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ON EXTENSIONS OF LINEAR FUNCTIONALS WITH

APPLICATIONS TO NON-SYMMETRICALLY SINGULAR

PERTURBATIONS

MYKOLA DUDKIN AND TETIANA VDOVENKO

This paper is dedicated to the 75th anniversary of V. D. Koshmanenko

Abstract. The article is devoted to extensions of linear functionals, generated by

scalar products, in a scale of Hilbert spaces. Such extensions are used to consider
non-symmetrically singular rank one perturbations of H

−2-class. For comparison,
we give main definitions and descriptions of singular non-symmetric perturbations of
H

−1 and H
−2-classes.

Together with outstanding mathematicians S .Albeverio [2], P. Kurasov [3], W. Kar-
wowski [11], L. Nizhnik [16], V. D. Koshmanenko is one of the founders of the singular
perturbation theory of self-adjoint operators in general cases (for an abstract self-adjoint
operator and an abstract Hilbert space).

In our article we continue investigations of singularly perturbed operators in a case of
non-symmetric perturbation. In this connection, we would like to show one simple, but
useful in applications, expansion method of liner functionals generated by scalar products
in rigged Hilbert spaces.

1. An extension of functionals for an equipped Hilbert space

Let H be a separable Hilbert space with a norm ‖ · ‖ and a scalar product (·, ·).
Consider an unbounded positive self-adjoint operator A ≥ cI, c > 1 with a domain D(A)
in H.

Via the operator A, we introduce an A-scale of Hilbert spaces [1, 13]: Hk = Hk(A),
k ∈ Z (briefly A > 1), where Hα = D(Aα/2), α ∈ N and the norm is generated by the
scalar product

(ϕ,ψ)α = (Aα/2ϕ,Aα/2ψ), ϕ, ψ ∈ D(Aα/2);

H0 = H; the space H−α, α ∈ N is constructed as a completion of H with respect to the
norm

(f, g)−α = (A−α/2f,A−α/2g), f, g ∈ H.
By 〈ω, ϕ〉−α,α, α ∈ N we denote the dual scalar product for ω ∈ H−α and ϕ ∈ Hα.

The operator A has the following properties in the scale Hk(A) [1, 13]:

Aα/2 : Hα −→ H0,

A−α/2 : H0 −→ Hα,

(Aα/2)cl : H0 −→ H−α,

(A−α/2)cl : H−α −→ H0, α ∈ N,

(1)
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where “cl” denotes the closure of an operator in the corresponding space. The scalar
products have the following properties in the scale Hk(A) [1, 13]:

(f, ϕ)0 = 〈f, ϕ〉−α,α, f ∈ H0, ϕ ∈ Hα;

〈ω, ϕ〉−α,α = (ω, (Aα)clϕ)−α = ((A−α)clω, ϕ)α = ((A−α/2)clω, (Aα/2)clϕ)0,

ω ∈ H−α, ϕ ∈ Hα, α ∈ N;

〈ω, ϕ〉−α,α = 〈ω, ϕ〉−β,β , α < β, α, β ∈ N, ω ∈ H−α, ϕ ∈ Hβ .

(2)

Next, for the simplicity, we consider only some part of the A-scale,

(3) H− ⊃ H0 ⊃ H+,

where H− = H−1, H+ = H1, i.e., we have the equipped Hilbert space H0 with a
positive and a negative spaces [7]. in this connection, we denote 〈·, ·〉 := 〈·, ·〉−1,1. As
it is well known [7], H− is a space of linear continuous functionals on H+. Hence, each
element ω ∈ H− generates a linear continuous functional Iω(ϕ), ϕ ∈ H+ of the form
Iω(ϕ) = 〈ω, ϕ〉 (but this functional is an unbounded and a densely defined one in H0).

Let us consider an extension by linearity of the functional Iω(ϕ) on some elements of
H0 (or in general on H−). An example further in the first section illustrates a possibility
of such a situation. Following the article [4] we denote the extension Iωex = 〈ωex, ϕ〉,
where ϕ ∈ H+ ∪ Φ, Φ ⊂ H0 (or in general Φ ⊂ H−). We extend Iω(ϕ) by assigning
an arbitrary convenient value cϕ := Iωex(ϕ) ∈ C. Under an extension by linearity we
understand the equality

Iωex(aϕ+ bψ) = āIωex(ϕ) + b̄Iωex(ψ),

∀a, b ∈ C, ϕ, ψ ∈ Φ ∪H+, Φ ⊂ H0(Φ ⊂ H−).

Analogously we consider:
• the functional Iψ(ϕ) = (ψ,ϕ)+, ϕ,ψ ∈ H+, and its extension

Iψex(ϕ) = (ψex, ϕ)+, ψ ∈ H+, ϕ ∈ H+ ∪ Φ+, Φ+ ⊂ H0;

• the functional Iω(φ) = (ω, φ)−, ω, φ ∈ H−, and its extension

Iωex(φ) = (ωex, φ)−, ω ∈ H−, φ ∈ H− ∪ Φ−, Φ− ⊂ H−2;

• the functional If (g) = (f, g)0, f, g ∈ H0, and its extension

Ifex(g) = (fex, g)0, f ∈ H0, g ∈ H0 ∪ Φ0, Φ0 ⊂ H−.

For simplicity we suppose that the subsets Φ, Φi, i = {0,+,−} are one dimensional.

Proposition 1. If we put ψ = (A−1)clω, f = (A−1/2)clω, and suppose that A1/2Φ+ =
Φ0, (A1/2)clΦ0 = Φ− and Φ+ = Φ, then we can choose extensions of the functionals
Iω(ϕ), Iω(φ), Iψ(ϕ) and If (g) so that

(4) Iωex(ϕ) = Iωex(φ) = Iψex(ϕ) = Ifex(g).

