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ON THE INVERSE EIGENVALUE PROBLEMS FOR A JACOBI

MATRIX WITH MIXED GIVEN DATA

L. P. NIZHNIK

To the memory of M.L. Gorbachuk

Abstract. We give necessary and sufficient conditions for existence and uniqueness

of a solution to inverse eigenvalues problems for Jacobi matrix with given mixed
initial data. We also propose effective algorithms for solving these problems.

1. Introduction

Denote by Jn the Jacobi matrix

(1) Jn “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

b1 a1
a1 b2 a2

a2 b3 a3
. . .

. . .
. . .

. . .
. . .

. . .

an´2 bn´1 an´1

an´1 bn

˛
‹‹‹‹‹‹‹‹‹‹‚

,

where a1, a2, . . . , an´1 and b1, b2, . . . , bn are parameters of the Jacobi matrix, and
aj ą 0, bj are real numbers.

We will denote by Jr the submatrix of the matrix Jn, consisting of the first r rows
and columns of the matrix Jn. The characteristic polynomial of the matrix Jr will be
denoted by Drpλq,
(2) Drpλq “ detpλI ´ Jrq, r “ 1, . . . , n.

All zeros of the polynomialDrpλq, where Jr is a Jacobi matrix of the form (1), are real and
simple. Zeros λ1 ă λ2 ă ¨ ¨ ¨ ă λn of the characteristic polynomial Dnpλq of the Jacobi
matrix Jn given by (1) are eigenvalues of the matrix Jn. The zeros µ1 ă µ2 ă ¨ ¨ ¨ ă µn´1

of the characteristic polynomial Dn´1pλq are eigenvalues of the submatrix Jn´1 that is
obtained from the matrix Jn by removing the last row and the last column from the
matrix. Eigenvalues of the matrices Jn and Jn´1 alternate,

(3) λ1 ă µ1 ă λ2 ă ¨ ¨ ¨ ă µn´1 ă λn.

Property (3) can be written in one of the following equivalent forms:

(4)
aq p´1qn´jDn´1pλjq ą 0, j “ 1, . . . , n,

bq p´1qn´jDnpµjq ą 0, j “ 1, . . . , n ´ 1.

The common sequence of eigenvalues of the Jacobi matrices Jn and Jn´1 will be called
an extended spectrum of the matrix Jn. It is well known that a Jacobi matrix is uniquely
determined by its extended spectrum, and condition (3) is necessary and sufficient for
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the numbers tλjun
j“1

, together with tµjun´1

j“1
, to form an extended spectrum of the Jacobi

matrix Jn. Expansion into a continuous fraction,

(5)
Dnpλq

Dn´1pλq “ λ ´ bn ´ An´1

λ ´ bn´1 ´ An´2

λ´bn´2´...´ A1

λ´b1

,

gives one of algorithms that allow to solve an inverse problem, — to recover a Jacobi
matrix from its extended spectrum.

Inverse eigenvalue problems with given mixed initial data (IEPMD) arise in the case
where a part of elements of the Jacobi matrix is known. Then it is natural to consider
only a part of the extended spectrum of the Jacobi matrix as known.

Uniqueness of solution of the inverse problem to a great extend depends on how all
elements of the Jacobi matrix (1) are partitioned into known or unknown ones, see [2,
Introduction]). For example, the Jacobi matrix J4 with b1 “ b4 “ 0, a1 “ a3 “ 1,
b2 “ 3

4
´ x, b3 “ 3

4
` x, a22 “ 9

16
´ x2, where |x| ă 3

4
, has the spectrum consisting of

the four eigenvalues p´1,´ 1
2
, 1, 2q that does not depend on x. Hence it is impossible

to recover the matrix with three unknown elements b2, b3, a2 from the spectrum of the
matrix J4. However, the matrix can be uniquely recovered from a part of the extended
spectrum of the matrix J4. It is sufficient to consider two eigenvalues of the matrix J4, λ1

and λ2 subject to the condition λ1λ2 ‰ ´1, and one eigenvalue µ1 of the matrix J3.
Let us index the elements of the Jacobi matrix Jn in (1) as follows:

(6) c1 “ b1, c2 “ a1, c3 “ b2, . . . , c2n´1 “ bn

assuming that c2k´1 “ bk, c2k “ ak.
Inverse eigenvalue problem for the Jacobi matrix Jn with mixed data (IEPMD) can

be formulated in the following way.

