) if and only if it is a maximal nonnegative or maximal
nonpositive subspace respectively.

In the case H0 = H1 =: H the classes Dis0(H,H) =: Dis0(H), Ac0(H,H) =: Ac0(H)
and Sym0(H,H) =: Sym0(H) coincide with the well-known classes of dissipative, accumu-
lative and symmetric linear relations in H respectively; moreover, Dis(H,H) =: Dis(H),
Ac(H,H) =: Ac(H) and Self(H,H) =: Self(H) are the classes of maximal dissipative,
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maximal accumulative and self-adjoint linear relations in H respectively. Observe also
that in this case the operator JH,H =: JH is

JH =

(
0 −IH
IH 0

)
: H⊕H → H⊕H.

With each λ ∈ C− one associates the operator Xλ ∈ B(H0 ⊕H1) given by

Xλ =
1√

−2Imλ



−λIH1

0 IH1

0
√
−2Imλ IH2

0

−λIH1
0 IH1


 : H1 ⊕H2︸ ︷︷ ︸

H0

⊕H1 → H1 ⊕H2︸ ︷︷ ︸
H0

⊕H1.

(2.4)

One can easily verify that Xλ is invertible and hence the (Cayley) transform

C̃(H0,H1) ∋ θ → η = ηλ(θ) := Xλθ ∈ C̃(H0,H1), λ ∈ C−

is an automorphism of C̃(H0,H1). It is clear that

ηλ(θ) = {{(h1 − λP1h0)⊕
√
−2ImλP2h0, h1 − λP1h0} : {h0, h1} ∈ θ}.(2.5)

Recall that an operator B ∈ B(H1,H2) is called a contraction (isometry) if ||Bf || ≤ ||f ||
(resp. ||Bf || = ||f || ), f ∈ H1.

Lemma 2.2. The equality η = ηλ(θ)(= Xλθ) establishes a bijective correspondence
between

(1) all θ ∈ Dis0(H0,H1) and all contractions η ∈ B(dom η,H1) with the closed
domain dom η ⊂ H0;

(2) all θ ∈ Ac0(H0,H1) (θ ∈ Sym0(H0,H1)) and all contractions (resp. isometries)
η−1 ∈ B(ran η,H0) with the closed domain ran η ⊂ H1;

(3) all θ ∈ Dis(H0,H1) and all contractions η ∈ B(H0,H1);
(4) all θ ∈ Ac(H0,H1) and all contractions η−1 ∈ B(H1,H0).

Hence dim θ ≤ dimH0, θ ∈ Dis0(H0,H1), and dim θ ≤ dimH1, θ ∈ Ac0(H0,H1) ∪
Sym0(H0,H1).

Proof. Let Ĵ ∈ B(H0 ⊕H1) be an operator given by

Ĵ =



IH1

0 0
0 IH2

0
0 0 −IH1


 : H1 ⊕H2︸ ︷︷ ︸

H0

⊕H1 → H1 ⊕H2︸ ︷︷ ︸
H0

⊕H1.

Then the immediate checking shows that

X∗
λĴXλ = iJH0,H1

.(2.6)

Let ĥ = {h0, h1} ∈ θ and let f̂ = {f0, f1} := Xλĥ. Then by (2.2), (2.3) and (2.6)

||f0||2 − ||f1||2 = (Ĵ f̂ , f̂) = (iJH0,H1
ĥ, ĥ) = gθ(ĥ),

which yields statements (1)–(4). �

For a relation θ ∈ C̃(H0,H1) and λ ∈ C \ R we let

Mλ(θ) = ran (θ − λIH0
) = {(h1 − λP1h0)⊕ (−λP2h0) : {h0, h1} ∈ θ}, λ ∈ C−,(2.7)

M
′
λ(θ) = {(h1 − λP1h0)⊕

√
−2ImλP2h0) : {h0, h1} ∈ θ}, λ ∈ C−,(2.8)

Mλ(θ) = ran (θ − λP1) = {h1 − λP1h0 : {h0, h1} ∈ θ}, λ ∈ C+(2.9)
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(in (2.7) θ is considered as a relation in H0(⊃ H1)). Clearly, the equalities (2.7)–(2.9)
define linear manifolds Mλ(θ) and M′

λ(θ) in H0 for λ ∈ C− and Mλ(θ) in H1 for λ ∈ C+.
Moreover,

M
′
λ(θ) = dom ηλ(θ), λ ∈ C−, Mλ(θ) = ran ηλ(θ), λ ∈ C+,(2.10)

Mλ(θ) = TλM
′
λ(θ), λ ∈ C−,(2.11)

where Tλ ∈ B(H0) is an isomorphism defined by the block representation

Tλ = diag(IH1
,− λ√

−2Imλ
IH2

) : H1 ⊕H2 → H1 ⊕H2.

Definition 2.3. The subspaces Nλ(θ) ⊂ H0, λ ∈ C+, and Nλ(θ) ⊂ H1, λ ∈ C−, defined
by

Nλ(θ) = H0 ⊖Mλ(θ), λ ∈ C+, Nλ(θ) = H1 ⊖Mλ(θ), λ ∈ C−

are called the defect subspaces of θ ∈ C̃(H0,H1).

Theorem 2.4. (1) Let θ ∈ Dis0(H0,H1). Then : (a) Mλ(θ) is a closed subspace in H0,

λ ∈ C−; (b) the set of extensions θ̃ ∈ Dis(H0,H1) of θ is not empty and for each such

an extension θ̃ the equality

dim(θ̃/θ) = dimNλ(θ), λ ∈ C+(2.12)

is valid. Hence the dimension of Nλ(θ) does not depend on λ ∈ C+.
(2) Let θ ∈ Ac0(H0,H1). Then : (a) Mλ(θ) is a closed subspace in H1, λ ∈ C+; (b) the

set of extensions θ̃ ∈ Ac(H0,H1) of θ is not empty and for each such an extension θ̃ the
equality

dim(θ̃/θ) = dimNλ(θ), λ ∈ C−(2.13)

is valid. Therefore the dimension of Nλ(θ) does not depend on λ ∈ C−.

Proof. (1) Let λ ∈ C−, let M′
λ(θ) be given by (2.8) and let N′

λ
(θ) := H0 ⊖ M′

λ(θ).

Then by (2.10) and Lemma 2.2 M′
λ(θ) is a closed subspace in H0, which in view of

(2.11) yields statement (a). Next, by Lemma 2.2 η := ηλ(θ) ∈ B(M′
λ(θ),H1), ||η|| ≤ 1

and the equality η̃ = ηλ(θ̃) gives a bijective correspondence between all extensions θ̃ ∈
Dis(H0,H1) of θ and all contractive extensions η̃ ∈ B(H0,H1) of η. Since the set of
such η̃ is not empty (for instance, one can put η̃ = ηPH0,M

′

λ
(θ)), the set of extensions

θ̃ ∈ Dis(H0,H1) of θ is not empty as well. Moreover, each η̃ has the block representation

η̃ = (η, η′) : M′
λ(θ)⊕N

′
λ
(θ) → H1

with some η′ ∈ B(N′
λ
(θ),H1). Therefore η̃ = η ∔ η′ and, consequently,

dim θ̃/θ = dim η̃/η = dim η′ = dimN
′
λ
(θ).

Since by (2.11)

dimN
′
λ
(θ) = dimNλ(θ), λ ∈ C−,(2.14)

the equality (2.12) is valid.
Similarly by using Lemma 2.2 one proves statement (2). �

Theorem 2.4 enables one to give the following definition.

Definition 2.5. If θ ∈ Dis0(H0,H1) (θ ∈ Ac0(H0,H1)), then the cardinal number
n+(θ) = dimNλ(θ), λ ∈ C+ (resp. n−(θ) = dimNλ(θ), λ ∈ C−) is called the deficiency
index of θ.

If θ ∈ Sym0(H0,H1)(⇔ θ ∈ Dis0(H0,H1) ∩ Ac0(H0,H1)), then the cardinal numbers
n+(θ) = dimNλ(θ), λ ∈ C+, and n−(θ) = dimNλ(θ), λ ∈ C−, are called the deficiency
indices of θ.
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Remark 2.6. In the case H0 = H1 =: H and θ ∈ Sym0(H) the equalities (2.7) and (2.9)
take the form Mλ(θ) = ran (θ − λIH), λ ∈ C \ R. Therefore in this case Nλ(θ) is the
defect subspace and n±(θ) are deficiency indices of the symmetric relation θ in the sense
of the well-known definition (see e.g. [3, 10]).

In the following proposition we parameterize the class Sym0(H0,H1) in terms of isome-
tries V ∈ B(H′,H0), where H′ ⊂ H1.

Proposition 2.7. The equalities

K0 =

(
i(IH′,H1

− V1)√
2V2

)
: H′ → H1 ⊕H2︸ ︷︷ ︸

H0

, K1 = V1 + IH′,H1
(∈ B(H′,H1)),(2.15)

θ = {{K0h,K1h} : h ∈ H′}(2.16)

establish a bijective correspondence between all pairs {H′, V } consisting of a subspace
H′ ⊂ H1 and an isometry V ∈ B(H′,H0) with the block representation

V =

(
V1
V2

)
: H′ → H1 ⊕H2︸ ︷︷ ︸

H0

(2.17)

and all relations θ ∈ Sym0(H0,H1). Moreover, grV = η−1
−i (θ), where η−i(θ) is the Cayley

transform (2.5) of θ with λ = −i, and the following equalities hold:

dim(H1 ⊖ domV ) = n−(θ), dim(H0 ⊖ ranV ) = n+(θ).(2.18)

Proof. According to Lemma 2.2 the equality

grV = η−1
−i (θ) = {{h1 − iP1h0, (h1 + iP1h0)⊕

√
2P2h0} : {h0, h1} ∈ θ}(2.19)

gives a bijective correspondence between all θ ∈ Sym0(H0,H1) and all isometries V ∈
B(H′,H0) with H′ ⊂ H1. Moreover, by (2.10) one has

H′ = domV = ran η−i(θ) = Mi(θ), ranV = dom η−i(θ) = M
′
−i(θ).(2.20)

Let V has the block representation (2.17). Then grV = {{h, V1h ⊕ V2h} : h ∈ H′} and
(2.19) is equivalent to

θ = {{i(h− V1h)⊕
√
2V2h, V1h+ h} : h ∈ H′},

which in turn is equivalent to (2.15), (2.16). Moreover, in view of (2.20) H1 ⊖ domV =
N−i(θ) and H0 ⊖ ranV = N′

i(θ). This and (2.14) yield the equalities (2.18). �

Proposition 2.7 implies the following well-known result (see e.g. [18]).

