ON THE INVERSE EIGENVALUE PROBLEMS FOR A JACOBI MATRIX WITH MIXED GIVEN DATA

L. P. NIZHNIK

To the memory of M.L. Gorbachuk

ABSTRACT. We give necessary and sufficient conditions for existence and uniqueness of a solution to inverse eigenvalues problems for Jacobi matrix with given mixed initial data. We also propose effective algorithms for solving these problems.

1. Introduction

Denote by J_n the Jacobi matrix

where $a_1, a_2, \ldots, a_{n-1}$ and b_1, b_2, \ldots, b_n are parameters of the Jacobi matrix, and $a_i > 0, b_j$ are real numbers.

We will denote by J_r the submatrix of the matrix J_n , consisting of the first r rows and columns of the matrix J_n . The characteristic polynomial of the matrix J_r will be denoted by $D_r(\lambda)$,

(2)
$$D_r(\lambda) = \det(\lambda I - J_r), \qquad r = 1, \dots, n.$$

All zeros of the polynomial $D_r(\lambda)$, where J_r is a Jacobi matrix of the form (1), are real and simple. Zeros $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ of the characteristic polynomial $D_n(\lambda)$ of the Jacobi matrix J_n given by (1) are eigenvalues of the matrix J_n . The zeros $\mu_1 < \mu_2 < \cdots < \mu_{n-1}$ of the characteristic polynomial $D_{n-1}(\lambda)$ are eigenvalues of the submatrix J_{n-1} that is obtained from the matrix J_n by removing the last row and the last column from the matrix. Eigenvalues of the matrices J_n and J_{n-1} alternate,

$$\lambda_1 < \mu_1 < \lambda_2 < \dots < \mu_{n-1} < \lambda_n.$$

Property (3) can be written in one of the following equivalent forms:

(4)
$$a) \qquad (-1)^{n-j} D_{n-1}(\lambda_j) > 0, \qquad j = 1, \dots, n,$$

$$b) \qquad (-1)^{n-j} D_n(\mu_j) > 0, \qquad j = 1, \dots, n-1.$$

The common sequence of eigenvalues of the Jacobi matrices J_n and J_{n-1} will be called an extended spectrum of the matrix J_n . It is well known that a Jacobi matrix is uniquely determined by its extended spectrum, and condition (3) is necessary and sufficient for

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10, 15A29, 65F18.

Key words and phrases. Jacobi matrix, inverse eigenvalue problems, mixed initial data.

the numbers $\{\lambda_j\}_{j=1}^n$, together with $\{\mu_j\}_{j=1}^{n-1}$, to form an extended spectrum of the Jacobi matrix J_n . Expansion into a continuous fraction,

(5)
$$\frac{D_n(\lambda)}{D_{n-1}(\lambda)} = \lambda - b_n - \frac{A_{n-1}}{\lambda - b_{n-1} - \frac{A_{n-2}}{\lambda - b_{n-2} - \dots - \frac{A_1}{\lambda}}},$$

gives one of algorithms that allow to solve an inverse problem, — to recover a Jacobi matrix from its extended spectrum.

Inverse eigenvalue problems with given mixed initial data (IEPMD) arise in the case where a part of elements of the Jacobi matrix is known. Then it is natural to consider only a part of the extended spectrum of the Jacobi matrix as known.

Uniqueness of solution of the inverse problem to a great extend depends on how all elements of the Jacobi matrix (1) are partitioned into known or unknown ones, see [2, Introduction]). For example, the Jacobi matrix J_4 with $b_1 = b_4 = 0$, $a_1 = a_3 = 1$, $b_2 = \frac{3}{4} - x$, $b_3 = \frac{3}{4} + x$, $a_2^2 = \frac{9}{16} - x^2$, where $|x| < \frac{3}{4}$, has the spectrum consisting of the four eigenvalues $(-1, -\frac{1}{2}, 1, 2)$ that does not depend on x. Hence it is impossible to recover the matrix with three unknown elements b_2 , b_3 , a_2 from the spectrum of the matrix J_4 . However, the matrix can be uniquely recovered from a part of the extended spectrum of the matrix J_4 . It is sufficient to consider two eigenvalues of the matrix J_4 , λ_1 and λ_2 subject to the condition $\lambda_1 \lambda_2 \neq -1$, and one eigenvalue μ_1 of the matrix J_3 .

Let us index the elements of the Jacobi matrix J_n in (1) as follows:

(6)
$$c_1 = b_1, \quad c_2 = a_1, \quad c_3 = b_2, \quad \dots, \quad c_{2n-1} = b_n$$

assuming that $c_{2k-1} = b_k$, $c_{2k} = a_k$.

