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VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA
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Abstract. We study 1-D Schrödinger operators in the Hilbert space L2(R) a with
real-valued Radon measure q′(x), q ∈ BVloc(R) as potentials. New sufficient con-

ditions for minimal operators to be bounded below and selfadjoint are found. For
such operators, a criterion for discreteness of the spectrum is proved, which gener-
alizes Molchanov’s, Brinck’s, and the Albeverio–Kostenko–Malamud criteria. The
quadratic forms corresponding to the investigated operators are described.

1. Introduction and main results

We consider the 1-D Schrödinger operator

(1.1) S(q)u ≡ Su := −u′′ + q′(x)u,

in the complex Hilbert space L2(R). The potential of (1.1) is the generalized derivative
q′(x) of a certain real-valued function q ∈ L2

loc(R). Following [13], we define S(q) as a
quasi-differential operator,

lq[u] := −(u′ − qu)′ − q(u′ − qu)− q2u,

Dom(lq) := {u : R → C |u, u′ − qu ∈ ACloc(R)} .

The quasi-differential expression lq[u] is equal to−u
′′+q′(x)u in the sense of distributions,

〈lq[u], ϕ〉 = 〈−u′′ + q′(x)u, ϕ〉 for every ϕ ∈ C∞
comp(R).

Hereafter u[1] := u′ − qu denotes the quasi-derivative. Then the operators (1.1) are
defined as

S(q)u := lq[u],

Dom(S(q)) :=
{

u ∈ L2(R)
∣

∣u, u′ − qu ∈ ACloc(R), lq[u] ∈ L2(R)
}

,

and
Ṡ0(q)u := lq[u], Dom(Ṡ0(q)) := {u ∈ Dom(S(q)) | suppu ⋐ R} .

As usual, the operators S(q) and Ṡ0(q) are called maximal and preminimal, respectively.

Under these assumptions the operator Ṡ0(q) is symmetric and closable, its closure being
denoted by S0(q) (see Proposition in Appendix).

Necessary and sufficient conditions for the operators S0(q) to be bounded below and to
have discrete spectrum are found in [11]. However, they are not constructive. Nonethe-
less, in physical applications the most interesting situation is where the potentials q′(x)
in (1.1) are real-valued Radon measures on a locally compact space R, i. e. q ∈ BVloc(R)
(see, for instance, references in [2, 1, 8]). This situation is investigated in this paper. The
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case where the Radon measure is absolutely continuous, i. e. q′ ∈ L1
loc(R), was studied in

[3, 12]. The approach applied in [3] may be generalized onto arbitrary Radon measures
on R.

Let us suppose that there exists a finite number C > 0 such that for all intervals J of
the real axis R with length ≤ 1 we have

(Br)

∫

J

d q(x) ≥ −C.

Without loss of generality we may assume that in the Brinck condition (Br) C ≥ 2 and
we assume this in what follows.

Theorem A. Under the condition (Br) the operator S0(q) is bounded below, selfadjoint

and S0(q) = S(q).

The following theorem gives necessary and sufficient conditions for the spectra of the
minimal operators to be discrete.

Theorem B. Let the potential q′(x) satisfy the condition (Br). Then spectrum of the

operator S0(q) is discrete if and only if the Molchanov condition is satisfied,

lim
|a|→∞

∫ a+h

a

d q(x) = +∞,

for all h > 0.

The following theorem gives a description of the quadratic forms generated by the
Schrödinger operators. We use notations and definitions from [7].

Theorem C. Let the potential q′(x) satisfy the condition (Br). Then following state-

ments are fulfilled.

(I) The sesquilinear form

ṫṠ0(q)
[u, v] ≡ ṫ[u, v] :=

(

Ṡ0(q)u, v
)

L2(R)
=

∫

R

u′v′d x+

∫

R

uvd q(x),

Dom(ṫṠ0(q)
) := Dom(Ṡ0(q)),

is densely defined, symmetric, and bounded from below,
(

Ṡ0(q)u, u
)

L2(R)
≥ −2C2‖u‖2L2(R).

The form ṫṠ0(q)
is closable.

(II) ”Potential energy”

Q(u) := lim
M,N→∞

∫ N

−M

|u(x)|2d q(x)

exists and is finite for all u ∈ Dom(S(q)), moreover,

Dom(S(q)) ⊂ H1(R).