Proposition 2.8. Let H be a Hilbert space. Then the equality

θ = {{i(IH′,H − V )h, (V + IH′,H)h} : h ∈ H′}(2.21)

gives a bijective correspondence between all pairs {H′, V } formed by a subspace H′ ⊂ H
and an isometry V ∈ B(H′,H) and all relations θ ∈ Sym0(H). Moreover, θ = θ∗ if and
only if H′ = H and V ∈ B(H) is a unitary operator.

As is known for each relation θ ∈ Sym0(H) the decompositions

H = Ĥ ⊕mul θ, θ = grB ⊕ ({0} ⊕mul θ)(2.22)

hold with a closed symmetric operator B in Ĥ, which is called an operator part of θ.

Clearly, domB = dom θ(⊂ Ĥ),

grB = θ ∩ Ĥ2(2.23)
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and θ ∈ Self(H) if and only if B = B∗. Moreover, B is a bounded operator if and only if

dom θ is closed, in which case B ∈ B(dom θ, Ĥ) (if θ ∈ Self(H), then B ∈ B(Ĥ)). These
arguments yield the following lemma.

Lemma 2.9. Let H1 be a Hilbert space. Then for any relation θ ∈ Sym0(H1) with the
closed domain there are a decomposition

H1 = H′
1 ⊕H′

2 ⊕ Ḣ1(2.24)

and a pair of operators B1 = B∗
1 ∈ B(H′

1) and B2 ∈ B(H′
1, Ḣ1) such that

θ = {{h1, B1h1 ⊕ h2 ⊕B2h1} : h1 ∈ H′
1, h2 ∈ H′

2}.(2.25)

Moreover, H′
1 = dom θ, H′

2 = mul θ and B = (B1, B2)
⊤ is the operator part of θ (hence

decomposition (2.24) and operators Bj in (2.25) are uniquely defined by θ).

Definition 2.10. The representation of a linear relation θ ∈ Sym0(H1) with the closed
domain by means of (2.24) and (2.25) will be cold canonical. Such a representation will

be written as θ = {H′
1 ⊕H′

2 ⊕ Ḣ1, B1, B2}.
Definition 2.11. A pair (C0, C1) of operators Cj ∈ B(H), j ∈ {0, 1}, is said to be
a self-adjoint operator pair if Im(C1C

∗
0 ) = 0 and (C0 ± iC1)

−1 ∈ B(H). In the case
dimH <∞ the last condition can be replaced with ran (C0, C1) = H.

The set of all self-adjoint operator pairs (C0, C1) with Cj ∈ B(H) will be denoted by
SP (H).

As is known, for each pair (C0, C1) ∈ SP (H) the equality

θ = {{h, h′} ∈ H2 : C0h+ C1h
′ = 0}(2.26)

defines a relation θ ∈ Self(H) and, conversely, for each θ ∈ Self(H) there is a pair
(C0, C1) ∈ SP (H) such that (2.26) holds.

Proposition 2.12. Let (C0, C1) ∈ SP (H) and let θ ∈ Self(H) be given by (2.26). Then
(1) dom θ is closed if and only if ranC1 is closed.
(2) If K1 := ranC1 is closed, H′

2 := kerC1, H′
1 := H ⊖H′

2 and K2 := H ⊖ K1, then
dom θ = H′

1, mul θ = H′
2 and the block representations of C0 and C1 are

C0 =

(
C01 C02

0 C03

)
: H′

1 ⊕H′
2 → K1 ⊕K2, C1 =

(
C11 0
0 0

)
: H′

1 ⊕H′
2 → K1 ⊕K2.

(2.27)

Moreover, C−1
11 ∈ B(K1,H′

1) and the operator part B′(∈ B(H′
1)) of θ is B′ = −C−1

11 C01.

Proof. (1) Since ran (C0 + iC1) = H, it follows that ran (C0, C1) = H. Therefore (see
e.g. [23, Proposition 3.1]) θ∗ = {{−C∗

1h,C
∗
0h} : h ∈ H} and in view of the equality

θ = θ∗ one has dom θ = ranC∗
1 . Hence dom θ is closed if and only if ranC∗

1 is closed or,
equivalently, if and only if ranC1 is closed.

(2) Since C1h = 0 ⇔ C0 ·0+C1h = 0 ⇔ h ∈ mul θ, it follows that mul θ = kerC1 = H′
2.

Since ranC1 is closed, by statement (1) dom θ is closed. Therefore dom θ = H⊖H′
2 = H′

1.
It follows from (2.26) and (2.23) that grB′ = {{h, h′} ∈ H′2

1 : C0h+C1h
′ = 0}. Hence

C0 ↾ H′
1 = −C1 ↾ H′

1 ·B′(2.28)

and, consequently, ran (C0 ↾ H′
1) ⊂ ranC1 = K1. Thus equalities (2.27) are valid.

Next, the second equality in (2.27) yields kerC11 = ker (C1 ↾ H′
1) = {0} and ranC11 =

ranC1 = K1. Therefore the operator C11 is invertible. Moreover, by (2.28) and (2.27)
C01 = −C11B

′, which implies the required equality for B′. �

The following lemma will be useful in the sequel.
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Lemma 2.13. Let H′ be a subspace in H1, let V ∈ B(H′,H0) be an isometry with the
block representation (2.17) and let θ ∈ Sym0(H0,H1) be respective relation (2.15), (2.16).
Assume also that n−(θ) ≤ n+(θ). Then

(1) There exist a Hilbert space H̃0 ⊃ H1 and a unitary operator U ∈ B(H0, H̃0) such
that V −1 ⊂ U .

(2) If U ∈ B(H0, H̃0) is a unitary operator from statement (1) and

U =

(
u1 u2
u3 u4

)
: H1 ⊕H2︸ ︷︷ ︸

H0

→ H1 ⊕ H̃2︸ ︷︷ ︸
H̃0

(2.29)

is the block representation of U , then the equality

Z =

(
z1 z2
z3 z4

)
: H0 ⊕H1 → H̃0 ⊕H1,(2.30)

where

z1 =

(
1
2 (u1 + IH1

) − i√
2
u2

i√
2
u3 u4

)
: H1 ⊕H2︸ ︷︷ ︸

H0

→ H1 ⊕ H̃2︸ ︷︷ ︸
H̃0

,(2.31)

z2 =

(− i
2 (u1 − IH1

)
1√
2
u3

)
: H1 → H1 ⊕ H̃2︸ ︷︷ ︸

H̃0

,(2.32)

z3 = ( i
2 (u1 − IH1

), 1√
2
u2) : H1 ⊕H2︸ ︷︷ ︸

H0

→ H1, z4 = 1
2 (u1 + IH1

)(2.33)

define the operator Z ∈ B(H0 ⊕H1, H̃0 ⊕H1) such that

Z∗JH̃0,H1

Z = JH0,H1
, ZJH0,H1

Z∗ = JH̃0,H1

,(2.34)

Zθ = {0} ⊕ H′ = {{0, h} : h ∈ H′}.(2.35)

If in addition dim θ < ∞ (in particular, if dimH1 < ∞), then there exists a unitary
operator U ∈ B(H0) such that V −1 ⊂ U and for this operator U statement (2) holds

with H̃0 = H0 and H̃2 = H2.

Proof. (1) Since n−(θ) ≤ n+(θ), it follows from (2.18) that dim(H1 ⊖ ranV −1) ≤
dim(H0 ⊖ domV −1). Therefore there exist a Hilbert space H̃0 ⊃ H1 with

dim(H̃0 ⊖ ranV −1) = dim(H0 ⊖ domV −1)

and a unitary operator U ∈ B(H0, H̃0) such that V −1 ⊂ U .

(2) Let U ∈ B(H0, H̃0) be an operator from statement (1) with the block represen-
tation (2.29) and let Z be given by (2.30) - (2.33). Then the equalities U∗U = IH0

and
UU∗ = IH̃0

yield

u∗1u1 + u∗3u3 = IH1
, u∗2u1 + u∗4u3 = 0, u∗2u2 + u∗4u4 = IH2

,(2.36)

u1u
∗
1 + u2u

∗
2 = IH1

, u3u
∗
1 + u4u

∗
2 = 0, u3u

∗
3 + u4u

∗
4 = IH̃2

(2.37)

and the immediate calculations with taking (2.36) and (2.37) into account give the equa-

lities (2.34). Moreover, since UV = IH′,H̃0

=

(
IH′,H1

0

)
, it follows from (2.29) and (2.17)

that

u1V1 + u2V2 = IH′,H1
, u3V1 + u4V2 = 0.

These equalities together with (2.31)–(2.33) and (2.15) yield

z1K0 + z2K1 = 0, z3K0 + z4K1 = 2IH′,H1
.(2.38)
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It follows from (2.16) that {h0, h1} ∈ θ if and only if h0 = K0h and h1 = K1h with some
h ∈ H′. Moreover, in view of (2.38) one has

Z{h0, h1} = {(z1K0 + z2K1)h, (z3K0 + z4K1)h} = {0, 2h}.
This proves (2.35).

Assume now that dim θ < ∞. Since by Proposition 2.7 grV −1 = η−i(θ) = X−iθ,
it follows that dim(domV −1) = dim(ranV −1) < ∞. Therefore dim(H0 ⊖ domV −1) =
dim(H0 ⊖ ranV −1), which implies the last statement of the lemma. �

The following corollary is immediate from Lemma 2.13.