Proof. The chain (4) has a form of the second line in (2),

〈ω, ϕ〉 = (ω, (A)clϕ)− = ((A−1)clω, ϕ)+ = ((A−1/2)clω, (A1/2)clϕ)0, ω ∈ H−,(5)

if ϕ ∈ H+. For ϕ ∈ Φ we can put a joint convenient constant. �

Proposition 1 has a generalization for an arbitrary scale Hk, k ∈ Z. Namely, let us
choose k1, k2, k3 ∈ Z, such that k1 < k2 < k3, |k2 − k1| = |k3 − k2|, and consider the part
of the scale Hk, k ∈ Z,

(6) Hk1 ⊃ Hk2 ⊃ Hk3 .

The triplet (6) is associated uniquely with a positive self-adjoint operator A (see [1, 13]).
Let us consider the following:
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• the functional Iψ(ϕ) = (ψ,ϕ)k3 , ϕ,ψ ∈ Hk3 , and its extension

Iψex(ϕ) = (ψex, ϕ)k3 , ψ ∈ Hk3 , ϕ ∈ Hk3 ∪ Φk3 , Φk3 ⊂ Hk2 ;

• the functional Iω(φ) = (ω, φ)k1 , ω, φ ∈ Hk1 , and its extension

Iωex(φ) = (ωex, φ)k1 , ω ∈ Hk1 φ ∈ Hk1 ∪ Φk1 , Φk1 ⊂ Hk1−|k2−k1|;

• the functional If (g) = (f, g)k2 , f, g ∈ Hk2 , and its extension

Ifex(g) = (fex, g)k2 , f ∈ Hk2 , g ∈ Hk2 ∪ Φk2 , Φk2 ⊂ Hk1 ;

• the functional Iω(ϕ) = 〈ω, ϕ〉k1,k3 , ω ∈ Hk1 , ϕ ∈ Hk3 and its extension

Iωex(ϕ) = 〈ωex, ϕ〉)k1,k3 , ω ∈ Hk1 , ϕ ∈ Hk2 ∪ Φ, Φ ⊂ Hk2 .

The next theorem generalizes Proposition 1.

Theorem 1. If we put ψ = (A−1)clω, f = (A−1/2)clω, and suppose that A1/2Φk3 = Φk2 ,
(A1/2)clΦk2 = Φk1 and Φk3 = Φ, then we can choose extensions of functionals Iω(ϕ),
Iω(φ), Iψ(ϕ) and If (g) so that

(7) Iωex(ϕ) = Iωex(φ) = Iψex(ϕ) = Ifex(g).

Proof. The chain (6) has a form of the second line in (2) with the chains of indexes

〈ω, ϕ〉k1,k3=(ω, (A)clϕ)k1=((A−1)clω, ϕ)k3 =((A−1/2)clω, (A1/2)clϕ)k2 , ω ∈ Hk1 ,(8)

if ϕ ∈ Hk3 . For ϕ ∈ Φ there we put a convenient constant. �

Example 1. Let H0 = L2([1,∞), dx) be the space of square integrable functions on the
half interval [1,∞) with respect to the Lebesgue measure, and A be an operator of a
multiplication by the independent variable “x”,

Af(x) = xf(x), D(A) = {f(x) ∈ L2([1,∞), dx) | xf(x) ∈ L2([1,∞), dx)}.

In such a case, H+ = D(A1/2) is the space with the scalar product

(ψ,ϕ)+ = (A1/2ψ,A1/2ϕ)0 =

∞
∫

1

ψ(x)ϕ(x)x dx,

i.e. H+ = L2([1,∞), xdx). The space H− has a scalar product,

(ω, φ)− =

∞
∫

1

ω(x)φ(x)
1

x
dx,

i.e., H− = L2([1,∞), 1xdx). Hence we the have rigged Hilbert spaces

L2([1,∞)
1

x
, dx) ⊃ L2([1,∞), dx) ⊃ L2([1,∞), xdx).

Let us choose ω = 1√
x
, and consider the functional Iω(ϕ) on H+, i.e., ϕ ∈ H+,

because ω ∈ L2([1,∞) 1x , dx), since
∞
∫

1

1√
x

1√
x

1
x dx = 1 < ∞ and ω 6∈ L2([1,∞), dx), since

∞
∫

1

1√
x

1√
x
dx = ∞.
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But, for ϕ = 1
x we have 1

x ∈ L2([1,∞) dx), since
∞
∫

1

1
x2 dx = 1 < ∞ and what is

unexpectedly
∞
∫

1

1√
x

1
x dx = 2 <∞. Hence, this is a reason to put

Iωex = 〈ωex, ϕ〉 =
∞
∫

1

ω(x), ϕ(x) dx.

But it is not only one possible way to extend the functional Iω. Hence, for ϕ = 1
x we

can put

(9) Iωex(ϕ) =







∞
∫

1

ω(x)ϕ(x) dx = 1, naturally,

cϕ ∈ R, in general.

Remark 1. The considered in the article functionals are useful in corresponding parts of
singular self-adjoint [4, 5, 13] and non-self-adjoint [9] perturbation theory. We illustrate
this below.

Remark 2. For example, the functional Iωex = 〈ωex, ϕ〉, where ϕ ∈ H+ ∪ Φ, can be
extended in general to Φ ⊂ H−α, for an arbitrary α > 1. Each of the considered above
functionals can be extended in such a way.