(III) The closure t of the sesquilinear form ṫ, t := (ṫ)∼, may be represented as

t[u, v] =

∫

R

u′v′d x+ lim
M,N→∞

∫ N

−M

uvd q(x),

Dom(t) =

{

u ∈ H1(R)

∣

∣

∣

∣

∣

∃ lim
M,N→∞

∫ N

−M

|u(x)|2d q(x) ∈ R

}

.

The sesquilinear form t is densely defined, closed, symmetric, and bounded from

below.
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2. Proof of Theorem A

We begin with formulating two necessary lemmas.

Lemma 2.1 (T. Ganelius [4]). Let f ≥ 0 and g be functions of bounded variation on a

compact interval J . Then
∫

J

fd g ≤
(

inf
J
f + var

J
f
)

sup
K⊂J

∫

K

d g,

where K is a compact subinterval of J .

Lemma 2.1 is crucial in our proof of the fact that the preminimal operator Ṡ0(q) is
bounded below under the condition (Br).

The following lemma plays a technical role.

Lemma 2.2 (I. Brinck [3]). Let J be a compact interval of length l. Then for all x ∈ J
and f ∈ H1(J) we have

1

2
l−1‖f‖2L2(J) −

1

2
l‖f ′‖2L2(J) ≤ |f(x)|2 ≤ 2t−1‖f‖2L2(J) + t‖f ′‖2L2(J), 0 < t ≤ l,

and

inf
x∈J

|f(x)|2 ≤ l−1‖f‖2L2(J).

Lemma 2.3. Let q′(x) satisfy the condition (Br). If I is a finite interval of length l and
if f ∈ H1(I), then

(2.1)

∫

I

|f(x)|2d q(x) ≥ −C
(

2(hl/n)−1‖f‖2L2(I) + (hl/n)‖f ′‖2L2(I)

)

,

where n is an integer such that n− 1 < l ≤ n, and h is an arbitrary number from (0, 1].

Proof. There is no loss of generality in supposing that I = (0, l).
We first suppose l = 1 and apply Lemma 2.1. Thus

−

∫

I

|f(x)|2d q(x) ≤ −
(

inf
I
|f |2 + var

J
|f |2

)

sup
K⊂I

∫

K

d q(x).

Due to (Br) the factor − supK⊂I

∫

K
d q(x) is majorized by C, and from Lemma 2.2 we

get
inf
x∈I

|f(x)|2 ≤ ‖f‖2L2(I) ≤ h−1‖f‖2L2(I), h ∈ (0, 1].

We now write f(x) = f1(x) + if2(x), where f1 and f2 are real-valued functions. Due to
Cauchy’s inequality we get

var
I

|f(x)|2 =

∫

I

∣

∣

∣

∣

d

dx
|f(x)|2

∣

∣

∣

∣

dx =

∫

I

|f1f
′
1 + f2f

′
2| dx ≤ 2‖f‖L2(I)‖f

′‖L2(I),

and, hence,

−

∫

I

|f(x)|2d q(x) ≤ Ch−1
(

‖f‖2L2(I) + 2h‖f‖L2(I)‖f
′‖L2(I)

)

≤ Ch−1
(

2‖f‖2L2(I) + h2‖f ′‖2L2(I)

)

,

which proves the lemma for l = 1.
To prove the lemma for arbitrary l we put Q(x) = q(ln−1x). Then

∫ l

0

|f(x)|2d q(x) =

∫ n

0

|f(ln−1x)|2d q(ln−1x) =

∫ n

0

|f(ln−1x)|2dQ(x)

=

n
∑

k=1

∫ k

k−1

|f(ln−1x)|2dQ(x).
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Note that the functionQ satisfies condition (Br) with the same constant C for all intervals
of length ≤ n/l and, hence, for all intervals of length ≤ 1. Therefore the assumption of
lemma for intervals of unit length implies
∫ k

k−1

|f(ln−1x)|2dQ(x) ≥ −C

(

2h−1

∫ k

k−1

|f(ln−1x)|2d x+ h

∫ k

k−1

d

dx
|f(ln−1x)|2d x

)