Corollary 2.14. Assume that H is a Hilbert space, H′ is a subspace in H, V ∈ B(H′,H)
is an isometry and θ is a symmetric relation (2.21) in H. Assume also that n−(θ) =
n+(θ). Then

(1) There exists a unitary operator U ∈ B(H) such that V −1 ⊂ U .
(2) If U is an operator from statement (1), then the equality

Z =

(
U + I −i(U − I)
i(U − I) U + I

)
: H⊕H → H⊕H

defines the operator Z ∈ B(H⊕H) such that Z∗JHZ = ZJHZ∗ = JH and Zθ = {0}⊕H′.

2.3. The classes R̃(H0,H1), R̃(H) and R[H]. By using Lemma 2.2 one can easily
verify that (θ − iP1)

−1 ∈ B(H1,H0) for each θ ∈ Ac(H0,H1).

Definition 2.15. [23, 25]. A function τ(·) : C+ → C̃(H0,H1) is referred to the class

R̃(H0,H1) if −τ(λ) ∈ Ac(H0,H1), λ ∈ C+, and the operator-function (τ(λ) + iP1)
−1 is

holomorphic on C+.

A function τ(·) ∈ R̃(H0,H1) belongs to the class R̃0(H0,H1) if −τ(λ) = θ, λ ∈ C+,
with some θ ∈ Self(H0,H1).

It turns out that the equality

(2.39) τ(λ) = {C0(λ), C1(λ)} := {{h0, h1} ∈ H0 ⊕H1 : C0(λ)h0 + C1(λ)h1 = 0}

with λ ∈ C+ enables one to identify a function τ(·) ∈ R̃(H0,H1) and a pair of holomor-
phic operator-functions Cj(·) : C+ → [Hj ,H0], j ∈ {0, 1}, satisfying
(2.40) 2 Im(C1(λ)P1C

∗
0 (λ)) + C0(λ)P2C

∗
0 (λ) ≥ 0, (C0(λ)− iC1(λ)P1)

−1 ∈ [H0]

for all λ ∈ C+. Moreover, for a function τ(·) ∈ R̃0(H0,H1) one has τ(λ) = {C0, C1}, λ ∈
C+, that is Cj(λ) does not depend on λ (for more details see [23, 25]).

In the case H0 = H1 =: H the class R̃(H,H) coincides with the well-known class R̃(H)

of Nevanlinna C̃(H)-valued functions (Nevanlinna operator pairs) τ(λ) = {C0(λ), C1(λ)},
while the class R̃0(H,H) turns into the class R̃0(H) of all τ(·) ∈ R̃(H) such that τ(λ) =

θ, λ ∈ C+, with some θ = θ∗ ∈ C̃(H). Recall also the following definition.

Definition 2.16. A holomorphic operator-function M(·) : C+ → B(H) is referred to
the class R[H] if ImM(λ) ≥ 0, λ ∈ C+. A function M(·) ∈ R[H] is referred to the class
Ru[H] if ImM(λ) ≥ αλIH with some αλ > 0, λ ∈ C+.

Clearly, R[H] ⊂ R̃(H).
As is known (see e.g. [8]) a function M(·) ∈ R[H] admits the integral representation

M(λ) = AM + λBM +

∫

R

(
1

t− λ
− 1

1 + t2

)
dΣM (t),
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where AM = A∗
M ∈ B(H), BM ∈ B(H), BM ≥ 0 and ΣM (·) : R → B(H) is a

nondecreasing strongly left-continuous operator-function such that ΣM (0) = 0 and
∫

R

(t2 + 1)−1(dΣM (t)h, h) <∞, h ∈ H.

The operators AM , BM and the function ΣM (·) are uniquely defined by M(·). In par-
ticular,

(2.41) BM = s− lim
y→+∞

1
iy
M(iy).

Definition 2.17. An operator-function M(·) ∈ Ru[H] is referred to the class RΠ[H] if
it satisfies (1.6) or, equivalently, if

BM = 0 and

∫

R

(dΣM (t)h, h) = +∞, 0 6= h ∈ H.

The following proposition is well known (see e.g. [25, Proposition 2.2]).

Proposition 2.18. Assume that the Hilbert space H is decomposed as H = H′ ⊕ Ḣ and

(2.42) M(λ) =

(
M1(λ) M2(λ)
M3(λ) M4(λ)

)
: H′ ⊕ Ḣ︸ ︷︷ ︸

H

→ H′ ⊕ Ḣ︸ ︷︷ ︸
H

, λ ∈ C+

is the block representation of an operator-functionM(·) ∈ R[H]. Then: (i)M1(·) ∈ R[H′]
and M4(·) ∈ R[Ḣ]; (ii) BM = 0 if and only if BM1

= 0 and BM4
= 0.

Proposition 2.19. Let the conditions of Proposition 2.18 be satisfied and let M(·) ∈
Ru[H]. Then the equality

mK(λ) =M1(λ)−M2(λ)(K(λ) +M4(λ))
−1M3(λ), λ ∈ C+(2.43)

defines a mapping R[Ḣ] ∋ K(·) → mK(·) ∈ Ru[H′] of the set R[Ḣ] into Ru[H′].

Proof. Let K(·) ∈ R[Ḣ] and let K̃(λ) = diag(0,K(λ)) ∈ B(H′ ⊕ Ḣ). Then

K̃(λ) +M(λ) =

(
M1(λ) M2(λ)
M3(λ) K(λ) +M4(λ)

)
: H′ ⊕ Ḣ → H′ ⊕ Ḣ, λ ∈ C+.

Since K̃(·) ∈ R[H] and M(·) ∈ Ru[H], it follows that (K̃ +M)(·) ∈ Ru[H] and hence

(K +M4)(·) ∈ Ru[H]. Therefore the operators K̃(λ) +M(λ) and K(λ) +M4(λ) are
invertible and by the Frobenius formula one has

PH,H′

(
−(K̃(λ) +M(λ))−1

)
↾ H′ = −m−1

K (λ).(2.44)

Since (K̃ + M)(·) ∈ Ru[H], it follows that −(K̃ + M)−1(·) ∈ Ru[H] and by (2.44)
−m−1

K (·) ∈ Ru[H′]. Therefore mK(·) ∈ Ru[H′]. �

Remark 2.20. The transform (2.43) is an analog of the Redheffer transform for contractive
operator-functions (see e.g. [2]).

2.4. Boundary triplets and self-adjoint extensions. Let H be a Hilbert space, let
A be a closed symmetric linear relation in H with deficiency indices n±(A), let Nλ(A)

be the defect subspace of A and let N̂λ(A) = {{f, λf} : f ∈ Nλ(A)}, λ ∈ C \R. Denote

also by ExtA the set of all proper extensions of A, i.e., the set of all relations Ã ∈ C̃(H)
such that A ⊂ Ã ⊂ A∗. As is known (see e.g [22, 30]) each dissipative, accumulative or

symmetric extension Ã ⊃ A is proper (that is, Ã ⊂ A∗).
As before we assume thatH0 is a Hilbert space, H1 is a subspace inH0, H2 := H0⊖H1,

P1 := PH0,H1
and P2 = PH2

.
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Definition 2.21. [24]. A collection Π = {H0 ⊕H1,Γ0,Γ1}, where Γj : A∗ → Hj , j ∈
{0, 1}, are linear mappings, is called a boundary triplet for A∗, if the mapping Γ : f̂ →
{Γ0f̂ ,Γ1f̂}, f̂ ∈ A∗, from A∗ into H0⊕H1 is surjective and the following Green’s identity

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗:

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)H0
− (Γ0f̂ ,Γ1ĝ)H0

+ i(P2Γ0f̂ , P2Γ0ĝ)H2
.

According to [24] a boundary triplet Π = {H0 ⊕H1,Γ0,Γ1} for A∗ exists if and only
if n−(A) ≤ n+(A), in which case dimH1 = n−(A) and dimH0 = n+(A).

Proposition 2.22. Let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary triplet for A∗. Then
(1) ker Γ = A and Γ is a bounded operator from A∗ into H0 ⊕H1;

(2) The set of all proper extensions Ã ∈ ExtA is parameterized by linear relations

θ ∈ C̃(H0,H1). More precisely, the mapping

(2.45) θ → Ãθ := {f̂ ∈ A∗ : {Γ0f̂ ,Γ1f̂} ∈ θ}
establishes a bijective correspondence Ã = Ãθ between all relations θ ∈ C̃(H0,H1) and all

extensions Ã ∈ ExtA. The equality Ã = Ãθ means that θ = ΓÃ = {{Γ0f̂ ,Γ1f̂} : f̂ ∈ Ã}.
(3) The following equivalences hold:

Ãθ ∈ Dis0(H) ⇐⇒ θ ∈ Dis0(H0,H1), Ãθ ∈ Ac0(H) ⇐⇒ θ ∈ Ac0(H0,H1),(2.46)

Ãθ ∈ Sym0(H) ⇐⇒ θ ∈ Sym0(H0,H1), Ãθ ∈ Self(H) ⇐⇒ θ ∈ Self(H0,H1).(2.47)

Moreover, the deficiency indices of Ãθ and θ are connected by

n+(Ãθ) = n+(θ), if Ãθ ∈ Dis0(H); n−(Ãθ) = n−(θ), if Ãθ ∈ Ac0(H);(2.48)

n+(Ãθ) = n+(θ) and n−(Ãθ) = n−(θ), if Ãθ ∈ Sym0(H).(2.49)

Proof. Statements (1), (2) and equivalences (2.46), (2.47) are proved in [24]. Next,

assume that Ãθ ∈ Dis0(H) and hence θ ∈ Dis0(H0,H1). Let θ̃ ∈ Dis(H0,H1) be an ex-

tension of θ. Then Ãθ ⊂ Ã
θ̃
and by the first equivalence in (2.46) Ã

θ̃
∈ Dis(H). It follows

from Theorem 2.4, (1) that n+(θ) = dim θ̃/θ and n+(Ãθ) = dim Ã
θ̃
/Ãθ. Moreover, by

statement (1) dim Ã
θ̃
/Ãθ = dim θ̃/θ. This proves the first equality in (2.48). The second

equality in (2.48) can be proved similarly. Finally, (2.49) is a consequence of (2.48) �

According to [24] for each boundary triplet Π = {H0⊕H1,Γ0,Γ1} for A∗ the operator

Γ0 ↾ N̂λ(A), λ ∈ C+, isomorphically maps N̂λ(A) onto H0. Therefore the equality

Γ1 ↾ N̂λ(A) =M+(λ)Γ0 ↾ N̂λ(A), λ ∈ C+(2.50)

correctly defines the operator function M+(·) : C+ → [H0,H1], which is called the Weyl
function of the triplet Π. This function is holomorphic on C+ and the block representation

M+(λ) = (M(λ), N+(λ)) : H1 ⊕H2 → H1, λ ∈ C+(2.51)

defines the operator function M(·) ∈ Ru[H1].