Inverse eigenvalue problem for the Jacobi matrix J_n with mixed data (IEPMD) can be formulated in the following way.

Problem (IEPMD). Let, in a Jacobi matrix J_n of the form (1), the first l elements, considered with respect to the sequential indexing (6), be unknown, and the remaining 2n-1-l elements $\{c_j\}_{j=l+1}^{2n-1}$ be given. Suppose that $l_1 \leq l$, and the numbers $\lambda_1, \ldots, \lambda_{l_1}, l_2 = l - l_1$, and the numbers μ_1, \ldots, μ_{l_2} are given. We need to recover the matrix J_n in such a way that the numbers $\{\lambda_j\}_{j=1}^{l_1}$ would be eigenvalues of the matrix J_n and that numbers $\{\mu_j\}_{j=1}^{l_2}$ would be eigenvalue of the matrix J_{n-1} .

A particular case of the IEPMD for $l=n,\ l_1=n,$ and $l_2=0$ is the well-known Hochstadt inverse eigenvalue problem (HIEP), for which a theorem on uniqueness of solution of the inverse problem was obtained in [4, 5] under the condition that a solution exists. For $l \leq n,\ l_1=l,$ a theorem on uniqueness of a solution of the inverse problem was obtained in [3] in the case where l arbitrary eigenvalues of the matrix J_n are given with l < n. Solution uniqueness theorems were also obtained in [6] for the inverse problem in the case where $l > n,\ l_1=n,$ and $l_2=l-n.$

Theorem 1 of this paper gives uniqueness of a solution of the IEPMD problem in a general case. We also propose an algorithm for solving such an inverse problem. In this paper, we treat the cases l > n and $l_1 = n$ (Theorem 3), or $l_2 = n-1$ (Theorem 4) in more details. For these cases, together with an algorithm for solving the inverse problems, we formulate and prove necessary and sufficient conditions for existence and uniqueness of a solution to the IEPMD problem in terms of initial data.

2. Auxiliary results

2.1. **Determinant identity.** Let us partition all elements of the Jacobi matrix J_n of the form (1) into two groups using the sequential indexing (6); the first group contains l elements, and the second one 2n-1-l elements. Let $r=\left\lceil \frac{l+1}{2}\right\rceil$ be the integer part

L. P. NIZHNIK

of the number $\frac{l+1}{2}$, that is, the number $r = \frac{l}{2}$ if l is an even number, and $r = \frac{l+1}{2}$ if l is odd. Denote by $Q_m(\lambda)$ the characteristic polynomial of the submatrix formed by the last m rows and m columns of the Jacobi matrix J_n , and by $\check{Q}_k(\lambda)$ the characteristic poynomial of the $k \times k$ -submatrix formed by the last k rows and columns of the Jacobi matrix J_{n-1} . Using known determinant identities (see, e.g. [2]), we have the following:

(7)
$$D_n(\lambda) = D_r(\lambda)Q_{n-r}(\lambda) - a_r^2 D_{r-1}(\lambda)Q_{n-r-1}(\lambda),$$

$$D_{n-1}(\lambda) = D_r(\lambda)\check{Q}_{n-r-1}(\lambda) - a_r^2 D_{r-1}(\lambda)\check{Q}_{n-r-2}(\lambda).$$

Considering the two equations in (7) as a system of linear equations with respect to $D_r(\lambda)$ and $a_r^2 D_{r-1}(\lambda)$ and using that $Q_{n-r}(\lambda) \widecheck{Q}_{n-r-2}(\lambda) - Q_{n-r-1}(\lambda) \widecheck{Q}_{n-r-1}(\lambda) = -\prod_{j=r+1}^{n-1} a_j^2$ (see [2, Lemma 1]) we get two more identities,

(8)
$$\prod_{j=r+1}^{n-1} a_j^2 D_r(\lambda) = D_{n-1}(\lambda) Q_{n-r-1}(\lambda) - D_n(\lambda) \check{Q}_{n-r-2}(\lambda), \\ \prod_{j=r}^{n-1} a_j^2 D_{r-1}(\lambda) = D_{n-1}(\lambda) Q_{n-r}(\lambda) - D_n(\lambda) \check{Q}_{n-r-1}(\lambda).$$