2. Some remarks on singular non-symmetric perturbations of H−1-class

Let us consider a linear operator V acting from H+1 into H−1. Let it have the form
V = V ω1,ω2 = 〈·, ω1〉ω2, ω1, ω2 ∈ H−1. If we define by A an extension by linearity of the
operator A that is a bounded operator acting from H+1 to H−1, then A + V is also a
linear operator from H+1 to H−1. For the operator in the scale we know the concept of
an adjoint operator (A+ V )∗, which acts also from H+1 into H−1 [6].

For a formal expression A + 〈·, ω1〉ω2 we can give the meaning of an operator in H
[10, 12]. We take A+ 〈·, ω1〉ω2 and restrict it to H and denote it by Aω1,ω2 ,

(10) Aω1,ω2 := (A+ 〈·, ω1〉ω2) ↾H .

Sometimes we will also be using the notation of the operator A instead of A, if it will
not lead to any obvious contradiction.

The restriction process is not always convenient, hence we used the following definition
of singularly non-symmetrically perturbed operator [8, 9].

Definition 1. Let A > 1 be a positive self-adjoint operator defined in a separable Hilbert
space H. For ω1, ω2 ∈ H−1 \ H, ω1 6= ω2, we put ηi = A−1ωi, i = 1, 2.

The operator Aω1,ω2 is called singularly non-symmetrically rank one perturbed of
H−1-class with respect to A, if

(11)

D(Aω1,ω2) =
{

ψ = ϕ−bη2 | ϕ ∈ D(A),

b = b(ϕ) =
(Aϕ, η1)

1 + (A1/2η2, A1/2η1)

}

in the case (A1/2η2, A
1/2η1) 6= −1; and

(12) D(Aω1,ω2) = DH1
+̇{cη2}, DH1

= {ϕ ∈ D(A) | (Aϕ, η1) = 0} ,
(c ∈ C) in the case (A1/2η2, A

1/2η1) = −1, (and we denote Aω1,ω2 ∈ P(A)).
The action is given by the rule Aω1,ω2ψ = Aϕ.
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The operator A is called (initial) non-perturbed, and V = 〈·, ω1〉ω2 is called the
perturbation (of the H−1-class). Hence, A

ω1,ω2 is naturally to call as perturbed operator.
The presented definition generalizes non-local interactions [5, 14, 15] with a self-adjoint

operator to the case where the perturbed operator is non-self-adjoint.
The fact that the space H is separable is not obligatory in the Definition 1. The

positivity of the operator A or its semiboundedness is also not obligatory. In such a
case it is need to require for (11) the following: the positive space H+1 with the norm
‖ϕ‖+1 = ‖(|A|1/2 + I)ϕ‖, ϕ ∈ H+1 and H−1 is a completion H with respect to the norm
‖f‖−1 = ‖(|A|−1/2 + I)f‖, f ∈ H; H+2 with the norm ‖ϕ‖+2 = ‖(|A| + I)ϕ‖, ϕ ∈ H+2

and H−2 is a completion of H with respect to the norm ‖f‖−2 = ‖(|A|+ I)f‖, f ∈ H.
In particular, in what follows we consider for convenience that the operator V is of

the form V = α〈·, ω1〉ω2 with the constant α ∈ C, 0 < |α| < ∞. Such a form does not
differ from the previous consideration, since we can every time write

(13) V = α〈·, ω1〉ω2 = 〈·, ω1〉αω2 = 〈·, ᾱω1〉ω2,

but it is convenient for applications. In particular, Aᾱω1,ω2 = Aω1,αω2 .
Therefore, Definition 1 can be generalized.

Definition 2. Let A be a self-adjoint operator defined in a separable Hilbert space H.
For ω1, ω2 ∈ H−1 \ H, ω1 6= ω2, we put ηi(z) = (A − z)−1ωi, i = 1, 2, z ∈ ρ(A), where
ρ(·) is a resolvent set of the corresponding operator.

The operator Aω1,αω2 is called singularly non-symmetrically rank one perturbed of
H−1-class with respect to A, if

(14)

D(Aω1,αω2) =
{

ψ = ϕ−bzη2(z) | ϕ ∈ D(A),

bz =
((A− z)ϕ, η1(z̄))

1/α+ 〈(A− z)η2(z), η1(z̄)〉
}

in the case ((A− z)η2(z), η1(z̄)) 6= −1/α for a fixed z; and

(15) D(Aω1,αω2) = DH1
+̇{cη2(z)}, DH1

(z) = {ϕ ∈ D(A) | ((A− z)ϕ, η1(z̄) = 0}
(c ∈ C) in the case ((A− z)η2(z), η1(z̄)) = −1/α, (and we denote Aω1,αω2 ∈ P(A)).

The action is given by the rule (Aω1,ω2 − z)ψ = (A− z)ϕ.

But this Definition has also its own drawbacks. The written form of domains (14) and
(15) depend on z. In spite of such a drawback, it is useful for the next example with the
Schrödinger operator.

Proposition 2. Definition 1 is equivalent to Definition 2, if we consider positive (semi-
bounded with the corresponding shift) self-adjoint operator A.

Proof. In one way the proof is trivial. It is enough to put z = 0.
In general the proof is very complicated. In this short article we present only a

sketch of the proof. For operators from Definitions 1 an 2 we write the corresponding
resolvents (see the Theorem 2 below), and comparing the obtained resolvents we conclude
equivalence of the operators. By the writing the resolvent corresponding to the operator
from Definition 2, we prove independence of (14) and (15) on z. �

Schrödinger operator with non-local interactions. Let us consider the operator

A = − d2

dx2 with the domain D(A) = W 2
2 (R) in the space L2(R

1, dx). The operator A is

defined by the extension of A to W 1
2 (R

1) in the sense of generalized functions, i.e., as an
operator acting from W 1

2 (R
1) into W−1

2 (R1).