,

and hence, summing over k, we get
∫ n

0

|f(ln−1x)|2dQ(x) ≥ −C

(

2h−1

∫ n

0

|f(ln−1x)|2d x+ h

∫ n

0

d

dx
|f(ln−1x)|2d x

)

= −C

(

2h−1l−1n

∫ l

0

|f(x)|2d x+ hln−1

∫ l

0

|f ′(x)|2d x

)

,

which proves the lemma. �

Corollary 2.3.1. If the length of an interval I does not exceed 1, then
∫

I

|u′(x)|2d x+ 2C2

∫

I

|u(x)|2d x+

∫

I

|u(x)|2d q(x) ≥ 0

for any u ∈ H1(I).

Proof. Due to the choice of n in Lemma 2.3, we get n/lC < (l+1)/lC. Since we assume
that C ≥ 2, we may conclude that n/lC < 1 if l ≥ 1. Thus, we may put h = n/lC in
(2.1), which yields the corollary. �

Corollary 2.3.2. Let the condition (Br) be satisfied. Then

(2.2)

∫

R

|u(x)|2d q(x) ≥ −C
(

2h−1‖u‖2L2(R) + h‖u′‖2L2(R)

)

for all u ∈ H1
comp(R) and h ∈ (0, 1].

Proof. We divide the real axis into a sum of disjoint intervals of unit length. Then (2.1)
holds on each of these intervals and the summation gives (2.2). �

Remark. If the support of u is not compact, Corollary 2.3.2 obviously still holds if

lim
M,N→∞

∫ N

−M

|u(x)|2d q(x)

exists as improper Riemann–Stieltjes integral. Then the integral in (2.2) must, of course,
be interpreted accordingly.

Lemma 2.3 allows us to prove that the preminimal operator is bounded from below.

Theorem 2.4. Let the potential q′(x) satisfy the condition (Br). Then the preminimal

operator Ṡ0(q) is bounded from below and the following estimate holds:

(Ṡ0(q)u, u) ≥ −2C2‖u‖2L2(R), u ∈ Dom(Ṡ0(q)).

Proof. For arbitrary u ∈ Dom(Ṡ0(q)) there is a positive integer N such that suppu ⊆

[−N,N ] (recall that Dom(Ṡ0(q)) ⊂ H2
comp(R), see property 60 of Proposition in Appen-

dix). Therefore,

(2.3)

(Ṡ0(q)u, u)L2(R) = (lq[u], u)L2(R) = ‖u′‖2L2(R) +

∫

R

|u(x)|2d q(x)

= ‖u′‖2L2(R) +

N
∑

n=−N

∫

[n,n+1)

|u(x)|2d q(x).
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To estimate the terms
∫

[n,n+1)
|u(x)|2d q(x) we apply Lemma 2.3 with l = n = 1 and

h = C−1 (recall that C ≥ 2) and get

(2.4)

∫

[n,n+1)

|u(x)|2d q(x) ≥ −2C2‖u‖2L2([n,n+1)) − ‖u′‖2L2([n,n+1)).

Substituting the estimate (2.4) into (2.3) we receive the estimate we require,

(Ṡ0(q)u, u)L2(R) ≥ ‖u′‖2L2(R) +

N
∑

n=−N

(

−2C2‖u‖2L2([n,n+1)) − ‖u′‖2L2([n,n+1))

)

= −2C2‖u‖2L2(R).

Theorem is proved. �

If the preminimal operator Ṡ0(q) is bounded from below, the minimal operator S0(q)
is selfadjoint and coincides with the maximal operator S(q) (see [1, Remark III.2] and
[10, Corollary 2]). Therefore Theorem 2.4 implies Theorem A.

Theorem A is proved.

3. Auxiliary results

We shall make use of a set of functions ϕ(x) with compact supports and uniformly
bounded derivatives. We define ϕ as follows:

(3.1)

(i) ϕ(x) = ϕ(x, r,R) =

{

1 for − r ≤ x ≤ R,

0 for x < −r − 1 and x > R+ 1.

(ii) For every x the function ϕ(x) is increasing in r and R.
(iii) The derivatives ϕ′(x) and ϕ′′(x) are continuous and uniformly bounded

in x, r and R.