Identities (7) permit to construct an algorithm for solving the IEPMD problem formulated in Introduction. Indeed, if l is the number of unknown elements of the Jacobi matrix J_n , with the sequential indexing (6), and $r = \left\lceil \frac{l+1}{2} \right\rceil$ is the integer part of the number $\frac{l+1}{2}$, then all elements of the matrix J_n with indices greater than l are known. Hence, all the polynomials Q_{α} and \check{Q}_{β} that enter identities (7) are known. Moreover, if l is an odd number, then a_r is also known, since it has the index 2r = l + 1 with respect to indexing (6). Since $\lambda_1, \ldots, \lambda_{l_1}$ in the IEPMD problem are eigenvalues of the matrix J_n , we have that $D_n(\lambda_j) = 0$ for $j = 1, \ldots, l_1$. Similarly, the numbers μ_1, \ldots, μ_{l_2} are eigenvalues of the matrix J_{n-1} , hence $D_{n-1}(\mu_k) = 0$, $k = 1, \ldots, l_2$. It follows from (7) that

(9)
$$D_r(\lambda_j)Q_{n-r}(\lambda_j) - a_r^2 D_{r-1}(\lambda_j)Q_{n-r-1}(\lambda_j) = 0, \qquad j = 1, \dots, l_1, \\ D_r(\mu_k) \check{Q}_{n-r-1}(\mu_k) - a_r^2 D_{r-1}(\mu_k) \check{Q}_{n-r-2}(\mu_k) = 0, \qquad k = 1, \dots, l_2.$$

System (9) uniquely defines the polynomials $D_r(\lambda)$, $D_{r-1}(\lambda)$, and the number a_r for even l. We will deal with this problem in Section 2.2. Since we know $D_r(\lambda)$ and $D_{r-1}(\lambda)$, the algorithm in (5) can be continued, thus permitting to recover all unknown elements of the matrix J_n .

2.2. Some facts from the theory of fractional-rational function interpolation. For the reader's convenience, we give some simple facts with proofs from the theory of fractional-rational interpolation [1] in a form suitable for proofs of the main results in the paper.

Lemma 1. Let p(x) and q(x) be two relatively prime polynomials of degrees n and m, correspondingly. Let the coefficient of the highest power of the argument in the polynomial p(x) be equal to 1. Consider a sequence $x_1, x_2, \ldots, x_{n+m+1}$ of n+m+1 distinct values of the argument, interpolation nodes, and two sequences α_j , β_j , $j=1,\ldots,n+m+1$, of interpolation values that are not zero for each j, $|\alpha_j| + |\beta_j| \neq 0$, and such that

(10)
$$p(x_i)\alpha_i + q(x_i)\beta_i = 0, \qquad j = 1, \dots, n+m+1.$$

Then system (10) uniquely defines the pair of polynomials p, q.

Proof. Let $\alpha_j \neq 0$ and $\beta_j \neq 0$ for all j, and polynomials p and q satisfy system (10), and assume that there is another pair of polynomials, $\tilde{p}(x)$ and $\tilde{q}(x)$, such that they have degrees n and m, correspondingly, the coefficient of the highest power of the polynomial $\tilde{p}(x)$ is 1, and the pair satisfies system (10). Then it follows from (10) that

(11)
$$\frac{p(x_j)}{q(x_j)} = \frac{\widetilde{p}(x_j)}{\widetilde{q}(x_j)} = -\frac{\beta_j}{\alpha_j}, \qquad j = 1, \dots, n+m+1.$$

This means that the polynomial $p(x)\widetilde{q}(x)-\widetilde{p}(x)q(x)$ has degree n+m and n+m+1 distinct zeros x_1,x_2,\ldots,x_{n+m+1} . But then it is a zero polynomial. Since the polynomials p and q are relatively prime and $p(x)\widetilde{q}(x)-\widetilde{p}(x)q(x)\equiv 0$, we have that $p(x)\equiv \widetilde{p}(x)$ and $q(x)\equiv \widetilde{q}(x)$.

If some $\beta_k = 0$ in system (10), then $p(x_k) = 0$, since $\alpha_k \neq 0$ by the condition of the lemma. Similarly, the condition $\alpha_k = 0$ yields that $q(x_k) = 0$. This permits to eliminate all arguments x_k in system (10) for which α_k or β_k is zero. Indeed, let $\alpha_k = 0$ for only k = 0

$$1, \ldots, n_1 \text{ and } \beta_k = 0 \text{ for only } k = n_1 + 1, \ldots, n_1 + n_2. \text{ Then } p(x) = \prod_{k=n_1+1}^{n_1+n_2} (x - x_k) \widehat{p}(x),$$