Proposition 3. The operator

(16) −∆δx1
,αδx2 = − d2

dx2
+ α〈·, δx1

〉δx2
, α ∈ C,
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where δx1
and δx2

are δ-functions of Dirac concentrated at the points x1, x2, x1 6= x2,
x1, x2 ∈ R

1, has the domain

(17) D(−∆δx1
,αδx2 ) =

{

ψ ∈W 1
2 (R

1) ∩W 2
2 (R

1 \ {x1}) | ψ(x1+) = ψ(x1−),

ψ′(x2+)− ψ′(x2−) = αψ(x1)}
and it acts as follows:

(18) −∆δx1
,αδx2ψ = −ϕ′′.

Proof. Firstly we consider the case

〈(A− z)η2(z), η1(z̄)〉 6= −1/α.

From the Definition 2, in accordance with expression (14), the vector ψ has the form

ψ = ϕ− ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|x−x2|,

where z = k2 and k =
√
±i, Imk > 0 , ηj(z) =

i
2ke

ik|x−xj |, j = 1, 2 are taken from [2].
In particular, in the sense of generalized functions, we have

〈(A− z)ϕ, η1(z̄)〉 = 〈ϕ, (A− z̄)η1(z̄)〉 = 〈ϕ, δx1
〉 = ϕ(x1)

and

〈η2(z), (A− z̄)η1(z̄)〉 = 〈η2(z), δx1
〉 = i

2k
eik|x1−x2|.

The first equality in (17), namely ψ(x1+) = ψ(x1−), is fulfilled,

ϕ(x1+)− ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|(x1+)−x2|

= ϕ(x1−)− ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|(x1−)−x2|.

Let us show the second equality in (17). Since

ψ′(x) = ϕ′(x)− ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|x−x2|ikθ(x− x2),

where θ(x− x2) is the Heaviside function with the jump at the point x2, we have

(19)

ψ′(x2+)− ψ′(x2−)

=

{

ϕ′ − ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|x−x2|ikθ(x− x2)

}

x=x2+

−
{

ϕ′ − ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
eik|x−x2|ikθ(x− x2)

}

x=x2−

= − ϕ(x1)
1
α + i

2ke
ik|x1−x2|

i

2k
ik(1− (−1)) =

ϕ(x1)
1
α + i

2ke
ik|x1−x2|

,

where it is taken into account that ϕ′(x2+) = ϕ′(x2−), since ϕ(x) ∈W 2
2 (R

1).
The left part of the second equality in (17) has the form

(20)

ϕ(x1)−
ϕ(x1)

1
α + i

2ke
ik|x1−x2|

i

2k
eik|x1−x2|

=
ϕ(x1)

1
α + ϕ(x1)

i
2ke

ik|x1−x2| − ϕ(x1)e
ik|x1−x2|

1
α + i

2ke
ik|x1−x2|

=
1

α

ϕ(x1)
1
α + i

2ke
ik|x1−x2|

.
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Comparing the ends of the expressions in (19) and (20), we obtain

ψ′(x2+)− ψ′(x2−) = αψ(x1).

Hence, we proved the case − 1
α 6= i

2ke
ik|x1−x2|.

Let us consider the case (15), namely,

(21) −1/α = 〈(A− z)η2(z), η1(z̄)〉 =
i

2k
eik|x1−x2|.

In such a case,

DH1
(z) =

{

ϕ ∈W 2
2 (R) | 〈(A− z)ϕ, η1(z̄)〉 = 0

}

=
{

ϕ ∈W 2
2 (R) | ϕ(x1) = 0

}

.

For h(x) ∈ DH1
(z), we have h(x1+) = h(x1−) = h(x1) = 0.

For η2(z) =
i
2ke

ik|x−x2| we also have

eik|(x1+)−x2| = eik|(x1−)−x2|.

For h(x) ∈ DH1
(z), we have h′(x2+) = h′(x2−) and h(x1) = 0, i.e., the second equality

in (17) holds true.
Let us write the second equality in (17) for η2(z) = i

2ke
ik|x−x2|. The left-hand side

has the form

(22)
ψ′(x2+)− ψ′(x2−) =

i

2k
eik|x−x2|ikθ(x− x2)|x=x2+

− i

2k
eik|x−x2|ikθ(x− x2)|x=x2− = −1

2
(1− (−1)).

The right-hand side of the second identity in (17) has the form

(23) αη2(z)|x=x1
= α

i

2k
eik|x−x2||x=x1

= α
i

2k
eik|x1−x2|.

Indeed, (22) is equal to (23), if we take into account (21). Hence, (17) is also true for
vectors from (15).

The action (18) is obvious. �

Let us denote the resolvent Rz = (A − z)−1, z ∈ ρ(A) of the operator A and find a

general form for the resolvent R̃z = (Ã− z)−1, z ∈ ρ(Ã) of perturbed operator Ã.

Theorem 2. Let A > 1 be a positive self-adjoint operator defined in the separable Hilbert
space H and, Ã be an operator singularly non-symmetrically rank one perturbed of H−1-
class with respect to A defined in Definition 1.

For the resolvents Rz = (A− z)−1 and R̃z = (Ã− z)−1, the M. Krein type formula

(24) R̃z = Rz + bz(·, η1(z̄))η2(z), z, ξ ∈ ρ(A) ∩ ρ(Ã),
holds true with the vector-valued functions

(25) η1(z) = (A− ξ)(A− z)−1η1(ξ), η2(z) = (A− ξ)(A− z)−1η2(ξ),

where η1(z), η2(z) ∈ H+1 and with the scalar-valued function

(26) b−1
z − b−1

ξ = (ξ − z)(η1(ξ), η2(z̄)).