Problem (IEPMD). Let, in a Jacobi matrix Jn of the form (1), the first l elements,
considered with respect to the sequential indexing (6), be unknown, and the remaining 2n´
1 ´ l elements tcju2n´1

j“l`1
be given. Suppose that l1 ď l, and the numbers λ1, . . . , λl1 ,

l2 “ l ´ l1, and the numbers µ1, . . . , µl2 are given. We need to recover the matrix Jn

in such a way that the numbers tλjul1
j“1

would be eigenvalues of the matrix Jn and that

numbers tµjul2
j“1

would be eigenvalue of the matrix Jn´1.

A particular case of the IEPMD for l “ n, l1 “ n, and l2 “ 0 is the well-known
Hochstadt inverse eigenvalue problem (HIEP), for which a theorem on uniqueness of
solution of the inverse problem was obtained in [4, 5] under the condition that a solution
exists. For l ď n, l1 “ l, a theorem on uniqueness of a solution of the inverse problem was
obtained in [3] in the case where l arbitrary eigenvalues of the matrix Jn are given with
l ă n. Solution uniqueness theorems were also obtained in [6] for the inverse problem in
the case where l ą n, l1 “ n, and l2 “ l ´ n.

Theorem 1 of this paper gives uniqueness of a solution of the IEPMD problem in a
general case. We also propose an algorithm for solving such an inverse problem. In this
paper, we treat the cases l ą n and l1 “ n (Theorem 3), or l2 “ n´1 (Theorem 4) in more
details. For these cases, together with an algorithm for solving the inverse problems, we
formulate and prove necessary and sufficient conditions for existence and uniqueness of
a solution to the IEPMD problem in terms of initial data.

2. Auxiliary results

2.1. Determinant identity. Let us partition all elements of the Jacobi matrix Jn of
the form (1) into two groups using the sequential indexing (6); the first group contains l
elements, and the second one 2n ´ 1 ´ l elements. Let r “

“
l`1
2

‰
be the integer part
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of the number l`1
2
, that is, the number r “ l

2
if l is an even number, and r “ l`1

2
if l

is odd. Denote by Qmpλq the characteristic polynomial of the submatrix formed by the

last m rows and m columns of the Jacobi matrix Jn, and by qQkpλq the characteristic
poynomial of the k ˆ k-submatrix formed by the last k rows and columns of the Jacobi
matrix Jn´1. Using known determinant identities (see, e.g. [2]), we have the following:

(7)
Dnpλq “ DrpλqQn´rpλq ´ a2rDr´1pλqQn´r´1pλq,

Dn´1pλq “ Drpλq qQn´r´1pλq ´ a2rDr´1pλq qQn´r´2pλq.

Considering the two equations in (7) as a system of linear equations with respect toDrpλq
and a2rDr´1pλq and using that Qn´rpλq qQn´r´2pλq ´ Qn´r´1pλq qQn´r´1pλq “ ´

n´1ś
j“r`1

a2j

(see [2, Lemma 1]) we get two more identities,

(8)

n´1ź

j“r`1

a2jDrpλq “ Dn´1pλqQn´r´1pλq ´ Dnpλq qQn´r´2pλq,

n´1ź

j“r

a2jDr´1pλq “ Dn´1pλqQn´rpλq ´ Dnpλq qQn´r´1pλq.

Identities (7) permit to construct an algorithm for solving the IEPMD problem formu-
lated in Introduction. Indeed, if l is the number of unknown elements of the Jacobi
matrix Jn, with the sequential indexing (6), and r “

“
l`1
2

‰
is the integer part of the

number l`1
2
, then all elements of the matrix Jn with indices greater than l are known.