 $q(x) = \prod_{k=1}^{n_1} (x - x_k) \hat{q}(x)$, where the degree of the polynomial \hat{p} equals $n - n_1$ and the degree of the polynomial \hat{q} is $m - n_1$. System (10), in this case, is equivalent to the same system for the polynomials \hat{p} , \hat{q} ,

(12)
$$\hat{p}(x_j)\hat{\alpha}_j + \hat{q}(x_j)\hat{\beta}_j = 0, \quad j = n_1 + n_2 + 1, \dots, n + m + 1,$$

where
$$\hat{\alpha}_j = \prod_{k=n_1}^{n_1+n_2} (x_j - x_k) \alpha_j$$
, $\hat{\beta}_j = \prod_{k=1}^{n_1} (x_j - x_k) \beta_j$. We have $\hat{\alpha}_j \neq 0$ and $\hat{\beta}_j \neq 0$ for all j in (12), and, according to what has been proved above, the polynomials \hat{p} , \hat{q} are uniquely defined by system (12). Consequently, system (10) uniquely defines a pair of polynomials p and q as well.

Remark 1. We can also assume that the uniqueness given by Lemma 1 is preserved with the assumption that the leading coefficient of the polynomial q(x) equals 1. To this end, it is sufficient to consider the interpolation system (10) with only n + m interpolation nodes.

By writing the polynomials p and q in Lemma 1 in terms of their coefficients, $p(x) = x^n + a_1 x^{n-1} + \dots + a_n$ and $q(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m$, system (10) becomes a linear algebraic system of order n+m+1 with respect to the coefficients $a_1,\dots,a_n,b_0,b_1,\dots,b_m$. We will call this linear system a defining interpolation system for a pair of polynomials with respect to their coefficients. One can also use the Lagrange formula to find the polynomials p and q in terms of their values $p(x_1),\dots,p(x_n),q(x_{n+1}),\dots,q(x_{n+m+1})$. Then, for j>n, $p(x_j)$ is given as a linear sum of $p(x_1),\dots,p(x_n)$, and, for $p(x_n)$, the values $p(x_n)$ are expressed as a linear sum of $p(x_n)$, $p(x_n)$, $p(x_n)$, and $p(x_n)$ is given as a linear algebraic system with respect to $p(x_n)$ and $p(x_n)$ in the interpolation system (10) turns into a linear algebraic system for the pair of polynomials $p(x_n)$ and $p(x_n)$ with respect to their values in the interpolation nodes. Of course, the defining systems with respect to the coefficients and values in the interpolation nodes are equivalent.

Lemma 2. If a defining interpolation system for a pair of polynomials p and q with respect to their coefficients (or values in the interpolation nodes) has a pair of relatively prime polynomials as a solution, then the determinant of this system is not zero.

L. P. NIZHNIK

Proof. By Lemma 1, a pair of relatively prime polynomials p and q gives rise to the interpolation system (10) that has a unique solution. This is possible only if the determinant of this linear system is not zero.

3. Main results

Let us consider the IEPMD problem that has been formulated in the Introduction.

Theorem 1. Suppose, that the IEPMD problem has a solution for a Jacobi matrix J_n in (1) with the first l unknowns, according to the sequential indexing (6), and given numbers $\lambda_1, \ldots, \lambda_{l_1}, \mu_1, \ldots, \mu_{l_2}, l_1 + l_2 = l$. Then the solution of such an inverse problem is unique.

Proof. Let a solution of the IEPMD problem exist. Set $r = \left[\frac{l+1}{2}\right]$. Then system (9) is satisfied. We can apply the results of Lemmas 1 and 2 and Remark 1 to system (9). Indeed, the given numbers $\lambda_1, \ldots, \lambda_{n_1}, \mu_1, \ldots, \mu_{n_2}$ can be considered as interpolation nodes and system (9) as a particular case of system (10). An interpolation pair of polynomials for system (9) are the polynomials D_r and D_{r-1} for odd l, if a_r is a given parameter. If l is even, then the polynomials $D_r(\lambda)$ and $a_r^2 D_{r-1}(\lambda)$ make an interpolation pair. Here the numbers α_j and β_j in system (10) are taken to be the values $Q_{n-r}(\lambda_j)$ and $-Q_{n-r-1}(\lambda_j)$, if $j \leq n_1$, or $Q_{n-r-1}(\mu_k)$ and $-Q_{n-r-2}(\mu_k)$, if $k = 1, \ldots, n_2$.

and $-Q_{n-r-1}(\lambda_j)$, if $j \leq n_1$, or $\check{Q}_{n-r-1}(\mu_k)$ and $-\check{Q}_{n-r-2}(\mu_k)$, if $k = 1, \ldots, n_2$. Conditions of Lemma 1 are satisfied, since the polynomials $D_r(\lambda)$ and $D_{r-1}(\lambda)$ have alternating zeros; the same is true for the pair $Q_{n-r}(\lambda)$ and $Q_{n-r-1}(\lambda)$, and the pair $\check{Q}_{n-r-1}(\lambda)$ and $\check{Q}_{n-r-2}(\lambda)$.