The vectors η1(z), η2(z) are connected with the value bz and ω1, ω2 by the relations

η1(z) = Rzω1, η2(z) = Rzω2,

−b−1
z = α−1 + 〈(A− z)−1ω2, ω1〉,

(27)

where 0 < |α| <∞.
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For the main idea of the proof of Theorem 2, see in [8, 9].
In general, case α = 0 can also be taken into consideration by putting bz ≡ 0 and

understanding as R̃z ≡ Rz. We can also put |α| = ∞, then in the last expression in (27)
we do not have the first term, i.e., α−1.

For the operator in Definition 2, we can formulate a theorem similar to Theorem 2
but it needs new independent proof.

Let us define an adjoint operator (Aω1,ω2)∗ for a given operator Aω1,ω2 . We will use
Theorem 2 and, in particular, the next general but obvious proposition. For this reason,
let us introduce the bounded linear operator

T̃ := T + b0(·, η1)η2,
where T is a bounded self-adjoint operator defined in the space H and b0 ∈ C, η1, η2 ∈
H+1 ⊂ H.

Proposition 4. For an arbitrary bounded self-adjoint operator T defined everywhere in
the space H and for arbitrary vectors η1, η2 ∈ H+1 ⊂ H and a number b0 ∈ C, the
operator

(28) (T̃ )∗ = T + b̄0(·, η2)η1
is an adjoint operator to T̃ .

Proof. For all vectors f, g ∈ H,

(29) (T̃ f, g) = ([Tf + b0(f, η1)η2] , g) = (Tf, g) + b0(f, η1)(η2, g).

On the another hand, we have

(30)

(f, (T̃ )∗g) = (f,
[

Tg + b̄0(g, η2)η1
]

)

= (f, Tg) + (f, b̄0(g, η2)η1)

= (Tf, g) + b0(g, η2)(f, η1)

= (Tf, g) + b0(η2, g)(f, η1).

Comparing (29) and (30) we verify (28). �

Using Proposition 4, we can define (Aω1,ω2)∗. Let A be a positive self-adjoint operator
in the separable Hilbert space H. For ω1, ω2 ∈ H−1 \ H, ω1 6= ω2 we put ηi = Aωi,
i = 1, 2. The operator Aω2,ω1 in accordance with the Definition 1 is an operator that is
singular non-symmetric rank one perturbed H−1-class with respect to A, if

D(Aω2,ω1) =
{

ψ = ϕ−bη1 | ϕ ∈ D(A),

b = b(ϕ) =
(Aϕ, η2)

1 + (A1/2η1, A1/2η2)

}

in the case (A1/2η1, A
1/2η2) 6= −1; and

D(Aω2,ω1) = D
∗
H1

+̇{cη1}, D
∗
H1

= {ϕ ∈ D(A) | (Aϕ, η2) = 0}
in the case (A1/2η1, A

1/2η2) = −1.
The action is the same as in Definition 1,

Aω2,ω1ψ = Aϕ.

Analogously to Definition 2, we can define ((Aω1,αω2)∗ − z̄), z ∈ ρ(A), which we need
for the next consideration. Namely,

(31)

D((Aω1,αω2)∗) =
{

ψ = ϕ−bzη1(z̄) | ϕ ∈ D(A),

bz =
((A− z̄)ϕ, η2(z))

1/ᾱ+ 〈(A− z̄)η1(z̄), η2(z)〉
}
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in the case ((A− z̄)η1(z̄), η2(z)) 6= −1/ᾱ for fixed z, Im(z) 6= 0; and

(32) D((Aω1,αω2)∗) = D
∗
H1

+̇{cη1(z̄)}, D
∗
H1

(z) = {ϕ ∈ D(A) | ((A− z̄)ϕ, η2(z)) = 0}
in the case ((A− z̄)η1(z̄), η2(z)) = −1/ᾱ.

The action is defined by

(33) ((Aω1,αω2)∗ − z̄)ψ = (A− z̄)ϕ.

The operator adjoint to the Schrödinger operator with non-local interactions.
The operator

−∆αδx2
,δx1 = − d2

dx2
+ ᾱ〈·, δx2

〉δx1
, α ∈ C,

is adjoint to the operator (16) and has domain

(34) D(−∆αδx2
,δx1 ) =

{

ψ ∈W 1
2 (R

1) ∩W 2
2 (R

1 \ {x2}) | ψ(x2+) = ψ(x2−),

ψ′(x1+)− ψ′(x1−) = ᾱψ(x2)}
and acts as follows: −∆αδx2

,δx1ψ = −ϕ′′, where ϕ, ψ are from (34).

Proof. Firstly we consider the case

((A− z̄)η1(z̄), η2(z)) 6= −1/α.

In accordance with (31) for ψ ∈ D(∆αδx2
,δx1 )

ψ = ϕ− ϕ(x2)
1
α + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|x−x1|,

where z = k2, k =
√
±i, Imk > 0, ηj(z̄) =

i
2k̄
eik̄|x−xj |, j = 1, 2.

In particular, in the sense of generalized functions we have

((A− z̄)ϕ, η2(z)) = (ϕ, (A− z)η2(z)) = 〈ϕ, δx2
〉 = ϕ(x2)

and

〈(A− z̄)η1(z̄), η2(z)〉 = 〈η1(z̄), δx2
〉 = i

2k̄
eik̄|x2−x1|.