As is known a linear relation Ã = Ã∗ in a Hilbert space H̃ ⊃ H satisfying A ⊂ Ã is

called an exit space self-adjoint extension of A. Such an extension Ã is called minimal

if there is no a nontrivial subspace H′ ⊂ H̃ ⊖ H reducing Ã. In the following we denote

by S̃elf(A) the set of all minimal exit space self-adjoint extensions of A ∈ Sym0(H).

Moreover, we denote by Self(A) the set of all extensions Ã = Ã∗ ∈ C̃(H) of A (such an

extension is called canonical). As is known, for each A ∈ Sym0(H) one has S̃elf(A) 6= ∅.
Moreover, Self(A) 6= ∅ if and only if n+(A) = n−(A), in which case Self(A) ⊂ S̃elf(A).

Parametrization of all extensions Ã ∈ S̃elf(A) and all Ã ∈ S̃elf(A) with mul Ã = mulA
in terms of a boundary triplet for A∗ is specified in the following theorem.



164 V. I. MOGILEVSKII

Theorem 2.23. [24, 26]. Let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary triplet for A∗ and
let M+(·) be the Weyl function of Π. Then

(1) The equalities

Ã(λ) = Ã−τ(λ) = {f̂ ∈ A∗ : C0(λ)Γ0f̂ − C1(λ)Γ1f̂ = 0}(∈ ExtA),(2.52)

P
H̃,H

(Ã− λ)−1 ↾ H = (Ã(λ)− λ)−1, λ ∈ C+(2.53)

give a bijective correspondence Ã = Ãτ between all functions (operator pairs) τ = τ(λ) =

{C0(λ), C1(λ)} ∈ R̃(H0,H1) defined by (2.39) and all extensions Ã ∈ S̃elf(A) Moreover,

Ãτ ∈ Self(A) if and only if τ ∈ R̃0(H0,H1).

(2) If τ = {C0(λ), C1(λ)} ∈ R̃(H0,H1), then the equalities

Φτ (λ) = P1(C0(λ)− C1(λ)M+(λ))
−1C1(λ)(= −P1(τ(λ) +M+(λ))

−1),(2.54)

Φ̂τ (λ) =M+(λ)(C0(λ)− C1(λ)M+(λ))
−1C0(λ) ↾ H1, λ ∈ C+(2.55)

define the functions Φτ (·), Φ̂τ (·) ∈ R[H1] and the equality mul Ãτ = mulA holds if and
only if

s− lim
y→+∞

1
iy
Φτ (iy) = s− lim

y→+∞
1
iy
Φ̂τ (iy) = 0.(2.56)

Remark 2.24. If H0 = H1 := H, then the triplet Π turns into the boundary triplet
Π = {H,Γ0,Γ1} for A∗ in the sense of [18, 9]. In this case n+(A) = n−(A) = dimH and
the function M(λ)(= M+(λ)) ∈ R[H] coincides with the Weyl function of Π introduced
in [14, 22]. Observe also that for the triplet Π = {H,Γ0,Γ1} the results of this subsection
coincides with those from [11, 12, 14, 22].

3. Symmetric extensions preserving the multivalued part

In what follows A is a closed symmetric linear relation in H with n−(A) ≤ n+(A).

Clearly, for each symmetric extension Ȧ of A one has S̃elf(Ȧ) ⊂ S̃elf(A).

Proposition 3.1. Assume that Π = {H0 ⊕ H1,Γ0,Γ1} is a boundary triplet for A∗

and M+(·) is the Weyl function of Π. Let H′ be a subspace in H1, let H0 and H1 be
decomposed as

H1 = H′ ⊕ Ḣ1, H0 = H′ ⊕ Ḣ0 = H′ ⊕ Ḣ1 ⊕H2(3.1)

(here H2 = H0 ⊖H1 = Ḣ0 ⊖ Ḣ1), let

Γ0 = (Γ′
0, Γ̇0)

⊤ : A∗ → H′ ⊕ Ḣ0, Γ1 = (Γ′
1, Γ̇1)

⊤ : A∗ → H′ ⊕ Ḣ1(3.2)

be the block representations of Γ0 and Γ1 and let

M+(λ) =

(
M1(λ) M2+(λ)
M3(λ) M4+(λ)

)
: H′ ⊕ Ḣ0 → H′ ⊕ Ḣ1, λ ∈ C+(3.3)

be the block representation of M+(λ). Then
(1) The equalities

Ȧ = Ã{0}⊕H′ = {f̂ ∈ A∗ : Γ′
0f̂ = 0, Γ̇0f̂ = Γ̇1f̂ = 0},(3.4)

Ȧ∗ = {f̂ ∈ A∗ : Γ′
0f̂ = 0}(3.5)

define a closed symmetric extension Ȧ of A and its adjoint Ȧ∗. Moreover, n−(Ȧ) ≤
n+(Ȧ).

(2) The collection Π̇ = {Ḣ0 ⊕ Ḣ1, Γ̇0 ↾ Ȧ∗, Γ̇1 ↾ Ȧ∗} is a boundary triplet for Ȧ∗ and

the Weyl function Ṁ+(·) of this triplet is Ṁ+(λ) =M4+(λ), λ ∈ C+.

(3) If τ̇ = {Ċ0(λ), Ċ1(λ)} ∈ R̃(Ḣ0, Ḣ1) and Ã = Ãτ̇ ∈ S̃elf(Ȧ), then
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(i) the equality mul Ã = mul Ȧ holds if and only if the following two conditions are
satisfied:

s− lim
y→+∞

1
iy
PḢ0,Ḣ1

(Ċ0(iy)− Ċ1(iy)M4+(iy))
−1Ċ1(iy) = 0,(3.6)

s− lim
y→+∞

1
iy
M4+(iy)(Ċ0(iy)− Ċ1(iy)M4+(iy))

−1Ċ0(iy) ↾ Ḣ1 = 0;(3.7)

(ii) the operator-function

mτ̇ (λ) =M1(λ) +M2+(λ)(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ1(λ)M3(λ), λ ∈ C+(3.8)

belongs to R[H′] and the equality mul Ã = mulA holds if and only if in addition to (3.6)
and (3.7) the following condition is satisfied:

s− lim
y→+∞

1
iy
mτ̇ (iy) = 0.(3.9)

Proof. For a triplet {H,Γ0,Γ1} (i.e., in the case H0 = H1 =: H) statements (1) and (2)
are proved in [11, Proposition 4.1]. In the case of the triplet {H0 ⊕H1,Γ0,Γ1} the proof
is similar.

Let us prove statement (3). The equivalence of the equality mul Ã = mul Ȧ to (3.6)

and (3.7) directly follows from Theorem 2.23, (2) applied to the triplet Π̇. Next, in view

of (2.52) and (2.53) the extension Ã is defined by (2.53) with

Ã(λ) = Ã−τ̇ (λ) = {f̂ ∈ Ȧ∗ : Ċ0(λ)Γ̇0f̂ − Ċ1(λ)Γ̇1f̂ = 0}(∈ ExtȦ), λ ∈ C+.(3.10)

It follows from (3.5) that (3.10) can be represented as

Ã(λ) = {f̂ ∈ A∗ : Γ′
0f̂ = 0, Ċ0(λ)Γ̇0f̂ − Ċ1(λ)Γ̇1f̂ = 0}(∈ ExtA), λ ∈ C+.(3.11)

Letting

C0(λ) =

(
IH′ 0

0 Ċ0(λ)

)
: H′ ⊕ Ḣ0︸ ︷︷ ︸

H0

→ H′ ⊕ Ḣ0︸ ︷︷ ︸
H0

,(3.12)

C1(λ) =

(
0 0

0 Ċ1(λ)

)
: H′ ⊕ Ḣ1︸ ︷︷ ︸

H1

→ H′ ⊕ Ḣ0︸ ︷︷ ︸
H0

(3.13)

and taking (3.2) into account one rewrites (3.11) as (2.52). Thus the extension Ã belongs

to S̃elf(A) and in the triplet Π for A∗ it is given by (2.52) and (2.53) with C0(λ) and C1(λ)

of the form (3.12) and (3.13). Therefore by Theorem 2.23 the equality mul Ã = mulA

holds if and only if the operator-functions Φτ (·) and Φ̂τ (·) of the form (2.54) and (2.55)
satisfy (2.56).

It follows from (3.3) and (3.12), (3.13) that

(C0(λ)− C1(λ)M+(λ))
−1 =

(
I 0

−Ċ1(λ)M3(λ) Ċ0(λ)− Ċ1(λ)M4+(λ)

)−1

=

(
I 0

(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ1(λ)M3(λ) (Ċ0(λ)− Ċ1(λ)M4+(λ))

−1

)
.

Moreover, P1 =

(
IH′ 0
0 PḢ0,Ḣ1

)
, C0(λ) ↾ H1 =

(
IH′ 0

0 Ċ0(λ) ↾ Ḣ1

)
and the immediate

calculation shows that

Φτ (λ) =

(
0 0

0 PḢ0,Ḣ1
(Ċ0(λ)− Ċ1(λ)M4+(λ))

−1Ċ1(λ)

)
: H′ ⊕ Ḣ1 → H′ ⊕ Ḣ1,

Φ̂τ (λ) =

(
mτ̇ (λ) ∗

∗ M4+(λ)(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ0(λ) ↾ Ḣ1

)
: H′ ⊕ Ḣ1 → H′ ⊕ Ḣ1
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for all λ ∈ C+ (the entries ∗ do not matter). Since by Theorem 2.23, (2) Φτ (·), Φ̂τ (·) ∈
R[H1], it follows from Proposition 2.18 that mτ̇ (·) ∈ R[H′] and conditions (2.56) are

equivalent to (3.6), (3.7) and (3.9). Hence mul Ã = mulA if and only if conditions
(3.6)–(3.9) are satisfied. �

Lemma 3.2. Let an operator-function K(·) belongs to the class RΠ[H]. Then
(1) −K−1(·) ∈ RΠ[H] .