Hence, if the IEPMD problem has a solution, then the polynomials $D_r(\lambda)$ and $D_{r-1}(\lambda)$ are defined uniquely, and, if the number l is odd, the number a_r is defined uniquely as well. This implies that a solution of the IEPMD problem is unique.

Example 1. Let us recover a Jacobi matrix J_4 with l=4 unknown b_1, b_2, a_1, a_2 and the known elements $b_3 = \frac{6}{7}$, $b_4 = 0$, $a_3 = \sqrt{7}$, if two eigenvalues $\lambda_1 = -1$, $\lambda_2 = 1$ of the matrix J_4 and two eigenvalues $\mu_1 = 0$, $\mu_2 = 3$ of the matrix J_3 are given.

In this case, system (9) is the following:

(13)
$$D_2(-1)Q_2(-1) - a_2^2 D_1(-1)Q_1(-1) = 0,$$

$$D_2(1)Q_2(1) - a_2^2 D_1(1)Q_1(1) = 0,$$

$$D_2(0)\check{Q}_1(0) - a_2^2 D_1(0) = 0,$$

$$D_2(3)\check{Q}_1(3) - a_2^2 D_1(3) = 0.$$

Since $Q_2(\lambda) = \lambda(\lambda - \frac{6}{7}) - 7$, $Q_1(\lambda) = \lambda$, $\check{Q}_1(\lambda) = \lambda - \frac{6}{7}$, setting $D_2(\lambda) = \lambda^2 + \alpha\lambda + \beta$, $D_1(\lambda) = \lambda + \gamma$, we get from system (12) that $\alpha = -\frac{1}{7}$, $\beta = -\frac{12}{7}$, $\gamma = \frac{1}{3}$, $a_2 = \frac{6\sqrt{6}}{7}$. Hence, $D_2(\lambda) = \lambda^2 - \frac{1}{7}\lambda - \frac{12}{7}$, $D_1(\lambda) = \lambda + \frac{1}{3}$. According to algorithm (5), we have $\frac{D_2(\lambda)}{D_1(\lambda)} = \lambda - b_2 - \frac{a_1^2}{\lambda - b_1}$. Thus $b_1 = -\frac{1}{3}$, $b_2 = \frac{10}{21}$, $a_1 = \frac{\sqrt{14}}{3}$. The matrix J_4 has the form

$$\begin{pmatrix}
-\frac{1}{3} & \frac{\sqrt{14}}{3} & 0 & 0 \\
\frac{\sqrt{14}}{3} & \frac{10}{21} & \frac{6\sqrt{6}}{7} & 0 \\
0 & \frac{6\sqrt{6}}{7} & \frac{6}{7} & \sqrt{7} \\
0 & 0 & \sqrt{7} & 0
\end{pmatrix}.$$

Remark 2. In Example 1, we have that the number l=4 of unknown elements of the Jacobi matrix J_4 is equal to its order. Hence, in this case, we can consider the Hochstadt inverse eigenvalue problem with all eigenvalues $\{-3, -1, 1, 4\}$ of the matrix J_4 being known. Of course, a solution of such an inverse problem is given by matrix (14).

Remark 3. Even in the case where the number l of unknown elements of the Jacobi matrix J_n does not exceed its order, $l \leq n$, together with the inverse problem for l eigenvalues of the matrix J_n , it is also expedient to consider the inverse problem for $l_1 < l$ eigenvalues of the matrix J_n and $l_2 = l - l_1$ eigenvalues of the matrix J_{n-1} . Such a general setting for the IEPMD problem can be useful for applications, since it can experimentally be easier to determine l_1 and l_2 eigenvalues in two experiments with the matrices J_n and J_{n-1} as opposed to determining $l = l_1 + l_2$ eigenvalues of the only matrix J_n in a single experiment.

Uniqueness of solution of an IEPMD problem, based on Theorem 1, together with an effective algorithm for finding a solution allow to formulate necessary and sufficient conditions on the initial data in the IEPMD problem, which would yield existence of a solution. This conditions come from a possibility to apply, to the initial data, the algorithm that would give a Jacobi matrix.