Hence, all the polynomials Qα and qQβ that enter identities (7) are known. Moreover, if l
is an odd number, then ar is also known, since it has the index 2r “ l ` 1 with respect
to indexing (6). Since λ1, . . . , λl1 in the IEPMD problem are eigenvalues of the matrix
Jn, we have that Dnpλjq “ 0 for j “ 1, . . . , l1. Similarly, the numbers µ1, . . . , µl2 are
eigenvalues of the matrix Jn´1, hence Dn´1pµkq “ 0, k “ 1, . . . , l2. It follows from (7)
that

(9)
DrpλjqQn´rpλjq ´ a2rDr´1pλjqQn´r´1pλjq “ 0, j “ 1, . . . , l1,

Drpµkq qQn´r´1pµkq ´ a2rDr´1pµkq qQn´r´2pµkq “ 0, k “ 1, . . . , l2.

System (9) uniquely defines the polynomials Drpλq, Dr´1pλq, and the number ar for
even l. We will deal with this problem in Section 2.2. Since we know Drpλq and Dr´1pλq,
the algorithm in (5) can be continued, thus permitting to recover all unknown elements
of the matrix Jn.

2.2. Some facts from the theory of fractional-rational function interpolation.

For the reader’s convenience, we give some simple facts with proofs from the theory of
fractional-rational interpolation [1] in a form suitable for proofs of the main results in
the paper.

Lemma 1. Let ppxq and qpxq be two relatively prime polynomials of degrees n and m,
correspondingly. Let the coefficient of the highest power of the argument in the polyno-
mial ppxq be equal to 1. Consider a sequence x1, x2, . . . , xn`m`1 of n`m`1 distinct val-
ues of the argument, interpolation nodes, and two sequences αj, βj, j “ 1, . . . , n`m`1,
of interpolation values that are not zero for each j, |αj | ` |βj | ‰ 0, and such that

(10) ppxjqαj ` qpxjqβj “ 0, j “ 1, . . . , n ` m ` 1.

Then system (10) uniquely defines the pair of polynomials p, q.
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Proof. Let αj ‰ 0 and βj ‰ 0 for all j, and polynomials p and q satisfy system (10),
and assume that there is another pair of polynomials, rppxq and rqpxq, such that they have
degrees n and m, correspondingly, the coefficient of the highest power of the polyno-
mial rppxq is 1, and the pair satisfies system (10). Then it follows from (10) that

(11)
ppxjq
qpxjq “ rppxjq

rqpxjq “ ´βj

αj

, j “ 1, . . . , n ` m ` 1.

This means that the polynomial ppxqrqpxq´rppxqqpxq has degree n`m and n`m`1 distinct
zeros x1, x2, . . . , xn`m`1. But then it is a zero polynomial. Since the polynomials p

and q are relatively prime and ppxqrqpxq ´ rppxqqpxq ” 0, we have that ppxq ” rppxq
and qpxq ” rqpxq.

If some βk “ 0 in system (10), then ppxkq “ 0, since αk ‰ 0 by the condition of the
lemma. Similarly, the condition αk “ 0 yields that qpxkq “ 0. This permits to eliminate
all arguments xk in system (10) for which αk or βk is zero. Indeed, let αk “ 0 for only k “
1, . . . , n1 and βk “ 0 for only k “ n1 ` 1, . . . , n1 ` n2. Then ppxq “

n1`n2ś
k“n1`1

px ´ xkqpppxq,

qpxq “
n1ś
k“1

px ´ xkqpqpxq, where the degree of the polynomial pp equals n ´ n1 and the

degree of the polynomial pq is m´n1. System (10), in this case, is equivalent to the same
system for the polynomials pp, pq,

(12) pppxjqpαj ` pqpxjqpβj “ 0, j “ n1 ` n2 ` 1, . . . , n ` m ` 1,

where pαj “
n1`n2ś
k“n1

pxj ´ xkqαj , pβj “
n1ś
k“1

pxj ´ xkqβj . We have pαj ‰ 0 and pβj ‰ 0 for

all j in (12), and, according to what has been proved above, the polynomials pp, pq are
uniquely defined by system (12). Consequently, system (10) uniquely defines a pair of
polynomials p and q as well. �

Remark 1. We can also assume that the uniqueness given by Lemma 1 is preserved with
the assumption that the leading coefficient of the polynomial qpxq equals 1. To this end,
it is sufficient to consider the interpolation system (10) with only n ` m interpolation
nodes.