It follows from this definition that 0 ≤ ϕ ≤ 1 and that ϕ→ 1 as min(r,R) → ∞.

Lemma 3.1. Let ω : R → R be a bounded, twice continuously differentiable function

with bounded first and second derivatives. If

(3.2)

∫

J

ω(x)d q(x) ≥ −C

for all intervals J of length ≤ 1, then
∫

R

ω2|u′|2d x <∞

for all u ∈ Dom(S(q)).

Proof. Let ϕ be one of the functions introduced above and put ψ = ϕ2ω2. If u is any
function in Dom(S(q)) we get, integrating by parts,

(3.3)

∫

R

ψlq[u]udx =

∫

R

ψ′u′udx+

∫

R

ψ|u′|2d x+

∫

R

ψ|u|2d q.

Now, let u be a real-values function in Dom(S(q)). Then the first integral in the right-
hand side can be integrated by parts, yielding

(3.4)

∫

R

ψlq[u]udx = −
1

2

∫

R

ψ′′|u|2d x+

∫

R

ψ|u′|2d x+

∫

R

ψ|u|2d q.

The functions ψ and ψ′′ tend boundedly to ω2 and (ω2)′′, respectively, as ϕ→ 1, that is
as min(r,R) → ∞, and, since |ω2lq[u]u| and (ω2)′′|u|2 are both integrable, the first two
integrals in (3.4) tend to the finite limits

∫

R
ω2lq[u]udx and

∫

R
(ω2)′′|u|2d x, respectively

as ϕ → 1. Since the convergence of ψ is also monotone, we conclude that
∫

R
ψ|u′|2d x
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must tend to
∫

R
ω2|u′|2d x although this limit may not be finite, and therefore

∫

R
ψ|u|2d q

must also have limit (possibly −∞).
We put dW (x) = ω(x)d q(x). It follows from (3.2) that W satisfies a condition of the

type (Br). Therefore, we apply Lemma 2.1 (as in the proof of Lemma 2.3) to obtain

−

∫

R

ψ|u|2d q = −

∫

R

ω(x)ϕ2(x)|u(x)|2dW (x) ≤ C

(

2

∫

R

ϕ2ω|u|2d x+ varϕ2ω|u|2
)

.

But varϕ2ω|u|2 is bounded by
∫

R

ϕ2|ω′||u|2d x+ 2

∫

R

ϕω|ϕ′||u|2d x+ 2

∫

R

ωϕ2|uu′|d x,

which in turn is majorized by

M‖u‖2 + 2‖u‖‖ϕωu′‖,

where the coefficient M depends only on the bounds for ω, ω′, and ϕ′. Hence, it follows
from (3.4) that

‖ϕωu′‖2 ≤ O(1) + 2‖u‖‖ϕωu′‖.

Thus, ‖ϕωu′‖2 =
∫

R
ϕ2ω2|u′|2d x =

∫

R
ψ|u′|2d x must be bounded. Therefore,

(3.5)

∫

R

ω2|u′|2d x <∞,

and the lemma is proved for every real u ∈ Dom(S(q)).
Since every u in Dom(S(q)) can be written as u1 + iu2, where u1 and u2 are real and

from Dom(S(q)), the proof for real u shows that
∫

R
ω2|u′1|

2d x < ∞ and
∫

R
ω2|u′2|

2d x <

∞. Hence,
∫

R
ω2|u′|2d x <∞ for all u ∈ Dom(S(q)). The proof of the lemma is complete.

�

We observe that
∫

R
ψ|u|2d q has a finite limit for all u in Dom(S(q)), and that |u′u| is

integrable. Hence
∫

R
ψ′u′udx in (3.3) tends to

∫

R
(ω2)′u′udx for all u ∈ Dom(S(q)).

We obtain the following useful result from Lemma 3.1 with ω(x) ≡ 1.

Corollary 3.1.1. Let the condition (Br) be satisfied. Then

Dom(S(q)) ⊂ H1(R).

We see from (3.3), (3.4), and (3.5) with ω(x) ≡ 1 that ‖u′‖2 is finite and that

lim
ϕ→1

∫

R

ϕ2|u|2d q(x) exists

and also that

(S(q)u, u)L2(R) =

∫

R

lq[u]udx =

∫

R

|u|2d x+ lim
ϕ→1

∫

R

ϕ2|u|2d q(x).