Theorem 2. For an IEPMD problem to have a solution for an odd number l of unknown elements of the Jacobi matrix J_n , it is necessary and sufficient that the linear algebraic system (9) constructed from the initial data for the coefficients of the polynomials $D_r(\lambda)$ and $D_{r-1}(\lambda)$ have a unique solution and all zeros of the obtained polynomials $D_r(\lambda)$ and $D_{r-1}(\lambda)$ be real, simple, and mutually alternating.

Proof. Necessity follows from Theorem 1. If conditions of Theorem 2 are fulfilled, then algorithm (5) can be applied to $\frac{D_r(\lambda)}{D_{r-1}(\lambda)}$. As a result, we obtain a Jacobi matrix J_r . Supplementing the matrix J_r with elements of the matrix J_n , given by the initial data, we get a solution of the IEPMD problem.

More effective existence conditions for solutions of an IEPMD problem can be obtained in terms of the initial data in a special case of the IEPMD problem if, for the number of unknown elements of the Jacobi matrix J_n , we have l>n, all eigenvalues $\lambda_1<\lambda_2<\cdots<\lambda_n$ of the matrix J_n are given, together with some of l-n eigenvalues μ_1,\ldots,μ_{l-n} of the matrix J_{n-1} . In this case, $D_n(\lambda)=\prod\limits_{j=1}^n(\lambda-\lambda_j),\ D_{n-1}(\lambda)=p(\lambda)\prod\limits_{k=1}^{l-n}(\lambda-\mu_k),$ where the polynomial $p(\lambda)$ has degree 2n-1-l. By substituting these expressions into the second identity in (8) we get

(15)
$$\prod_{j=r}^{n-1} a_j^2 D_{r-1}(\lambda) = p(\lambda) \prod_{k=1}^{l-n} (\lambda - \mu_k) Q_{n-r}(\lambda) - \prod_{j=1}^n (\lambda - \lambda_j) \widecheck{Q}_{n-r-1}(\lambda).$$

Since $r = \left[\frac{l+1}{2}\right]$, the degree of the polynomial $D_{r-1}(\lambda)$ in (15) is less than l-r that is the degree of the polynomial $A(\lambda) = \prod_{j=1}^{l-n} (\lambda - \mu_j) Q_{n-r}(\lambda)$. Hence the polynomial $p(\lambda)$ equals the quotient of the polynomial $\prod_{j=1}^{n} (\lambda - \lambda_j) \check{Q}_{n-r-1}(\lambda)$ divided by the polynomial $A(\lambda)$. If l is odd, then the degrees of the polynomials $D_{r-1}(\lambda)$ and $A(\lambda)$ are the same. Hence, it follows from (15) that

(16)
$$p(\lambda) = \left\{ \frac{\prod_{j=1}^{n} (\lambda - \lambda_j) \check{Q}_{n-r-1}(\lambda)}{\prod_{j=1}^{l-n} (\lambda - \mu_j) Q_{n-r}(\lambda)} \right\}_{\text{quit}} + \frac{1 - (-1)^l}{2} \prod_{j=r}^{n-1} a_j^2.$$

The symbol $\left\{\frac{B(\lambda)}{A(\lambda)}\right\}_{\text{quit}}$ in (16) denotes a polynomial obtained by dividing the polynomial $B(\lambda)$ by the polynomial $A(\lambda)$ using the Euclidean algorithm. Identity (16) permits to obtain the polynomial $D_{n-1}(\lambda) = p(\lambda) \prod_{j=1}^{l-n} (\lambda - \mu_j)$ in terms of the initial data in

the IEPMD problem. This, together with the polynomial $D_n(\lambda) = \prod_{j=1}^n (\lambda - \lambda_j)$ and algorithm (5), gives an effective algorithm for solving the IEPMD problem in the case where l > n, $l_1 = n$, $l_2 = l - n$. Moreover, we have the following theorem.

Theorem 3. There exists a matrix J_n solving an IEPMD problem for l > n unknown elements with given $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ and μ_1, \ldots, μ_{l-n} such that the numbers $\{\lambda_j\}$ are eigenvalues of the matrix J_n and the numbers $\{\mu_j\}$ are eigenvalues of the matrix J_{n-1} if an only if

(17)
$$(-1)^{n-1}D_{n-1}(\lambda_j) > 0, \qquad j = 1, \dots, n,$$

where $D_{n-1}(\lambda) = p(\lambda) \prod_{j=1}^{n-1} (\lambda - \mu_j)$ and the polynomial $p(\lambda)$ is defined by (16) in terms of the initial data.