The first equality in (34), namely ψ(x2+) = ψ(x2−), is true,

ψ(x2+)− ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|(x2+)−x1|

= ψ(x2−)− ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|(x2−)−x1|.

Let us show the second equality in (34). Since

ψ′ = ϕ′ − ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|x−x1|ik̄θ(x− x1),

where θ(x− x1) is the Heaviside function with the jump at the point x2, we have

(35)

ψ′(x1+)− ψ′(x1−)

=

{

ϕ′ − ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|x−x1|ik̄θ(x− x1)

}

|x=x1+

−
{

ϕ′ − ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|x−x1|ik̄θ(x− x1)

}

|x=x1−

=
ϕ(x2)

1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
ik̄(1− (−1)) =

ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

,
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where we use that ϕ′(x2+) = ϕ′(x2−), since ϕ(x) ∈W 2
2 (R).

The left-hand side of the second equality in (34) has the form

(36)

ϕ(x2)−
ϕ(x2)

1
ᾱ + i

2k̄
eik̄|x2−x1|

i

2k̄
eik̄|x−x1|

=
ϕ(x2) + ϕ(x2)

i
2k̄
eik̄|x2−x1| − ϕ(x2)

i
2k̄
eik̄|x2−x1|

1
ᾱ + i

2k̄
eik̄|x2−x1|

=
1

ᾱ

ϕ(x2)
1
ᾱ + i

2k̄
eik̄|x2−x1|

.

Comparing the expressions (35) and (36), we obtain

ψ′(x1+)− ψ′(x1−) = ᾱψ(x2).

Hence we proved the case − 1
α 6= i

2k̄
eik̄|x2−x1|.

Let us consider the case (32), namely

(37) − 1

α
= ((A− z̄)η1(z̄), η2(z)) =

i

2k̄
eik̄|x2−x1|.

In such a case,

D
∗
H1

(z) =
{

ϕ ∈W 2
2 (R) | ((A− z̄)ϕ, η2(z)) = 0

}

=
{

ϕ ∈W 2
2 (R) | ϕ(x2) = 0

}

.

For h(x) ∈ D
∗
H1

(z) we have h(x1+) = h(x1−) = h(x1) = 0.

For η1(z̄) =
i
2k̄
eik̄|x−x1| we also have

eik̄|(x2+)−x1| = eik̄|(x2−)−x1|.

For h(x) ∈ D
∗
H1

(z) we also have h′(x2+) = h′(x2−) and h(x2) = 0, i.e., the second
equality in (34) holds true.

Let us consider the second equality in (34) for η2(z̄) =
i
2k̄
eik̄|x−x1|. The left-hand side

has the form

(38)
ψ′(x2+)− ψ′(x2−) =

i

2k̄
eik̄|x−x1|ik̄θ(x− x1)|x=x1+

− i

2k̄
eik̄|x−x1|ik̄θ(x− x1)|x=x1− = −1

2
(1− (−1)) = −1.

The right-hand side of the equality (34) is

(39) ᾱη1(z)|x=x2
= ᾱ

i

2k̄
eik̄|x−x1||x=x2

= ᾱ
i

2k̄
eik̄|x2−x1|.

Indeed, (38) is equal to (39), if we take into account (37). Hence, (34) for (32) is also
true. The action −∆αδx1

,δx2ψ2 = −ϕ′′ follows from (33). �

3. Some remarks about singular non-symmetric perturbations of
H−2-class

Let us consider an extension of the operator A to the space H−2 as a bounded operator
acting from H0 into H−2, or as an unbounded operator with the domain H0 in H−2. We
denote such an extension in this section also by A. In the scale

H−2 ⊃ H−1 ⊃ H0 ⊃ H+1 ⊃ H+2,

we consider the linear operator V fromH+2 intoH−2. Let it be of the form V = V ω1,ω2 =
〈·, ω1〉ω2, ω1, ω2 ∈ H−2. Since the operator A is bounded as acting from H0 into H−2,
we see that A + V is also a bonded linear operator from H0 into H−2. The concept of
an adjoint operator (A+ V )∗ is valid and it acts from H0 into H−2 [6].
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For a formal expression A+ 〈·, ω1〉ω2 we can give a sense of an operator in H [10]. For
this reason we restrict A+ 〈·, ω1〉ω2 to H and denote it also by Aω1,ω2 ,

Aω1,ω2 := (A+ 〈·, ω1〉ω2) ↾H .

If this will not lead to a confusion, we will use the notation A, instead of A.
The next definition for the perturbed operator Aω1,ω2 of H−2-class is presented in [9].

Definition 3. Let A > 1 be a positive self-adjoint operator defined in a separable Hilbert
space H. For ω1, ω2 ∈ H−2 \ H0, ω1 6= ω2, either ω1 ∈ H−2 \ H−1, or ω2 ∈ H−2 \ H−1,
we put ηi = A−1ωi, i = 1, 2.

The operator Aω1,ω2 is called an operator singularly non-symmetrically rank one per-
turbed of H−2-class with respect to A, iff

(40)

D(Aω1,ω2) =
{

ψ = ϕ−bη2 | ϕ ∈ D(A),

b = b(ϕ) =
(Aϕ, η1)

1 + τ + (A(A2 + 1)−1η2, η1)

}

in the case 1 + τ + (A(A2 + 1)−1η2, η1) 6= 0, where τ ∈ C is an arbitrary parameter; and

(41) D(Aω1,ω2) = DH2
+̇{cη2}, DH2

= {ϕ ∈ D(A) | (Aϕ, η1) = 0} ,
(c ∈ C) in the case 1+τ+(A(A2+1)−1η2, η1) = 0, (and it is denoted by Aω1,ω2 ∈ Pτ (A)).