This enables us to prove that the ”potential energy”

(3.6) Q(u) = lim
M,N→∞

∫ N

−M

|u(x)|2d q(x)

exists and is finite for every u ∈ Dom(S(q)) as improper Riemann–Stieltjes integral.
Let ϕ1 = ϕ2(x, r,R) and ϕ2 = ϕ2(x, r−1, R−1), with ϕ being defined by (3.1). Then

obviously
∫ R

−r

|u|2d q =

∫

R

ϕ1|u|
2d q −

∫ −r

−r−1

ϕ1|u|
2d q −

∫ R+1

R

ϕ1|u|
2d q

and
∫ R

−r

|u|2d q =

∫

R

ϕ2|u|
2d q +

∫ −r+1

−r

(1− ϕ2)|u|
2d q +

∫ R

R−1

(1− ϕ2)|u|
2d q.
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In these two identities, each of the four integrals over intervals of unit length can be
one-sidedly estimated in terms of the norms of u and u′ over the interval by Lemma 2.3.
Since u and u′ are both from L2(R), those norms vanish with increasing r and R. Thus

∫

R

ϕ2|u|
2d q − o(1) ≤

∫ R

−r

|u|2d q ≤

∫

R

ϕ1|u|
2d q + o(1),

and, hence,
∫ R

−r

|u|2d q → lim
ϕ→1

∫

R

ϕ|u|2d q

as min(r,R) → ∞. Thus, the limit in (3.6) exists. It also follows that

(3.7) Q(u) =

∫

R

|u|2d q = (S(q)u, u)L2(R) − (u′, u′)L2(R)

for all u ∈ Dom(S(q)), which is equivalent to

(S(q)u, u)L2(R) =

∫

R

|u′|2d x+

∫

R

|u|2d q(x).

We have just proved the first half of the following.

Theorem 3.2. If q′(x) satisfies (Br), then the potential energy Q(u) defined by (3.6)
exists and is finite for any u ∈ Dom(S(q)) as improper Riemann–Stieltjes integral. More-

over, for any h ∈ (0, C−1] and every u ∈ Dom(S(q)), we have

(3.8) (1− Ch)(u′, u′)L2(R) ≤ 2Ch−1(u, u)L2(R) + (S(q)u, u)L2(R)

and

(3.9) (1− Ch)Q(u) ≥ −2Ch−1(u, u)L2(R) − Ch (S(q)u, u)L2(R) .

Proof. For all h ≤ C−1 (< 1) and every u ∈ Dom(S(q)) we have

Q(u) =

∫

R

|u|2d q(x) ≥ −2Ch−1‖u‖2L2(R) − Ch‖u′‖2L2(R)

due to Corollary 2.3.2 and the remark to this Corollary. Then (3.8) and (3.9) follow from
(3.7). �

4. Proof of Theorem B

Let us first prove some preliminary results.
If q′(x) satisfies an upper estimate of a type corresponding to (Br), that is,

(4.1)

∫

J

d q(x) ≤ C1

for all intervals J of length ≤ 1, then −q′(x) satisfies (Br) with C replaced by C1. Hence,
Lemma 2.3 and Corollary 2.3.2 give upper bounds for

∫

|u|2d q. For convenience we state
them in a separate statement.

Proposition 4.1. Let q′(x) satisfy (4.1). If I is any finite interval of length l and

f ∈ H1
2 (I), then

∫

I

|u(x)|2d q(x) ≤ C1

{

2(hl/n)−1 ‖ u ‖2L2(I) +(hl/n) ‖ f ′ ‖2L2(I)

}

,

where n is the integer determined by n− 1 < l ≤ n and h is any number in the interval

0 < h ≤ 1.
If u belongs to H1(R) and has compact support, then also

∫

R

|u(x)|2d q(x) ≤ C1

{

2h−1 ‖ u ‖2L2(R) +h ‖ u′ ‖2L2(R)

}



SCHRÖDINGER OPERATORS WITH MEASURE-VALUED POTENTIALS 247

for any positive h ≤ 1.