Proof. Condition (17) implies that using the pair of polynomials $D_n(\lambda) = \prod_{j=1}^n (\lambda - \lambda_j)$ and $D_{n-1}(\lambda)$ defined in the theorem one can construct a Jacobi matrix \widetilde{J}_n using algorithm (5). Here, all given numbers $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ will be eigenvalues of the matrix \widetilde{J}_n and the numbers μ_1, \ldots, μ_{l-n} will be eigenvalues of the matrix \widetilde{J}_n by removing the last row and the last column. Hence, to prove the theorem, it is necessary to show that elements of the matrix \widetilde{J}_n with indices greater than l coincide with corresponding elements of the matrix J_n . Using identity (8) for $|\lambda| \to \infty$ we get

(18)
$$\frac{D_n(\lambda)}{D_{n-1}(\lambda)} - \frac{Q_{n-r}(\lambda)}{\check{Q}_{n-r-1}(\lambda)} = -\prod_{j=r}^{n-1} a_j^2 |\lambda|^{-(2n-1-r)} (1 + o(1)).$$

Algorithm (5) shows that the expression $\frac{D_n(\lambda)}{D_{n-1}(\lambda)}$ can be expressed in terms of elements of the matrix \widetilde{J}_n as a continued fraction,

(19)
$$\frac{D_n(\lambda)}{D_{n-1}(\lambda)} = \lambda - \widetilde{b}_n - \frac{\widetilde{a}_{n-1}^2}{\lambda - \widetilde{b}_{n-1} - \dots - \frac{a_1^2}{\lambda - b_1}}.$$

According to algorithm (5), the expression $\frac{Q_{n-r}(\lambda)}{\check{Q}_{n-r-1}(\lambda)}$ can be expressed in terms of given elements of the matrix J_n ,

(20)
$$\frac{Q_{n-r}(\lambda)}{\breve{Q}_{n-r-1}(\lambda)} = \lambda - b_n - \frac{a_{n-1}^2}{\lambda - b_{n-1} - \dots - \frac{a_r^2}{\lambda - b_{r+1}}}.$$

Substituting (19) and (20) into (18) yields the needed identities, $\tilde{b}_n = b_n$, $\tilde{a}_{n-1} = a_{n-1}$, ..., $\tilde{a}_r = a_r$. Thus a construction of the Jacobi matrix \tilde{J}_n gives a solution of the IEPMD problem.

Example 2. Consider the case n=4 where the matrix J_4 has l=5 unknown parameters b_1 , a_1 , b_2 , a_2 , b_3 , and $a_3=\sqrt{7}$, $b_4=0$. Let $\{\lambda_j\}=\{-3,-1,1,4\}$ and $\mu_1=0$. Algorithm (16) gives

$$p(\lambda) = \left\{ \frac{(\lambda+3)(\lambda+1)(\lambda-1)(\lambda-4)}{\lambda \cdot \lambda} \right\}_{\text{quit}} + 7 = \lambda^2 - \lambda - 6.$$

Hence, $D_3(\lambda) = p(\lambda) \cdot \lambda = \lambda^3 - \lambda^2 - 6\lambda$. But $D_4(\lambda) = (\lambda + 3)(\lambda + 1)(\lambda - 1)(\lambda - 4) = \lambda^4 - \lambda^3 - 13\lambda^2 + \lambda + 12$. With such $D_4(\lambda)$ and $D_3(\lambda)$, algorithm (5) gives a matrix J_4 of form (14).

Consider now one more case of an IEPMD problem where the number of unknown elements in the Jacobi matrix J_n is greater than the order n of the matrix J_n . Let the entire spectrum $\mu_1 < \mu_2 < \cdots < \mu_{n-1}$ of the matrix J_{n-1} and l+1-n eigenvalues $\lambda_1, \ldots, \lambda_{l+1-n}$ of the matrix J_n be given. To solve the inverse problem, let us formulate an algorithm similar to the one in Theorem 3. The characteristic polynomial $D_{n-1}(\lambda)$ can be explicitly expressed in terms of the given spectrum, $D_{n-1}(\lambda) = \prod_{j=1}^{n-1} (\lambda - \mu_j)$. The characteristic polynomial $D_n(\lambda)$ can be written as a product, $\prod_{j=1}^{l+1-n} (\lambda - \lambda_j) \cdot q(\lambda)$, where the polynomial $q(\lambda)$ has degree l+1-n. Substituting these representations for $D_n(\lambda)$ and $D_{n-1}(\lambda)$ into identity (8) gives