The action is given by Aω1,ω2ψ = Aϕ.

The operator A is also called (initial) non-perturbed, and V = 〈·, ω1〉ω2 is called a
perturbation (of H−2-class). Hence, Aω1,ω2 is naturally called a perturbed operator of
H−2-class, or an operator that needs an additional parameterization.

The proposed definition generalizes the case of non-local interactions (of H−2-class)
[14, 15] for self-adjoint operators to the case of non-symmetric perturbations.

Next we consider V in the form V = α〈·, ω1〉ω2, with a constant α ∈ C, 0 < |α| <
∞, that has no difference from the previous one due to (13). In particular, we have
Aᾱω1,ω2 = Aω1,αω2 too. Therefore, the Definition 3 has the following form.

Definition 4. Let A be a self-adjoint operator in a separable Hilbert space H. For
ω1, ω2 ∈ H−2 \ H0, ω1 6= ω2, either ω1 ∈ H−2 \ H−1, or ω2 ∈ H−2 \ H−1, we put
ηk(z) = (A− z)−1ωk, k = 1, 2, z ∈ ρ(A).

The operator Aω1,αω2 is called an operator singularly non-symmetrically rank-one
perturbed of H−2-class with respect to the A iff

D(Aω1,αω2) =
{

ψ = ϕ− bzη2(z) | ϕ ∈ D(A),

bz = bz(ϕ) =
((A− z)ϕ, η1(z̄))

1/α+ τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄))

}(42)

in the case ((A − z)(1 + zA)(A2 + 1)−1η2(z), η1(z̄)) + 1/α + τ 6= 0 for a fixed z, where
τ ∈ C is a parameter; and

(43) D(Aω1,αω2) = DH2
+̇{cη2(z)}, DH2

= {ϕ ∈ D(A) | 〈(A− z)ϕ, η1(z̄)〉 = 0}
(c ∈ C), in the case ((A− z)(1+ zA)(A2+1)−1η2(z), η1(z̄))+1/α+ τ = 0, (and it is also
denoted by Aω1,αω2 ∈ Pτ (A)).

The action is given by the rule (Aω1,αω2 − z)ψ = (A− z)ϕ.

Definition 3 has also a limitation, i.e., it is formulated for a positive (semibounded)
operator. Definition 4 removes this flaw but the domains in (42) and (43) depend on z.

The next theorem (as Theorem 2) gives a description of non-symmetrically singular
H−2-class perturbations of self-adjoint operators in terms of their resolvents.
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Theorem 3. Let A > 1 be a positive self-adjoint operator in a separable Hilbert space H
and Ã be an operator singularly non-symmetrically rank one perturbed of H−2-class with
respect to A defined in the Definition 4.

The resolvents Rz = (A− z)−1 and R̃z = (Ã− z)−1 satisfy a M. Krein type formula,

(44) R̃z = Rz + bz(·, η1(z̄))η2(z), z, ξ ∈ ρ(A) ∩ ρ(Ã),
with the vector-valued functions

(45) η1(z) = (A− ξ)(A− z)−1η1(ξ), η2(z) = (A− ξ)(A− z)−1η2(ξ),

where η1(z), η2(z) ∈ H and

(46) −b−1
z = α−1 + τ + ((A− z)(1 + zA)(A2 + 1)−1η2(z), η1(z)),

where α ∈ C, 0 < |α| <∞ and ∀τ ∈ C; the scalar-valued function for which satisfies the
equality

(47) b−1
z − b−1

ξ = (ξ − z)(η2(ξ), η1(z̄)).

The vectors η1(z), η2(z) are connected with ω1, ω2 by the relations

(48) η1(z) = Rzω1, η2(z) = Rzω2,

In general, the case α = 0 we can also be considered by putting bz ≡ 0 and supposing
R̃z ≡ Rz. We can also put |α| = ∞. In such a case, the first term, i.e., α−1, in the
equality (46) must be absent.

The proof of Theorem 3 (as a part) contains the proof the fact that the domains in
(42) and (43) are in fact independent on z.

Analogously we can also define (Aω1,ω2)∗ of H−2-class. Let A > 1 be a positive self-
adjoint operator in a separable Hilbert space H. For ω1, ω2 ∈ H−2 \ H0, ω1 6= ω2, either
ω1 ∈ H−2 \ H−1, or ω2 ∈ H−2 \ H−1, we put ηi = Aωi, i = 1, 2. The operator Aω2,ω1 ,
due to Definition 3, is an operator singularly non-symmetrically rank one perturbed of
H−2-class with respect A iff

(49)

D(Aω2,ω1) =
{

ψ = ϕ−bη1 | ϕ ∈ D(A),

b = b(ϕ) =
(Aϕ, η2)

1 + τ + (A(A2 + 1)−1η1, η2)

}

in the case 1 + τ + (A(A2 + 1)−1η1, η2) 6= 0, where τ ∈ C is a parameter; and

(50) D(Aω2,ω1) = D
∗
H2

+̇{cη1}, D
∗
H2

= {ϕ ∈ D(A) | (Aϕ, η2) = 0}
in the case 1 + τ + (A(A2 + 1)−1η1, η2) = 0.

The action is given by Aω2,ω1ψ = Aϕ, where ϕ,ψ form (49) and (50).

Proposition 5. The operator Aω1,ω2 , defined in Definition 3, is adjoint to the operator
Aω2,ω1 defined also using Definition 3 by expressions (49) and (50).