(2) For each function τ(·) ∈ R̃(H) one has (τ(λ) + K(λ))−1 ∈ B(H), (τ−1(λ) +
K−1(λ))−1 ∈ B(H) and

s− lim
y→+∞

1
y
(τ(iy) +K(iy))−1 = s− lim

y→+∞
1
y
(τ−1(iy) +K−1(iy))−1 = 0.

Proof. According to [14, Corollary 2] there exist a Hilbert space H, a densely defined
symmetric operator A in H and a boundary triplet Π = {H,Γ0,Γ1} for A∗ such that

K(·) is the Weyl function of Π. Moreover, according to [22] Π̂ = {H,Γ1,−Γ0} is a

boundary triplet for A∗ as well and the Weyl function of Π̂ is −K−1(·). Therefore by
[14, Corollary 2] −K−1(·) ∈ RΠ[H], which proves statement (1).

Next assume that τ = τ(·) ∈ R̃(H) and let Ã = Ãτ ∈ S̃elf(A) be the respective
extension of A in the triplet Π (see Theorem 2.23, (1)). Since A is densely defined,

it follows that mul Ã = {0}(= mulA). Moreover, Ã = Ã−τ−1 in the triplet Π̂ and
application of Theorem 2.23, (2) yields statement (2). �

Theorem 3.3. Assume that Π = {H0 ⊕H1,Γ0,Γ1} is a boundary triplet for A∗, M+(·)
is the Weyl function of Π and M(·) ∈ Ru[H1] is the operator function defined by (2.51)
(in the case H0 = H1 =: H M(·) is the Weyl function of Π). Let H′ be a subspace in H1,
let H0 and H1 be decomposed as in (3.1), let Γ0 and Γ1 have the block representations

(3.2) and let Ȧ ∈ ExtA be a symmetric extension (3.4) of A. Assume also that

M(λ) =

(
M1(λ) M2(λ)
M3(λ) M4(λ)

)
: H′ ⊕ Ḣ1 → H′ ⊕ Ḣ1, λ ∈ C+(3.14)

is the block representation of M(·) and let K(·) ∈ RΠ[Ḣ1] (see Definition 2.17). Then

the equality mul Ȧ = mulA holds if and only if the operator-function mK(·) ∈ Ru[H′] of
the form (2.43) satisfies

s− lim
y→+∞

1
iy
mK(iy) = 0.(3.15)

Proof. It follows from (2.51) and (3.14) that M+(λ) has the block representation (3.3),
where

M2+(λ) = (M2(λ), N2(λ)) : Ḣ1 ⊕H2 → H′,(3.16)

M4+(λ) = (M4(λ), N4(λ)) : Ḣ1 ⊕H2 → Ḣ1(3.17)

and the entries Mj(λ), j ∈ {1, . . . , 4}, are taken from (3.14). Let

Ċ0(λ) =

(
−K(λ) 0

0 IH2

)
: Ḣ1 ⊕H2︸ ︷︷ ︸

Ḣ0

→ Ḣ1 ⊕H2︸ ︷︷ ︸
Ḣ0

,(3.18)

Ċ1(λ) = (IḢ1
, 0)⊤ : Ḣ1 → Ḣ1 ⊕H2︸ ︷︷ ︸

Ḣ0

, λ ∈ C+.(3.19)
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Then

2Im(Ċ1(λ)PḢ0,Ḣ1
Ċ∗

0 (λ)) + Ċ0(λ)PH2
Ċ∗

0 (λ) = 2Im

[(
IḢ1

0

)
(−K∗(λ), 0)

]

+

(
−K(λ) 0

0 IH2

)(
0 0
0 IH2

)(
−K∗(λ) 0

0 IH2

)
=

(
2ImK(λ) 0

0 IH2

)
≥ 0.

Moreover,

Ċ0(λ)− iĊ1(λ)PḢ0,Ḣ1
=

(
−K(λ) 0

0 IH2

)
− i

(
IḢ1

0
0 0

)
=

(
−(K(λ) + iIḢ1

) 0
0 IH2

)

and hence the operator Ċ0(λ) − iĊ1(λ)PḢ0,Ḣ1
is invertible. Thus, conditions (2.40) for

Ċ0(λ) and Ċ1(λ) are satisfied and, consequently, the pair τ̇0 := {Ċ0(λ), Ċ1(λ)} belongs

to R̃(Ḣ0, Ḣ1).

Since M(·) ∈ Ru[H1], it follows from (3.14) that M4(·) ∈ Ru[Ḣ1]. Therefore the

operator M4(λ) is invertible and −M−1
4 (·) ∈ R[Ḣ1]. Let us show that

PḢ0,Ḣ1
(Ċ0(λ)− Ċ1(λ)M4+(λ))

−1Ċ1(λ) = −(M4(λ) +K(λ))−1,(3.20)

M4+(λ)(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ0(λ) ↾ Ḣ1 = (M−1

4 (λ)) +K−1(λ))−1.(3.21)

Indeed, by (3.18), (3.19) and (3.17) one has

Ċ0(λ)− Ċ1(λ)M4+(λ) =

(
−K(λ) 0

0 I

)
−
(
I
0

)
(M4(λ), N4(λ))

=

(
−(M4(λ) +K(λ)) −N4(λ)

0 I

)
.

Therefore

(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1

=

(
−(M4(λ) +K(λ))−1 −(M4(λ) +K(λ))−1N4(λ)

0 I

)
: Ḣ1 ⊕H2︸ ︷︷ ︸

Ḣ0

→ Ḣ1 ⊕H2︸ ︷︷ ︸
Ḣ0

and, consequently,

(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ1(λ) =

(
−(M4(λ) +K(λ))−1

0

)
: Ḣ1 → Ḣ1 ⊕H2.(3.22)

This equality yields (3.20). Moreover, Ċ0(λ) ↾ Ḣ1 =

(
−K(λ)

0

)
and

M4+(λ)(Ċ0(λ)− Ċ1(λ)M4+(λ))
−1Ċ0(λ) ↾ Ḣ1 = (M4(λ), N4(λ))

×
(
−(M4(λ) +K(λ))−1 −(M4(λ) +K(λ))−1N4(λ)

0 I

)(
−K(λ)

0

)

=M4(λ)(M4(λ) +K(λ))−1K(λ),

which implies (3.21).

Next assume that Ã = Ãτ̇0 ∈ S̃elf(Ȧ) is the extension of Ȧ corresponding to the pair

τ̇0 in the triplet Π̇ (see Proposition 3.1, (2)). It follows from (3.20), (3.21) and Lemma
3.2 that the pair τ̇0 satisfies conditions (3.6) and (3.7). Therefore by Proposition 3.1, (3)

one has mul Ã = mul Ȧ. On the other hand, the respective operator-function mτ̇0(·) of
the form (3.8) is

mτ̇0(λ) =M1(λ) + (M2(λ), N2(λ))

(
−(M4(λ) +K(λ))−1

0

)
M3(λ) = mK(λ)



168 V. I. MOGILEVSKII

(here we made use of (3.16) and (3.22)). Therefore by Proposition 3.1, (3) the equality

mul Ã = mulA is equivalent to (3.15). This yields the statement of the theorem. �

Proposition 3.4. Let under the conditions of Proposition 2.19 K(·) → mK(·) be the

mapping of the set R[Ḣ] into Ru[H′] defined by (2.43). If mK(·) satisfies (3.15) for some

K(·) ∈ RΠ[Ḣ], then the same holds for any K(·) ∈ RΠ[Ḣ].

Proof. According to [15] there exist a Hilbert space H, a symmetric (possibly non-densely
defined) operator A in H and a boundary triplet Π = {H,Γ0,Γ1} for A∗ such that M(·)
is the Weyl function of Π. Let Ȧ = Ã{0}⊕H′ be a symmetric extension of A (in the

triplet Π). Then according to Theorem 3.3 for each K(·) ∈ RΠ[Ḣ] the equality (3.15) is

equivalent to mul Ȧ = {0}(= mulA), which implies the required statement. �

Proposition 3.4 enables us to introduce Definition 1.1 of the class Ru0[H′ ⊕ Ḣ].

Remark 3.5. (1) Assume that H = H′ ⊕ Ḣ. Since iIḢ ∈ RΠ[Ḣ], it follows that a
holomorphic operator-function M(·) : C+ → B(H) with the block representation (2.42)

belongs to Ru0[H′ ⊕ Ḣ] if and only if M(·) ∈ Ru[H] and the operator-function

m(λ) =M1(λ)−M2(λ)(M4(λ) + iIḢ)−1M3(λ), λ ∈ C+(3.23)

satisfies (3.15).

(2) Statement of Theorem 3.3 can be reformulated as follows: the equality mul Ȧ =

mulA holds if and only M(·) ∈ Ru0[H′ ⊕ Ḣ1].

In the following proposition we give a sufficient condition for an operator-function
M(·) to belong to the class Ru0[H′ ⊕ Ḣ].

Proposition 3.6. Let M(·) ∈ Ru[H] and let BM = 0 (for BM see (2.41)). Then

M(·) ∈ Ru0[H′ ⊕ Ḣ] for each decomposition H = H′ ⊕ Ḣ.

Proof. As was mentioned in the proof of Proposition 3.4M(·) is the Weyl function of some
boundary triplet Π = {H,Γ0,Γ1} for A∗ ( A is a symmetric operator in H) and according

to [22] A0 := Ã{0}⊕H = {f̂ ∈ A∗ : Γ0f̂ = 0} is a self-adjoint extension of A. Moreover,

since BM = 0, it follows that mulA0 = {0}(= mulA) (see [21, 15]). Let H = H′⊕Ḣ and

let Ȧ = Ã{0}⊕H′ (in the triplet Π). Then Ȧ ⊂ A0 and, consequently, mul Ȧ ⊂ mulA0.