By writing the polynomials p and q in Lemma 1 in terms of their coefficients, ppxq “
xn`a1x

n´1`¨ ¨ ¨`an and qpxq “ b0x
m`b1x

m´1`¨ ¨ ¨`bm, system (10) becomes a linear
algebraic system of order n`m`1 with respect to the coefficients a1, . . . , an, b0, b1, . . . , bm.
We will call this linear system a defining interpolation system for a pair of polynomials
with respect to their coefficients. One can also use the Lagrange formula to find the
polynomials p and q in terms of their values ppx1q, . . . , ppxnq, qpxn`1q, . . . , qpxn`m`1q.
Then, for j ą n, ppxjq is given as a linear sum of ppx1q, . . . , ppxnq, and, for j ď n, the
values qpxjq are expressed as a linear sum of qpxn`1q, . . . , qpxn`m`1q. In such a case, the
interpolation system (10) turns into a linear algebraic system with respect to n`m`1 val-
ues of the polynomials in interpolation nods, ppx1q, . . . , ppxnq, qpxn`1q, . . . , qpxn`m`1q.
This system will be called a defining interpolation system for the pair of polynomials
p and q with respect to their values in the interpolation nodes. Of course, the defin-
ing systems with respect to the coefficients and values in the interpolation nodes are
equivalent.

Lemma 2. If a defining interpolation system for a pair of polynomials p and q with
respect to their coefficients (or values in the interpolation nodes) has a pair of relatively
prime polynomials as a solution, then the determinant of this system is not zero.
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Proof. By Lemma 1, a pair of relatively prime polynomials p and q gives rise to the inter-
polation system (10) that has a unique solution. This is possible only if the determinant
of this linear system is not zero. �

3. Main results

Let us consider the IEPMD problem that has been formulated in the Introduction.

Theorem 1. Suppose, that the IEPMD problem has a solution for a Jacobi matrix Jn
in (1) with the first l unknowns, according to the sequential indexing (6), and given
numbers λ1, . . . , λl1 , µ1, . . . , µl2 , l1 ` l2 “ l. Then the solution of such an inverse problem
is unique.

Proof. Let a solution of the IEPMD problem exist. Set r “
“
l`1
2

‰
. Then system (9) is

satisfied. We can apply the results of Lemmas 1 and 2 and Remark 1 to system (9).
Indeed, the given numbers λ1, . . . , λn1

, µ1, . . . , µn2
can be considered as interpolation

nodes and system (9) as a particular case of system (10). An interpolation pair of
polynomials for system (9) are the polynomials Dr and Dr´1 for odd l, if ar is a given
parameter. If l is even, then the polynomials Drpλq and a2rDr´1pλq make an interpolation
pair. Here the numbers αj and βj in system (10) are taken to be the values Qn´rpλjq
and ´Qn´r´1pλjq, if j ď n1, or qQn´r´1pµkq and ´ qQn´r´2pµkq, if k “ 1, . . . , n2.

Conditions of Lemma 1 are satisfied, since the polynomials Drpλq and Dr´1pλq
have alternating zeros; the same is true for the pair Qn´rpλq and Qn´r´1pλq, and the

pair qQn´r´1pλq and qQn´r´2pλq.
Hence, if the IEPMD problem has a solution, then the polynomials Drpλq andDr´1pλq

are defined uniquely, and, if the number l is odd, the number ar is defined uniquely as
well. This implies that a solution of the IEPMD problem is unique. �

Example 1. Let us recover a Jacobi matrix J4 with l “ 4 unknown b1, b2, a1, a2 and the
known elements b3 “ 6

7
, b4 “ 0, a3 “

?
7, if two eigenvalues λ1 “ ´1, λ2 “ 1 of the

matrix J4 and two eigenvalues µ1 “ 0, µ2 “ 3 of the matrix J3 are given.
In this case, system (9) is the following:

(13)

D2p´1qQ2p´1q ´ a22D1p´1qQ1p´1q “ 0,

D2p1qQ2p1q ´ a22D1p1qQ1p1q “ 0,

D2p0q qQ1p0q ´ a22D1p0q “ 0,

D2p3q qQ1p3q ´ a22D1p3q “ 0.