Lemma 4.2. Assume that I is an interval of length ≤ 1, q′(x) satisfies (Br) and
∫

I

|h(x)|2d q(x) ≤ C1

for some function h ∈ H1(I) such that 0 < m ≤ |h(x)| ≤M for all x ∈ I. Then

(4.2)

∫

I

d q(x) ≤ C0,

where C0 depends only on C, C1, m, M , and ‖h′‖2L2(I).

Proof. We apply Lemma 2.1 with f = |h|−2 and d g = |h|2d q to obtain

(4.3)

∫

I

d q(x) =

∫

I

|h|−2|h|2d q(x) ≤
(

inf
I
|h|−2 + var

I
|h|−2

)

sup
J⊂I

∫

J

|h|2d q(x),

and we shall exhibit a bound for each of the factors in the right-hand side.
For any J ⊂ I the set I \J consists of at most two intervals K and L, of length k and

l, respectively. From Lemma 2.3 with h = 1 we find
∫

K

|h|2d q(x) ≥ −C
(

2k−1‖h‖2L2(K) + k‖h′‖2L2(K)

)

.

Since ‖h‖2L2(K) ≤ kM2 and k ≤ 1, this yields
∫

K

|h|2d q(x) ≥ −C
(

2M2 + ‖h′‖2L2(K)

)

.

Because a similar estimate holds for the interval L, we have
∫

I\J

|h|2d q(x) ≥ −C
(

4M2 + ‖h′‖2L2(I)

)

.

Hence,

(4.4)

∫

J

|h|2d q(x) =

∫

I

|h|2d q(x)−

∫

I\J

|h|2d q(x) ≤ C1 + C
(

4M2 + ‖h′‖2L2(I)

)

.

Thus, there exists a bound of the required type for the second factor in (4.2).
On the other hand,

(4.5) inf
J
‖h‖2 ≤ m−2,

and

(4.6)
var
I

|h|−2 =

∫

I

∣

∣

∣

∣

d

dx
|h(x)|−2

∣

∣

∣

∣

d x =

∫

I

2|h|−4
∣

∣Re(hh′)
∣

∣ d x

≤ 2m−4‖h‖L2(I)‖h
′‖L2(I) ≤ 2m−4M‖h′‖L2(I).

So, in virtue of (4.3), (4.4), (4.5), and (4.6), we get a desired bound for
∫

I
d q(x). �

Now we are ready to prove Theorem B.
Let us consider the operator

B = S(q) + (2C2 + 1)I,

where I is the identity operator with the domain Dom(S(q)). Let us recall that S0(q) =
S(q). It is obvious that the operator S(q) has discrete spectrum if and only if the operator
B has. We get

(4.7) (Bu, u)L2(R) ≥ (u, u)L2(R).
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Then due to Rellich Theorem the operator B has discrete spectrum if and only if the set

M = {u ∈ Dom(S(q))|(Bu, u)L2(R) ≤ 1}

is precompact (i.e., every infinite sequence contains a Cauchy-sequence).
The norms of elements of M are uniformly bounded according to (4.7). Hence, choos-

ing h appropriately in (3.9), we see that ‖u′‖2L2(R) is also uniformly bounded with respect

to u ∈ M. Thus, M is an equicontinuous family of functions u ∈ L2(R), i.e.,

‖u(x+ h)− u(x)‖2L2(R)

vanishes uniformly as h → 0. A compactness theorem of M. Riesz can now be applied:
The set M is precompact if and only if

(4.8) lim
n→∞

(

sup
u∈M

∫

x>n

|u|2d x

)

= 0.

We shall now prove that the condition

(4.9) lim
|a|→∞

∫ a+h

a

d q(x) = +∞ for all h > 0

is sufficient for the discreteness of the spectrum. To this end we suppose that (4.8) is not
fulfilled. This means that we assume the existence of a sequence of functions un ∈ M
for which

(4.10)

∫

|x|>n

|un|
2d x ≥ η−1 > 0

for some η independent of n. Now

(Bun, un)L2(R) =

∫

R

|u′n|
2d x+ (2C2 + 1)

∫

R

|un|
2d x+

∫

R

|un|
2d q(x) ≤ 1,

according to (3.7), and if n ≥ 1, then
∫ n

−n

|u′n|
2d x+ (2C2 + 1)

∫ n

−n

|un|
2d x+

∫ n

−n

|un|
2d q(x) ≥ 0

due to Corollary 2.3.1. Therefore, in view of (4.10),
∫

R

|u′n|
2d x+ (2C2 + 1)

∫

R

|un|
2d x+

∫

R

|un|
2d q(x) ≤ 1 ≤ η

∫

x>n

|un|
2d x.