(21)
$$\prod_{j=r}^{n-1} a_j^2 D_{r-1}(\lambda) = \prod_{j=1}^{n-1} (\lambda - \mu_j) Q_{n-r}(\lambda) - q(\lambda) \prod_{j=1}^{l+1-n} (\lambda - \lambda_j) \widecheck{Q}_{n-r-1}(\lambda).$$

This identity, similarly to (15), gives

(22)
$$q(\lambda) = \left\{ \frac{\prod_{j=1}^{n-1} (\lambda - \mu_j) Q_{n-r}(\lambda)}{\prod_{j=1}^{l+1-n} (\lambda - \lambda_j) \check{Q}_{n-r-1}(\lambda)} \right\}_{\text{quit}} - \frac{1 - (-1)^l}{2} \prod_{j=r}^{n-1} a_j^2,$$

where $r = \left\lceil \frac{l+1}{2} \right\rceil$.

The polynomial $\{\dots\}_{\text{quit}}$ can be effectively constructed from the initial data of the IEPMD problem. Hence, the representations $D_{n-1}(\lambda) = \prod_{j=1}^{n-1} (\lambda - \mu_j)$ and $D_n(\lambda) = q(\lambda) \prod_{j=1}^{l+1-n} (\lambda - \lambda_j)$, where the polynomial $q(\lambda)$ is given by (22) reduces the construction of J_n to algorithm (5).

Theorem 4. An IEPMD problem with $l \ge n$ unknown parameters of the Jacobi matrix J_n has a solution for all eigenvalues $\mu_1 < \mu_2 < \cdots < \mu_{n-1}$ of the matrix J_{n-1} and $\lambda_1, \ldots, \lambda_{l+1-n}$ eigenvalues of the matrix J_n being given if and only if

(23)
$$(-1)^{n-j} D_n(\mu_j) > 0, \qquad j = 1, \dots, n-1,$$

where $D_n(\lambda) = q(\lambda) \prod_{j=1}^{l+1-n} (\lambda - \lambda_j)$ and the polynomial $q(\lambda)$ is given by formula (22).

Proof. Using the initial data we construct $D_{n-1}(\lambda) = \prod_{j=1}^{n-1} (\lambda - \mu_j)$ and $D_n(\lambda)$. Condition (23) is equivalent to that all zeros of the polynomials $D_n(\lambda)$ and $D_{n-1}(\lambda)$ alternate. Hence, using algorithm (5) applied to D_n and D_{n-1} we can construct a Jacobi matrix J_n and, as in Theorem 3, prove that it is a solution of the IEPMD problem.

Example 3. Let us construct a Jacobi matrix J_4 that has unknown elements b_1 , a_1 , b_2 , a_2 , and the elements $b_3 = \frac{6}{7}$, $b_4 = 0$, $a_3 = \sqrt{7}$ are known. Let the spectrum $\{-2,0,3\}$ of the matrix J_3 and one eigenvalue $\lambda_1 = -1$ of the matrix J_4 be given.

186 L. P. NIZHNIK

Algorithm (22) yields $q(\lambda) = \left\{ \frac{D_3(\lambda)Q_3(\lambda)}{(\lambda+1)(\lambda-\frac{6}{7})} \right\}_{\text{quit}} = \lambda^3 - 2\lambda^2 - 11\lambda + 12$. Then $D_4(\lambda) = (\lambda+1)q(\lambda) = \lambda^4 - \lambda^3 - 13\lambda^2 + \lambda + 12$. Conditions (23) are satisfied. Algorithm (5) gives a matrix J_4 of the form (14).

Acknowledgement. The research in this paper partially supported by the EU-financed project AMMODIT ("Approximation Methods for Molecular Modelling and Diagnosis Tasks", "MSCA-RISE-2014-645672-AMMODIT").

References

- G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed., Cambridge Univ. Press, Cambridge, 1996.
- P. Cojuhari and L. Nizhnik, Hochstadt inverse eigenvalue problem for Jacobi matrices, J. Math. Anal. Appl. 455 (2017), 439–451.
- F. Gesztesy and B. Simon, m-Functions and inverse spectral analysis for finite and semiinfitine Jacobi matrices, J. D'Analyse Math. 73 (1997), 267–297.
- H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra and Appl. 8 (1974), 435–446.
- H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Linear Algebra and Appl. 28 (1979), 113–115.
- G. Wei and Z. Wei, Inverse spectral problem for Jacobi matrices with partial spectral data, Inverse Problems, 27 (2011), no. 7: 075007, 11 pp.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka str., Kyiv, 01601, Ukraine

E-mail address: nizhnik@imath.kiev.ua

Received 06/02/2018