Since Q2pλq “ λpλ ´ 6
7

q ´ 7, Q1pλq “ λ, qQ1pλq “ λ ´ 6
7
, setting D2pλq “ λ2 ` αλ ` β,

D1pλq “ λ ` γ, we get from system (12) that α “ ´ 1
7
, β “ ´ 12

7
, γ “ 1

3
, a2 “ 6

?
6

7
.

Hence, D2pλq “ λ2´ 1
7
λ´ 12

7
, D1pλq “ λ` 1

3
. According to algorithm (5), we have D2pλq

D1pλq “
λ ´ b2 ´ a2

1

λ´b1
. Thus b1 “ ´ 1

3
, b2 “ 10

21
, a1 “

?
14
3

.
The matrix J4 has the form

(14)

¨
˚̊
˚̋

´ 1
3

?
14
3

0 0?
14
3

10
21

6
?
6

7
0

0 6
?
6

7
6
7

?
7

0 0
?
7 0

˛
‹‹‹‚.

Remark 2. In Example 1, we have that the number l “ 4 of unknown elements of
the Jacobi matrix J4 is equal to its order. Hence, in this case, we can consider the
Hochstadt inverse eigenvalue problem with all eigenvalues t´3,´1, 1, 4u of the matrix J4
being known. Of course, a solution of such an inverse problem is given by matrix (14).
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Remark 3. Even in the case where the number l of unknown elements of the Jacobi
matrix Jn does not exceed its order, l ď n, together with the inverse problem for l

eigenvalues of the matrix Jn, it is also expedient to consider the inverse problem for l1 ă l

eigenvalues of the matrix Jn and l2 “ l´l1 eigenvalues of the matrix Jn´1. Such a general
setting for the IEPMD problem can be useful for applications, since it can experimentally
be easier to determine l1 and l2 eigenvalues in two experiments with the matrices Jn
and Jn´1 as opposed to determining l “ l1 ` l2 eigenvalues of the only matrix Jn in a
single experiment.

Uniqueness of solution of an IEPMD problem, based on Theorem 1, together with
an effective algorithm for finding a solution allow to formulate necessary and sufficient
conditions on the initial data in the IEPMD problem, which would yield existence of
a solution. This conditions come from a possibility to apply, to the initial data, the
algorithm that would give a Jacobi matrix.

Theorem 2. For an IEPMD problem to have a solution for an odd number l of unknown
elements of the Jacobi matrix Jn, it is necessary and sufficient that the linear algebraic
system (9) constructed from the initial data for the coefficients of the polynomials Drpλq
and Dr´1pλq have a unique solution and all zeros of the obtained polynomials Drpλq
and Dr´1pλq be real, simple, and mutually alternating.

Proof. Necessity follows from Theorem 1. If conditions of Theorem 2 are fulfilled, then

algorithm (5) can be applied to Drpλq
Dr´1pλq . As a result, we obtain a Jacobi matrix Jr.

Supplementing the matrix Jr with elements of the matrix Jn, given by the initial data,
we get a solution of the IEPMD problem. �

More effective existence conditions for solutions of an IEPMD problem can be obtained
in terms of the initial data in a special case of the IEPMD problem if, for the number
of unknown elements of the Jacobi matrix Jn, we have l ą n, all eigenvalues λ1 ă λ2 ă
¨ ¨ ¨ ă λn of the matrix Jn are given, together with some of l´n eigenvalues µ1, . . . , µl´n

of the matrix Jn´1. In this case, Dnpλq “
nś

j“1

pλ ´ λjq, Dn´1pλq “ ppλq
l´nś
k“1

pλ ´ µkq,

where the polynomial ppλq has degree 2n ´ 1 ´ l. By substituting these expressions into
the second identity in (8) we get

(15)
n´1ź

j“r

a2jDr´1pλq “ ppλq
l´nź

k“1

pλ ´ µkqQn´rpλq ´
nź

j“1

pλ ´ λjq qQn´r´1pλq.

Since r “
“
l`1
2

‰
, the degree of the polynomial Dr´1pλq in (15) is less than l´r that is the

degree of the polynomial Apλq “
l´nś
j“1

pλ´µjqQn´rpλq. Hence the polynomial ppλq equals

the quotient of the polynomial
nś

j“1

pλ ´ λjq qQn´r´1pλq divided by the polynomial Apλq.