We split the set (−∞,−n) ∪ (n,∞) into a sum of disjoint intervals Jk of equal length
l ≤ 1. (This number l shall be the same for all n. It will be clear below how l is most
suitable chosen, depending on the numbers C and η only.) Then

(4.11)
∑

k

[
∫

Jk

|u′n|
2d x+ (2C2 + 1)

∫

Jk

|un|
2d x+

∫

Jk

|un|
2d q(x)

]

≤ η
∑

k

∫

Jk

|un|
2d x.

Hence, there exists at least one interval In = I among Jk such that

(4.12)

∫

I

|u′n|
2d x+ (2C2 + 1)

∫

I

|un|
2d x+

∫

I

|un|
2d q(x) ≤ η

∫

I

|un|
2d x.

Lemma 2.3 and (4.12) yield

(1− Cl)‖u′n‖
2
L2(I) + (2C2 + 1− 2Cl−1)‖un‖

2
L2(I) ≤ η‖un‖

2
L2(I).

Let vn be a multiple of un such that ‖vn‖
2
L2(I) = l, and let l < 1/C. Then

‖v′n‖
2
L2(I) ≤ (1− Cl)−1(η + 2Cl−1 − 2C2 − 1)l,

which yields
l‖v′n‖

2
L2(I) ≤ l(1− Cl)−1(ηl + 2C − l(2C2 + 1)).
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Since the expression on the right vanishes as l → 0, there exists a number l0(η, C)
depending only on η and C such that l ≤ l0 implies l‖v′n‖

2
L2(I) ≤

1
2 . Letting the intervals

in (4.11) have precisely the length l0 we conclude from the Lemma 2.2 that

(4.13) 1/4 ≤ |vn(x)|
2 ≤ 9/4

for all x in I. Finally, we conclude from (4.12), which also holds for vn by homogeneity,
that

(4.14)

∫

I

|vn(x)|
2d q(x) ≤ ‖vn‖

2
L2(I)(η − 2C2 − 1)− ‖v′n‖

2
L2(I) ≤ l0(η − 2C2 − 1) = K.

In view of (4.13) and (4.14), the assumptions of Lemma 4.2 are satisfied. Hence,
∫

I

d q(x) ≤ C0,

where C0 depends only on ‖v′n‖
2
L2(I), C, and K, i. e. on η and C only.

Therefore, if M is not precompact, we can find a sequence of intervals In of equal
length l0 and with In outside the interval |x| ≤ n such that

∫

In
d q(x) is uniformly

bounded. Then (4.9) cannot be true; hence, M must be precompact if (4.9) holds. This
proves the sufficiency assertion of Theorem B.

It remains to prove that condition (4.9) for the discreteness of the spectrum is nec-
essary. To do this let us consider the operator B1/2 instead of B. The operator B1/2

has discrete spectrum if and only if the operator B has. Then Rellich Theorem for B1/2

reads as follows: spectrum of B1/2 is discrete if and only if the set

M′ =
{

u ∈ Dom(B1/2)
∣

∣

∣
‖B1/2u‖2L2(R) + ‖u‖2L2(R) ≤ 1

}

is precompact. The operator B1/2 is more convenient than the operator B for proving
the necessity because

C∞
comp(R) ⊂ Dom(B1/2).

Let notice that Dom(B1/2) coincides with the domain of the closure of the quadratic

form ṫṠ0(q)
generated by the preminimal operator Ṡ0(q).

Now, suppose that condition (4.8) is not satisfied. This is equivalent to the existence
of a sequence {∆}∞1 of disjoint intervals of equal length κ > 0 such that

(4.15)

∫

∆ν

d q(x) ≤ C1

for all ν. Obviously there is no loss of generality to suppose that κ ≤ 1, for otherwise we
can find a sequence of intervals contained in ∆ν of length ≤ 1 for which (4.15) holds.