Proof. The case 1 + τ + (A(A2 + 1)−1η1, η2) 6= 0 is fulfilled.
Indeed, for Aω1,ω2 , we have

(51) (Aω1,ω2)−1 = A−1 − 1

1 + τ + (A(A2 + 1)−1η2, η1)
(·, η1)η2

with a parameter τ ∈ C.
And for Aω2,ω1 we have

(52) (Aω2,ω1)−1 = A−1 − 1

1 + τ̄ + (A(A2 + 1)−1η1, η2)
(·, η2)η1,

where we put the parameter τ̄ .
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Comparing (51) and (52) we get ((Aω1,ω2)−1)∗ = (Aω2,ω1)−1, since

(A(A2 + 1)−1η2, η1) = (η2, A(A2 + 1)−1η1) = (A(A2 + 1)−1η1, η2).

Let us also show the case

(53) 1 + τ + (A(A2 + 1)−1η2, η1) = 0.

Let ψ2 = ϕ0+̇c2η2 ∈ D(Aω1,ω2), defined in (41), and ψ∗
2 = ϕ∗

0+̇c1η1 ∈ D(Aω2,ω1) defined
in (50). Then

(Aω1,ω2ψ2, ψ
∗
2) = (Aϕ0, ψ

∗
0+̇c1η1) = (Aϕ0, ϕ

∗
0) + c1(Aϕ0, η1),

(Aω2,ω1ψ∗
2 , ψ2) = (Aϕ∗

0, ϕ0+̇c2η2) = (Aϕ∗
0, ϕ

∗
0) + c2(Aϕ

∗
0, η2).

From the last two expression we have

(Aω1,ω2ψ2, ψ
∗
2) = (Aω2,ω1ψ∗

2 , ψ2) = (ψ2, A
ω2,ω1ψ∗

2),

because of

(Aϕ0, ϕ
∗
2) = (Aϕ∗

0, ϕ0) = (ϕ0, Aϕ
∗
0)

and (Aϕ0, η1) = 0 for ψ defined in (29) and (Aϕ0, η2) = 0 for ψ∗ defined in (50).
The case where, for example, ψ1 is defined in (40) and ψ2 is from (50) (or conversely,

ψ1 from (41) and ψ2 from (49)) is impossible due to (53)). �

By analogy with Definition 4 we define ((Aω1,αω2)∗ − z̄). Namely,

(54)

D((Aω1,αω2)∗) =
{

ψ = ϕ− bzη1(z̄) | ϕ ∈ D(A),

bz =
((A− z̄)ϕ, η2(z))

1/ᾱ+ τ̄ + ((A− z̄)(1 + z̄A)(A2 + 1)−1η1(z̄), η2(z))

}

in the case 1/ᾱ+ τ̄ + ((A− z̄)(1 + z̄A)(A2 + 1)−1η1(z̄), η2(z)) 6= 0 for a fixed z; and

(55) D((Aω1,αω2)∗) = D
∗
H2

+̇{cη1(z̄)}, D
∗
H2

(z) = {ϕ ∈ D(A) | ((A− z̄)ϕ, η2(z)) = 0}
in the case 1/ᾱ+ τ̄ + ((A− z̄)(1 + z̄A)(A2 + 1)−1η1(z̄), η2(z)) = 0.

The action is given by ((Aω1,αω2)∗ − z̄)ψ = (A− z̄)ϕ, where ϕ, ψ from (54) and (55).

4. A spacial case of singular non-symmetric perturbations of H−2-class

Let us compare the coefficient b in (11) and in (40). If ω1, ω2 ∈ H−1, i.e., η1, η2 ∈ H+1,
then (A1/2η2, A

1/2η1) is a well defined expression, and we have anH−1-class perturbation.
If ω1, ω2 ∈ H−2\H−1, i.e., η1, η2 ∈ H0\H+1, then (A1/2η2, A

1/2η1) is not well defined.
In such a case, we consider (A(A2 + 1)−1η2, η1) instead of (A1/2η2, A

1/2η1) and we have
an H−2-class perturbation.

But in the important Example 1 we meet a situation in which (A1/2η2, A
1/2η1) at first

glance exists and in spite of η1, η2 6∈ H0. It was possible because the scalar product (·, ·) =
∫∞
1

·, · dx has a “natural” extension (9), i.e., we meet the existence of the corresponding
integral.

At the end of the article we propose some typical (but not general) variant which
allows us to consider b in (11) instead of in (40), but with η1, η2 6∈ H0.

In the spirit of the first section, we extend the scalar product (·, ·) to the case (f, g),
when f ∈ H−2\H0, g ∈ H0\H+1, (f 6= g). For example, if we can decompose the vectors
f = f1+f2 and g = g1+g2 such that spsupp(fi) ⊆ Fi ⊂ R, spsupp(gi) ⊆ Gi ⊂ R, i = 1, 2;
F1 ∩ F2 = ∅, G1 ∩G2 = ∅, F2 = G2 and f1 ∈ H−2 \ H0, g1 ∈ H−2 \ H0, but f2, g2 ∈ H0.

In such a case it would be natural to put (f1, g1) =: 0 and (f, g) understood as

(f, g) = (f1 + f2, g1 + g2) = (f1, g1) + (f1, g2) + (f2, g1) + (f2, g2) = (f2, g2).
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In the last considerations by spsupp(·) we denote the spectral support (of a vector)
with respect to the corresponding operator A. Let us remark that each extension of a
functional depends on some self-adjoint operator A.

Example 1 show that the described above version of an extension of a scalar product
is not necessarily typical and unique. Due to this remark we can put (f1, g1) =: c, with
an arbitrary constant c ∈ R \ {0,∞} without loss of correctness.
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