If l is odd, then the degrees of the polynomials Dr´1pλq and Apλq are the same. Hence,
it follows from (15) that

(16) ppλq “

$
’’’&
’’’%

nś
j“1

pλ ´ λjq qQn´r´1pλq

l´nś
j“1

pλ ´ µjqQn´rpλq

,
///.
///-

quit

` 1 ´ p´1ql
2

n´1ź

j“r

a2j .
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The symbol
!

Bpλq
Apλq

)
quit

in (16) denotes a polynomial obtained by dividing the polyno-

mial Bpλq by the polynomial Apλq using the Euclidean algorithm. Identity (16) permits

to obtain the polynomial Dn´1pλq “ ppλq
l´nś
j“1

pλ ´ µjq in terms of the initial data in

the IEPMD problem. This, together with the polynomial Dnpλq “
nś

j“1

pλ ´ λjq and

algorithm (5), gives an effective algorithm for solving the IEPMD problem in the case
where l ą n, l1 “ n, l2 “ l ´ n. Moreover, we have the following theorem.

Theorem 3. There exists a matrix Jn solving an IEPMD problem for l ą n unknown
elements with given λ1 ă λ2 ă ¨ ¨ ¨ ă λn and µ1, . . . , µl´n such that the numbers tλju are
eigenvalues of the matrix Jn and the numbers tµju are eigenvalues of the matrix Jn´1 if
an only if

(17) p´1qn´1Dn´1pλjq ą 0, j “ 1, . . . , n,

where Dn´1pλq “ ppλq
n´1ś
j“1

pλ ´ µjq and the polynomial ppλq is defined by (16) in terms

of the initial data.

Proof. Condition (17) implies that using the pair of polynomials Dnpλq “
nś

j“1

pλ ´ λjq

and Dn´1pλq defined in the theorem one can construct a Jacobi matrix rJn using al-
gorithm (5). Here, all given numbers λ1 ă λ2 ă ¨ ¨ ¨ ă λn will be eigenvalues of the

matrix rJn and the numbers µ1, . . . , µl´n will be eigenvalues of the matrix rJn´1 obtained

from rJn by removing the last row and the last column. Hence, to prove the theorem, it

is necessary to show that elements of the matrix rJnwith indices greater than l coincide
with corresponding elements of the matrix Jn. Using identity (8) for |λ| Ñ 8 we get

(18)
Dnpλq

Dn´1pλq ´ Qn´rpλq
qQn´r´1pλq

“ ´
n´1ź

j“r

a2j |λ|´p2n´1´rqp1 ` op1qq.

Algorithm (5) shows that the expression Dnpλq
Dn´1pλq can be expressed in terms of elements

of the matrix rJn as a continued fraction,

(19)
Dnpλq

Dn´1pλq “ λ ´ rbn ´ ra2n´1

λ ´ rbn´1 ´ ¨ ¨ ¨ ´ a2

1

λ´b1

.

According to algorithm (5), the expression Qn´rpλq
qQn´r´1pλq can be expressed in terms of given

elements of the matrix Jn,

(20)
Qn´rpλq

qQn´r´1pλq
“ λ ´ bn ´ a2n´1

λ ´ bn´1 ´ ¨ ¨ ¨ ´ a2
r

λ´br`1

.

Substituting (19) and (20) into (18) yields the needed identities, rbn “ bn, ran´1 “ an´1,

. . . , rar “ ar. Thus a construction of the Jacobi matrix rJn gives a solution of the IEPMD
problem. �

Example 2. Consider the case n “ 4 where the matrix J4 has l “ 5 unknown parame-
ters b1, a1, b2, a2, b3, and a3 “

?
7, b4 “ 0. Let tλju “ t´3,´1, 1, 4u and µ1 “ 0.