Therefore mul Ȧ = {0}(= mulA) and by Remark 3.5, (2) M(·) ∈ Ru0[H′ ⊕ Ḣ]. �

In the following theorem we provide a criterium, that guarantees the equality mul Ã =

mulA for a symmetric extension Ã of a symmetric relation A with n−(A) ≤ n+(A).

Theorem 3.7. Assume that A ∈ C̃(H) is a symmetric linear relation with n−(A) ≤
n+(A), Π = {H0 ⊕ H1,Γ0,Γ1} is a boundary triplet for A∗ and M+(·) is the Weyl

function of Π. Let Ã = Ãθ ∈ ExtA be a symmetric extension of A corresponding to the

boundary parameter θ ∈ Sym0(H0,H1) (see Proposition 2.22) and let n−(Ã) ≤ n+(Ã).
Then

(1) There exist a Hilbert space H̃0 ⊃ H1 and an operator

Z =

(
z1 z2
z3 z4

)
: H0 ⊕H1 → H̃0 ⊕H1,(3.24)

satisfying (2.34) and (2.35) with a certain subspace H′ ⊂ H1.

(2) Let H̃0 be a Hilbert space, H′ be a subspace in H1 and Z be an operator (3.24)

from statement (1). Moreover, let Ḣ1 = H1 ⊖ H′, so that H1 = H′ ⊕ Ḣ1. Then the
equality

M̃+(λ) = (z3 + z4M+(λ))(z1 + z2M+(λ))
−1(∈ B(H̃0,H1)), λ ∈ C+(3.25)
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together with the block representation

M̃+(λ) = (M̃(λ), Ñ+(λ)) : H1 ⊕H2 → H1, λ ∈ C+(3.26)

defines the operator-function M̃(·) ∈ Ru[H1] and the equality mul Ã = mulA holds if and

only if M̃(·) ∈ Ru0[H′ ⊕ Ḣ1].

If in addition A is an operator (that is, mulA = {0}), then Ã is an operator if and

only if M(·) ∈ Ru0[H′ ⊕ Ḣ1].

Proof. Since n−(Ã) ≤ n+(Ã), it follows from (2.49) that n−(θ) ≤ n+(θ). Therefore by
Lemma 2.13 statement (1) is valid.

Let us prove statement (2). According to [25, Proposition 4.3] the equalities

Γ̃0 = z1Γ0 + z2Γ1, Γ̃1 = z3Γ0 + z4Γ1

define a boundary triplet Π̃ = {H̃0 ⊕H1, Γ̃0, Γ̃1} for A∗ and the Weyl function M̃+(·) of
Π̃ is given by (3.25). Moreover, in this triplet Ã = Ã

θ̃
with θ̃ = Zθ = {0} ⊕ H′. This

and Remark 3.5, (2) yield the required assertions. �

Remark 3.8. Lemma 2.13 provides an explicit construction of the coefficients zj , j ∈
{1, . . . , 4}, in (3.25). Namely, assume that under the conditions of Theorem 3.7 the
relation θ is represented in the form (2.15), (2.16) with an isometry V ∈ B(H′,H0) (H′ ⊂
H1) and U ∈ B(H0, H̃0) is a unitary extension of V −1 with the block representation
(2.29). Then by Lemma 2.13 one can take the operators zj of the form (2.31)–(2.33) as
coefficients in (3.25).

In the case n+(A) = n−(A) and n+(Ã) = n−(Ã) statements of Theorem 3.7 can be
rather simplified. Namely, the following theorem is valid.

Theorem 3.9. Assume that A ∈ C̃(H) is a symmetric relation with n+(A) = n−(A),

Π = {H,Γ0,Γ1} is a boundary triplet for A∗ andM(·) is the Weyl function of Π. Let Ã =

Ãθ ∈ ExtA∩Sym0(H) with the respective θ ∈ Sym0(H) and let n+(Ã) = n−(Ã). Assume
also that θ is represented in the form (2.21) with an isometry V ∈ B(H′,H) (H′ ⊂ H).
Then

(1) There exist a unitary operator U ∈ B(H) such that V −1 ⊂ U .
(2) If U is an operator from statement (1), then the equality

M̃(λ) = (i(U − I) + (U + I)M(λ))((U + I)− i(U − I)M(λ))−1, λ ∈ C+(3.27)

correctly defines the operator-function M̃(·) ∈ Ru[H] and the equality mul Ã = mulA

holds if and only if M̃(·) ∈ Ru0[H′ ⊕ Ḣ] (here Ḣ = H⊖H′).

Proof. Since n+(Ã) = n−(Ã), it follows from (2.49) that n+(θ) = n−(θ). Now the
required statements are implied by Corollary 2.14 and Remark 3.5, (2). �

Lemma 3.10. Assume that a Hilbert space H is decomposed as

H = H′
1 ⊕H′

2 ⊕ Ḣ1 = H′ ⊕ Ḣ1,

where H′ = H′
1 ⊕H′

2,

M(λ) =



M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ) M23(λ)
M31(λ) M32(λ) M33(λ)


 : H′

1 ⊕H′
2 ⊕ Ḣ1 → H′

1 ⊕H′
2 ⊕ Ḣ1, λ ∈ C+

(3.28)
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is the block representation of an operator-functionM(·) ∈ Ru[H] and N1(·) ∈ Ru[H′
1⊕Ḣ1]

and N2(·) ∈ Ru[H′
2 ⊕ Ḣ1] are the operator-functions given by

N1(λ) =

(
M11(λ) M13(λ)
M31(λ) M33(λ)

)
, N2(λ) =

(
M22(λ) M23(λ)
M32(λ) M33(λ)

)
.(3.29)

Then M(·) ∈ Ru0[H′ ⊕ Ḣ1] if and only if Nj(·) ∈ Ru0[H′
j ⊕ Ḣ1], j ∈ {1, 2}.

Proof. Clearly, (3.28) can be represented as (2.42) with M1(λ) =

(
M11(λ) M12(λ)
M21(λ) M22(λ)

)
,

M2(λ) = (M13(λ),M23(λ))
⊤, M3(λ) = (M31(λ),M32(λ)) and M4(λ) = M33(λ). Let

m(λ) be given by (3.23). Then

m(λ) =

(
M11 M12

M21 M22

)
−
(
M13

M23

)
(M33 + iIḢ1

)−1(M31,M32) =

(
m1(λ) ∗

∗ m2(λ)

)
,

where Mij = Mij(λ) and mj(λ) is the operator-function (3.23) for Nj(·), j ∈ {1, 2}.
This and Proposition 2.18 yield the required statement. �

In the following theorem we characterize explicitly symmetric extensions Ãθ ∈ ExtA
with mul Ãθ = mulA under the additional condition that an abstract boundary param-
eter θ has the closed domain.

Theorem 3.11. Assume that A, Π and M+(·) are the same as in Theorem 3.7 and
let M(·) ∈ Ru[H1] be the operator-function defined by the block representation (2.51) of
M+(λ). Let θ ∈ Sym0(H1) (so that θ ∈ Sym0(H0,H1) as a subspace in H0 ⊕H1 ⊃ H2

1),

let dom θ be closed, let Ã = Ãθ ∈ ExtA be the respective symmetric extension of A and
let θ = {H′

1 ⊕H′
2 ⊕ Ḣ1, B1, B2} be the canonical representation (2.24), (2.25) of θ with

operators B1 = B∗
1 ∈ B(H′

1) and B2 ∈ B(H′
1, Ḣ1) (see Definition 2.10). Moreover, let

M(λ) has the block representation (3.28), let ϕ1(λ) = B1−M11(λ), ϕ2(λ) = B2−M31(λ),
ϕ2∗(λ) = B∗

2 −M13(λ) and let

N1(λ) =

(
ϕ−1
1 (λ) ϕ−1

1 (λ)ϕ2∗(λ)
ϕ2(λ)ϕ

−1
1 (λ) M33(λ) + ϕ2(λ)ϕ

−1
1 (λ)ϕ2∗(λ)

)
(∈ B(H′

1 ⊕ Ḣ1)),

N2(λ) =

(
M22(λ) +M21(λ)ϕ

−1
1 (λ)M12(λ) M23(λ)−M21(λ)ϕ

−1
1 (λ)ϕ2∗(λ)

M32(λ)− ϕ2(λ)ϕ
−1
1 (λ)M12(λ) M33(λ) + ϕ2(λ)ϕ

−1
1 (λ)ϕ2∗(λ)

)

(∈ B(H′
2 ⊕ Ḣ1)),

where λ ∈ C+. Then Nj(·) ∈ Ru[H′
j ⊕ Ḣ1] and the equality mul Ã = mulA holds if and

only if Nj(·) ∈ Ru0[H′
j ⊕ Ḣ1], j ∈ {1, 2}.

Proof. Let H′ = H′
1⊕H′

2 and let Xj ∈ B(H1), j ∈ {1, . . . , 4}, be the operators given by
the following block representations (with respect to decomposition (2.24) of H1):

X1 =



−B1 0 −B∗

2

0 I 0
0 0 I


 , X2 =



I 0 0
0 0 0
0 0 0


 , X3 =




−I 0 0
0 0 0

−B2 0 0,


 , X4 =



0 0 0
0 I 0
0 0 I


 .

The immediate checking shows that

X∗
1X3 −X∗

3X1 = 0, X∗
1X4 −X∗

3X2 = I, X∗
2X4 −X∗

4X2 = 0,

X2X
∗
1 −X1X

∗
2 = 0, X4X

∗
1 −X3X

∗
2 = I, X4X

∗
3 −X3X

∗
4 = 0.

Therefore the operator

Z =

(
Z1 Z2

Z3 Z4

)
: H0 ⊕H1 → H0 ⊕H1
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with Z1 =

(
X1 0
0 IH2

)
: H1 ⊕H2︸ ︷︷ ︸

H0

→ H1 ⊕H2︸ ︷︷ ︸
H0

, Z2 =

(
X2

0

)
: H1 → H1 ⊕H2︸ ︷︷ ︸

H0

,

Z3 = (X3, 0) : H1 ⊕H2︸ ︷︷ ︸
H0

→ H1 and Z4 = X4 satisfies Z∗JH0,H1
Z = JH0,H1

and

ZJH0,H1
Z∗ = JH0,H1

. Moreover, by (2.25)

Zθ = {{F1(h1, h2) + F2(h1, h2), F3(h1, h2) + F4(h1, h2) : h1 ∈ H′
1, h2 ∈ H′

2},
where

F1(h1, h2) = Z1 ↾ H1 · h1 = X1(h1 ⊕ 0⊕ 0)⊕ 0H2
= ((−B1h1)⊕ 0⊕ 0)⊕ 0H2

,

F2(h1, h2) = Z2(B1h1 ⊕ h2 ⊕B2h1) = X2(B1h1 ⊕ h2 ⊕B2h1)⊕ 0H2

= (B1h1 ⊕ 0⊕ 0)⊕ 0H2
,

F3(h1, h2) = Z3 ↾ H1 · h1 = X3(h1 ⊕ 0⊕ 0) = (−h1)⊕ 0⊕ (−B2h1),

F4(h1, h2) = Z4(B1h1 ⊕ h2 ⊕B2h1) = X4(B1h1 ⊕ h2 ⊕B2h1) = 0⊕ h2 ⊕B2h1.

Hence Zθ = {{0, (−h1)⊕ h2 ⊕ 0 : h1 ∈ H′
1, h2 ∈ H′

2}} = {0} ⊕ (H′
1 ⊕H′

2) = {0} ⊕H′.

Thus by Theorem 3.7 mul Ã = mulA if and only if the operator function M̃(·) ∈ Ru[H1]

defined by (3.25) and (3.26) belongs to Ru0[H′ ⊕ Ḣ1]. It follows from (2.51) that

Z1 + Z2M+ =

(
X1 0
0 I

)
+

(
X2

0

)
(M(λ), N+(λ)) =

(
X1 +X2M(λ) X2N+(λ)

0 I

)
,

(Z1 + Z2M+)
−1 =

(
(X1 +X2M(λ))−1 ∗

0 I

)
, Z3 + Z4M+ = (X3 +X4M(λ), ∗),

where M+ =M+(λ) and ∗ denotes the entries that do not matter. Therefore

M̃+(λ) = (X3 +X4M(λ), ∗)
(
(X1 +X2M(λ))−1 ∗

0 I

)

= ((X3 +X4M(λ))(X1 +X2M(λ))−1, Ñ+(λ))

with some Ñ+(λ) and in view of (3.26) M̃(λ) is

M̃(λ) = (X3 +X4M(λ))(X1 +X2M(λ))−1, λ ∈ C+.(3.30)

Next,

X1 +X2M(λ) =



−B1 0 −B∗

2

0 I 0
0 0 I


+



I 0 0
0 0 0
0 0 0





M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ) M23(λ)
M31(λ) M32(λ) M33(λ)




=



−ϕ1(λ) M12(λ) −ϕ2∗(λ)

0 I 0
0 0 I


 ,

(X1 +X2M(λ))−1 =



−ϕ−1

1 (λ) ϕ−1
1 (λ)M12(λ) −ϕ−1

1 (λ)ϕ2∗(λ)
0 I 0
0 0 I


 ,

X3 +X4M(λ) =




−I 0 0
0 0 0

−B2 0 0,


+



0 0 0
0 I 0
0 0 I





M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ) M23(λ)
M31(λ) M32(λ) M33(λ)


 =

=




−I 0 0
M21(λ) M22(λ) M23(λ)
−ϕ2(λ) M32(λ) M33(λ)
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and with respect to the decomposition (2.24) of H1 one has

M̃(λ)

=




−I 0 0
M21(λ) M22(λ) M23(λ)
−ϕ2(λ) M32(λ) M33(λ)





−ϕ−1

1 (λ) ϕ−1
1 (λ)M12(λ) −ϕ−1

1 (λ)ϕ2∗(λ)
0 I 0
0 0 I




=




ϕ−1
1 (λ) ∗ ϕ−1

1 (λ)ϕ2∗(λ)
∗ M22(λ) +M21(λ)ϕ

−1
1 (λ)M12(λ) M23(λ)−M21(λ)ϕ

−1
1 (λ)ϕ2∗(λ)

ϕ2(λ)ϕ
−1
1 (λ) M32(λ)− ϕ2(λ)ϕ

−1
1 (λ)M12(λ) M33(λ) + ϕ2(λ)ϕ

−1
1 (λ)ϕ2∗(λ)


.

This and Lemma 3.10 yield the statement of the theorem. �

Remark 3.12. In the case n+(A) = n−(A) < ∞ each boundary triplet Π = {H0 ⊕
H1,Γ0,Γ1} for A∗ satisfies H0 = H1 =: H (i.e., in fact Π = {H,Γ0,Γ1}) and dimH <∞.
Therefore in this case Sym0(H0,H1) = Sym(H) and dom θ is closed for each θ ∈ Sym(H).
Thus in the case n+(A) = n−(A) <∞ Theorem 3.11 provides an explicit parametrization

of all symmetric extensions Ã ∈ ExtA with mul Ã = mulA.

The following corollary is immediate from Theorem 3.11.

Corollary 3.13. Assume that under the conditions of Theorem 3.11 mul θ = {0}, that
is θ = grB, where B ∈ B(H′,H1) is a symmetric operator in H1 defined on the closed

subspace H′ ⊂ H1. Let H1 be decomposed as H1 = H′ ⊕ Ḣ1, let B = (B1, B2)
⊤ :

H′ → H′ ⊕ Ḣ1 and (3.14) be block representations of B and M(λ) respectively and
let N(·) : C+ → B(H1) be the operator-function given for all λ ∈ C+ by the block

representation (1.12) (with respect to the mentioned decomposition H1 = H′ ⊕ Ḣ1).
Then

(1) Ã admits the representation in the form of abstract boundary conditions as

Ã = {f̂ ∈ A∗ : Γ0f̂ ∈ H′, Γ1f̂ −BΓ0f̂ = 0}.

(2) N(·) ∈ Ru[H1] and the equivalence mul Ã = mulA ⇐⇒ N(·) ∈ Ru0[H′ ⊕ Ḣ1] is
valid.

Corollary 3.14. Assume that A,Π, M+(·) and M(·) are the same as in Theorem 3.11.
Let H′ be a subspace in H1 and let (C0, C1) ∈ SP (H′) be a self-adjoint operator pair (see
Definition 2.11). Assume that H′

2 := kerC1 and H′
1 = H′ ⊖H′

2, so that H′ = H′
1 ⊕H′

2

and decomposition (2.24) of H1 holds with Ḣ1 = H1 ⊖ H′. Moreover, let the subspace
K1 := ranC1 ⊂ H′ be closed and let Cj1 := PH′,K1

Cj ↾ H′
1(∈ B(H′

1,K1)), j ∈ {0, 1} (so
that C01 and C02 are the left upper entries in matrices (2.27)). Assume also that M(λ)
has the block representation (3.28) and let

ψ(λ) = −(C01 + C11M11(λ))
−1C11,(3.31)

N1(λ) =

(
ψ(λ) −ψ(λ)M13(λ)

−M31(λ)ψ(λ) M33(λ) +M31(λ)ψ(λ))M13(λ)

)
(∈ B(H′

1 ⊕ Ḣ1)),(3.32)

N2(λ) =

(
M22(λ) +M21(λ)ψ(λ)M12(λ) M23(λ) +M21(λ)ψ(λ)M13(λ)
M32(λ) +M31(λ)ψ(λ)M12(λ) M33(λ) +M31(λ)ψ(λ)M13(λ)

)
(3.33)

(∈ B(H′
2 ⊕ Ḣ1)),

where λ ∈ C+. Then
(1) The equality (the abstract boundary conditions)

Ã = {f̂ ∈ A∗ : Γ0f̂ ∈ H′, Γ1f̂ ∈ H′, C0Γ0f̂ + C1Γ1f̂ = 0}(3.34)

defines a symmetric extension Ã ∈ ExtA.



SYMMETRIC EXTENSIONS 173

(2) Nj(·) ∈ Ru[H′
j ⊕ Ḣ1] and the equality mul Ã = mulA holds if and only if Nj(·) ∈

Ru0[H′
j ⊕ Ḣ1], j ∈ {1, 2}.

(3) If in addition kerC1 = {0}, M(λ) has the block representation (1.7) and

N(λ) =

(
−(C0 + C1M1(λ))

−1C1 (C0 + C1M1(λ))
−1C1M2(λ)

M3(λ)(C0 + C1M1(λ))
−1C1 M4(λ)−M3(λ)(C0 + C1M1(λ))

−1C1M2(λ)

)
,

(3.35)

λ ∈ C+

(with respect to the decomposition H1 = H′ ⊕ Ḣ1), then N(·) ∈ Ru[H1] and the equality

mul Ã = mulA holds if and only if N(·) ∈ Ru0[H′ ⊕ Ḣ1].

Proof. (1) Let θ ∈ Self(H′) be given by (2.26). Since H′2 ⊂ H2
1 ⊂ H0 ⊕ H1, it follows

that θ ∈ Sym0(H1) ∩ Sym0(H0,H1). Let Ã = Ãθ ∈ ExtA be the respective extension of

A given by (2.45). Then by Proposition 2.22 Ã ∈ Sym0(H) and in view (2.26) Ã admits
the representation (3.34).

(2) According to Proposition 2.12 dom θ = H′
1, mul θ = H′

2, C0 and C1 have the block
representations (2.27) and the operator part B′(∈ B(H′

1)) of θ is B′ = −C−1
11 C01. Next,

consider θ as a symmetric relation in H1 and let B be the operator part of this relation.
Clearly, the block representation of B is B = (B′, 0)⊤. Therefore by Lemma 2.9 the

canonical representation of θ is θ = {H′
1 ⊕H′

2 ⊕ Ḣ1, B1, B2}, where
B1 = −C−1

11 C01, B2 = 0.(3.36)

Let Nj(·) ∈ Ru[H′
j ⊕Ḣ1], j ∈ {1, 2}, be the operator functions defined in Theorem 3.11.