Algorithm (16) gives

ppλq “
" pλ ` 3qpλ ` 1qpλ ´ 1qpλ ´ 4q

λ ¨ λ

*

quit

` 7 “ λ2 ´ λ ´ 6.
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Hence, D3pλq “ ppλq ¨ λ “ λ3 ´ λ2 ´ 6λ. But D4pλq “ pλ ` 3qpλ ` 1qpλ ´ 1qpλ ´ 4q “
λ4 ´ λ3 ´ 13λ2 ` λ ` 12. With such D4pλq and D3pλq, algorithm (5) gives a matrix J4
of form (14).

Consider now one more case of an IEPMD problem where the number of unknown ele-
ments in the Jacobi matrix Jn is greater than the order n of the matrix Jn. Let the entire
spectrum µ1 ă µ2 ă ¨ ¨ ¨ ă µn´1 of the matrix Jn´1 and l`1´n eigenvalues λ1, . . . , λl`1´n

of the matrix Jn be given. To solve the inverse problem, let us formulate an algorithm
similar to the one in Theorem 3. The characteristic polynomial Dn´1pλq can be explicitly

expressed in terms of the given spectrum, Dn´1pλq “
n´1ś
j“1

pλ ´ µjq. The characteristic

polynomial Dnpλq can be written as a product,
l`1´nś
j“1

pλ ´ λjq ¨ qpλq, where the polyno-

mial qpλq has degree l`1´n. Substituting these representations for Dnpλq and Dn´1pλq
into identity (8) gives

(21)
n´1ź

j“r

a2jDr´1pλq “
n´1ź

j“1

pλ ´ µjqQn´rpλq ´ qpλq
l`1´nź

j“1

pλ ´ λjq qQn´r´1pλq.

This identity, similarly to (15), gives

(22) qpλq “

$
’’’&
’’’%

n´1ś
j“1

pλ ´ µjqQn´rpλq

l`1´nś
j“1

pλ ´ λjq qQn´r´1pλq

,
///.
///-

quit

´ 1 ´ p´1ql
2

n´1ź

j“r

a2j ,

where r “
“
l`1
2

‰
.

The polynomial t. . . uquit can be effectively constructed from the initial data of the

IEPMD problem. Hence, the representations Dn´1pλq “
n´1ś
j“1

pλ ´ µjq and Dnpλq “

qpλq
l`1´nś
j“1

pλ ´ λjq, where the polynomial qpλq is given by (22) reduces the construction

of Jn to algorithm (5).

Theorem 4. An IEPMD problem with l ě n unknown parameters of the Jacobi ma-
trix Jn has a solution for all eigenvalues µ1 ă µ2 ă ¨ ¨ ¨ ă µn´1 of the matrix Jn´1

and λ1, . . . , λl`1´n eigenvalues of the matrix Jn being given if and only if

(23) p´1qn´jDnpµjq ą 0, j “ 1, . . . , n ´ 1,

where Dnpλq “ qpλq
l`1´nś
j“1

pλ ´ λjq and the polynomial qpλq is given by formula (22).

Proof. Using the initial data we construct Dn´1pλq “
n´1ś
j“1

pλ ´ µjq and Dnpλq. Condi-

tion (23) is equivalent to that all zeros of the polynomials Dnpλq and Dn´1pλq alternate.
Hence, using algorithm (5) applied to Dn and Dn´1 we can construct a Jacobi matrix Jn
and, as in Theorem 3, prove that it is a solution of the IEPMD problem. �

Example 3. Let us construct a Jacobi matrix J4 that has unknown elements b1, a1, b2,
a2, and the elements b3 “ 6

7
, b4 “ 0, a3 “

?
7 are known. Let the spectrum t´2, 0, 3u of

the matrix J3 and one eigenvalue λ1 “ ´1 of the matrix J4 be given.
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Algorithm (22) yields qpλq “
!

D3pλqQ3pλq
pλ`1qpλ´ 6

7
q

)
quit

“ λ3 ´ 2λ2 ´ 11λ ` 12. Then D4pλq “
pλ`1qqpλq “ λ4 ´λ3 ´13λ2 `λ`12. Conditions (23) are satisfied. Algorithm (5) gives
a matrix J4 of the form (14).

Acknowledgement. The research in this paper partially supported by the EU-financed
project AMMODIT (”Approximation Methods for Molecular Modelling and Diagnosis
Tasks”, ”MSCA-RISE-2014-645672-AMMODIT”).

References
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