Then in view of (3.36)

ψ(λ) := ϕ−1
1 (λ) = −(C−1

11 C01 +M11(λ))
−1 = −(C01 + C11M11(λ))

−1C11,

ϕ2(λ) = −M31(λ), ϕ2∗(λ) = −M13(λ)

and hence N1(λ) and N2(λ) admit the representation (3.32), (3.33). Now statement (2)

is implied by the equality Ã = Ãθ and Theorem 3.11.
(3) If kerC1 = {0}, then H′

2 = {0}, H′
1 = H′ and by (2.27) C0 = C01 and C1 = C11.

Therefore the required statements follow from statement (2). �

4. Applications to Hamiltonian systems

Let H be a finite-dimensional Hilbert space, let H = H ⊕H and let

J =

(
0 −IH
IH 0

)
: H ⊕H → H ⊕H.

As is known (see e.g. [4, 17]) a Hamiltonian differential system on an interval I =
[a, b〉, −∞ < a < b ≤ ∞, (with the regular endpoint a) is of the form

(4.1) Jy′ −B(t)y = λ∆(t)y, t ∈ I, λ ∈ C,

where B(t) = B∗(t) and ∆(t) ≥ 0 are B(H)-valued functions on I integrable on each
compact interval [a, β] ⊂ I. Below we assume that system (4.1) is definite. The latter
means that for some (and hence all) λ ∈ C there is only a trivial solution y(t) ≡ 0 of
(4.1) such that ∆(t)y(t) = 0 (a.e. on I).

Denote by H(= L2
∆(I)) the Hilbert space of functions f(·) : I → H such that∫

I
(∆(t)f(t), f(t)) dt <∞. With system (4.1) one associates minimal and maximal linear

relations Tmin and Tmax in H (see e.g. [7]). It turns out that Tmin is a closed symmetric
relation with finite deficiency indices n±(Tmin) ≤ dimH, which coincide with the number
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of linearly independent solutions y ∈ H of (4.1) for λ ∈ C±. Moreover, Tmax = T ∗
min and

for all y, z ∈ domTmax there exists the limit

[y, z]b := lim
t↑b

(Jy(t), z(t)).

Clearly each function y ∈ domTmax admits the representation

y(t) = {y0(t), y1(t)}(∈ H ⊕H), t ∈ I.(4.2)

Assume that (C0, C1) ∈ SP (H) (see Definition 2.11). Then according to [27]

T := {{y, f} ∈ Tmax : C0y0(a) + C1y1(a) = 0 and [y, z]b = 0, z ∈ domTmax}(4.3)

is a closed symmetric extension of Tmin (here y0(a) and y1(a) are taken from (4.2)).
Let ϕ(·, λ)(∈ B(H,H)) be the operator solution of (4.1) with the initial value ϕ(a, λ) =

(C∗
1 ,−C∗

0 )
⊤(∈ B(H,H ⊕H)). Denote also by Hb the set of all functions f(·) ∈ H with

compact support. With each function f(·) ∈ Hb one associates the generalized Fourier

transform f̂(·) : R → H given by

(4.4) f̂(s) =

∫

I
ϕ∗(t, s)∆(t)f(t) dt.

As is known a non-decreasing left-continuous function σ(·) : R → B(H) with σ(0) = 0 is
called a B(H)-valued distribution function.

Definition 4.1. A B(H)-valued distribution function σ(·) is called a q-pseudospectral

function of the system (4.1) if the operator (V f)(s) = f̂(s), f(·) ∈ Hb, admits a contin-
uation to a partial isometry Vσ ∈ [H, L2(σ;H)] (for the Hilbert space L2(σ;H) see e.g.
[16, Ch.13.5]).

According to [27] for each q-pseudospectral function σ(·) one has mulT ⊂ kerVσ.

Moreover, the inverse Fourier transform f(t) =
∫
R

ϕ(t, s)dσ(s)f̂(s) exists only for f(·) ∈
H⊖ kerVσ . These facts make natural the following definition.

Definition 4.2. [27]. A q-pseudospectral function σ(·) with the minimally possible
kernel kerVσ = mulT of Vσ is called a pseudospectral function of the system (4.1) (with
respect to the pair (C0, C1) ∈ SP (H)).

Definition 4.3. [1, 29]. A B(H)-valued distribution function σ(·) is called a spectral
function of the system (4.1) (with respect to the pair (C0, C1) ∈ SP (H)) if the following
Parseval equality is valid:∫

R

(dσ(s)f̂(s), f̂(s)) =

∫

I
(∆(t)f(t), f(t)) dt, f(·) ∈ Hb.

Assertion 4.4. [27]. (1) A B(H)-valued distribution function σ(·) is a spectral function
if and only if it is a pseudospectral function such that Vσ is an isometry.

(2) Let (C0, C1) ∈ SP (H) and let T ∈ ExtTmin
be symmetric relation (4.3). Then the

set of spectral functions (with respect to (C0, C1)) is not empty if and only if mulT = {0},
in which case the sets of spectral and pseudospectral functions coincide.

Definition 4.5. A self-adjoint operator pair (C0, C1) ∈ SP (H) is referred to the class
SP0(H) if the respective relation T of the form (4.3) satisfies mulT = mulTmin and to
the class SP ′

0(H) if mulT = {0}(= mulTmin).

Remark 4.6. (1) Clearly, SP ′
0(H) ⊂ SP0(H) and by [28, Lemma 3.4] SP0(H) 6= ∅.

(2) Since mulTmin ⊂ mulT , it follows that for a pair (C0, C1) ∈ SP0(H) the partial
isometry Vσ corresponding to the pseudospectral function σ(·) (with respect to (C0, C1))
has the minimal kernel in the following sense: for any pair (C ′

0, C
′
1) ∈ SP (H) the partial

isometry V ′
σ corresponding to the pseudospectral function σ′(·) (with respect to (C ′

0, C
′
1))
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satisfies kerVσ ⊂ kerV ′
σ. Moreover, by Assertion 4.4 a pair (C0, C1) ∈ SP (H) belongs

to SP ′
0(H) if and only if the set of spectral functions (with respect to (C0, C1)) is not

empty.

Our next goal is to characterise the classes SP0(H) and SP ′
0(H).

In the following we assume for simplicity that n+(Tmin) = n−(Tmin). Then according
to [27] there exist a finite dimensional Hilbert space Hb and a surjective linear mapping

Γb = (Γ0b,Γ1b)
⊤ : domTmax → Hb ⊕Hb(4.5)

such that the following identity is valid

[y, z]b = (Γ0by,Γ1bz)− (Γ1by,Γ0bz), y, z ∈ domTmax(4.6)

(actually Γby is a singular boundary value of a function y ∈ domTmax at the endpoint b).
Moreover, a collection Πd = {H,Γ0,Γ1} with

H = H ⊕Hb,(4.7)

Γ0{y, f} = y0(a)⊕ Γ0by, Γ1{y, f} = y1(a)⊕ (−Γ1by), {y, f} ∈ Tmax(4.8)

is a boundary triplet for Tmax.
The classes SP0(H) and SP ′

0(H) are characterized in the following two theorems.

Theorem 4.7. Assume that system (4.1) is definite and n+(Tmin) = n−(Tmin). Let
Πd = {H,Γ0,Γ1} be the boundary triplet (4.7), (4.8) for Tmax and let M(·) be the Weyl
function of Πd. Let (C0, C1) ∈ SP (H), K1 := ranC1 ⊂ H, H′

2 := kerC1 and H′
1 =

H ⊖H′
2, so that

H = H′
1 ⊕H′

2, H = H′
1 ⊕H′

2 ⊕Hb.(4.9)

Moreover, let Cj1 := PH,K1
Cj ↾ H′

1(∈ B(H′
1,K1)), j ∈ {0, 1}, let M(λ) has the block

representation (3.28) (with respect to the second decomposition in (4.9)) and let Nj(·) ∈
Ru[H′

j ⊕Hb], j ∈ {1, 2}, be the operator functions defined by (3.31) - (3.33) (in (3.28),

(3.32) and (3.33) Ḣ1 should be replaced with Hb). Then (C0, C1) ∈ SP0(H) if and only
if Nj(·) ∈ Ru0[H′

j ⊕Hb], j ∈ {1, 2}.
If in addition kerC1 = {0} and M(λ) has the block representation (1.7) (with H′ = H

and Ḣ1 = Hb), then (C0, C1) ∈ SP0(H) if and only if N(·) ∈ Ru0[H ⊕ Hb], where
N(·) ∈ Ru[H ⊕Hb] is the operator function (3.35).

Proof. Since dimH < ∞, the subspace K1 is closed. Moreover, since Γb is surjective, it
follows from (4.6) that (4.3) can be written as

T = {{y, f} ∈ Tmax : C0y0(a) + C1y1(a) = 0, Γ0by = Γ1by = 0},
that is, in the form (3.34). Now the required statements follow from Corollary 3.14
applied to the boundary triplet Πd. �

Theorem 4.8. Assume that system (4.1) is definite and n+(Tmin) = n−(Tmin).Then the
set SP ′

0(H) is not empty if and only if mulTmin = {0}. Moreover, if mulTmin = {0},
then Theorem 4.7 holds with SP ′

0(H) instead of SP0(H) .

Proof. For each pair (C0, C1) ∈ SP (H) one has mulT ⊃ mulTmin. Therefore in the case
mulTmin 6= {0} the set SP ′

0(H) is empty. If mulTmin = {0}, then SP ′
0(H) = SP0(H).

Hence SP ′
0(H) 6= ∅ and Theorem 4.7 holds with SP ′

0(H) instead of SP0(H) . �

Remark 4.9. Note that the Weyl function M(λ) in Theorems 4.7 and 4.8 is defined in
terms of the boundary values of respective operator solutions of (4.1) at the endpoints a
and b (see [27, Proposition 4.9]).
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