We observe that (4.15) implies the existence of an upper bound for the corresponding
integral over any sub-interval J contained in ∆ν , because

∫

J

d q(x) =

∫

∆ν

d q(x)−

∫

∆ν−J

d q(x) ≤ C1 + 2C = K

in view of (Br).
Let ϕ1 6≡ 0 be a twice continuously differentiable function with support contained in

∆1 and let ϕν be the translate of ϕ1 to the interval ∆ν . Applying Proposition 4.1 we
then get

(4.16)

∫

R

|ϕ′
ν |

2d x+ (2C2 + 1)

∫

R

|ϕν |
2d x+

∫

R

|ϕν |
2d q(x)

≤ (1 +Kκ)‖ϕ′
ν‖

2
L2(R) + (2C2 + 1 + 2Kκ−1)‖ϕν‖

2
L2(R)

= (1 +Kκ)‖ϕ′
1‖

2
L2(R) + (2C2 + 1 + 2Kκ−1)‖ϕ1‖

2
L2(R)
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for all ν. Since the functions ϕν have disjoint supports, it follows that

‖ϕj − ϕk‖
2
L2(R) = 2‖ϕ1‖

2
L2(R) > 0 when j 6= k.

Hence a set containing all the functions ϕν cannot be precompact.
Further, supposing that ϕ1 is normed so that the right hand side of (4.16) does not

exceed, say, 1
2 , and using the fact that B1/2 ≥ I, we conclude that the set M′ contains

the sequence {ϕν}
∞
1 . Therefore M′ is not precompact, and hence the spectrum of S(q)

cannot be discrete. Thus, assumption (4.15) must be false if S(q) has discrete spectrum.
Consequently, (4.9) is a necessary condition.

The proof of Theorem B is thereby complete.

5. Proof of Theorem C

Theorem 2.4 and Theorem 3.2 together with Corollary 3.1.1 prove assertions (I) and
(II) of Theorem C respectively.

Let us prove assertion (III) of Theorem C.
We shall deal with the domain of B1/2 instead of the domain of the sesquilinear form

t[u, v] (which is a closure of the form ṫṠ0(q)
[u, v] generated by the preminimal operator

Ṡ0(q)). Recall that

B = S(q) + (2C2 + 1)I and Dom(B) = Dom(S(q)).

The operator B is selfadjoint and B ≥ I. It is well known that Dom(B1/2) coincides with
Dom(t).

For arbitrary f, g ∈ H1
comp(R) we define a new inner product

(5.1) 〈f, g〉 :=

∫

R

f ′g′d x+

∫

R

fgd p(x),

where p(x) := q(x) + (2C2 + 1)x. Then in view of Corollary 2.3.2 we conclude that

〈f, f〉 =

∫

R

|f ′|2L2(R)d x+

∫

R

|f ′|2L2(R)d p(x)

≥ (1− Ch)‖f ′‖2L2(R) + (2C2 + 1− 2Ch−1)‖f‖2L2(R)

(5.2)

for all positive h ≤ 1. Therefore with a proper choice of h we get

(5.3) 〈f, f〉 ≥ C1(‖f
′‖2L2(R) + ‖f‖2L2(R))

for some positive constant C1. Closing H1
comp(R) in the norm (5.2) we get a Hilbert

space R.

Lemma 5.1. The embedding R ⊂ H1(R) holds true and the inner product in R is given

by

(5.4) 〈f, h〉 =

∫

R

f ′h′d x+

∫

R

fhd p

for any h ∈ H1
comp(R) and f ∈ R.

Proof. The first assertion of the lemma follows immediately from (5.3). To prove the
second one, let f be defined by a sequence {fν}

∞
1 of elements from H1

comp(R). Then

(5.5) 〈fν , h〉 =

∫

R

f ′νh
′d x+

∫

R

fνhd p

by definition. But f ′ν and fν converge in L2(R) to f ′ and f respectively. Hence, fν
converges uniformly to f on the support of h. Thus, the integral in (5.5) tends to the
integral in (5.4), which proves the lemma. �

Lemma 5.2. The domain Dom(Ṡ0(q)) is dense in R.
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Proof. Suppose that 〈f, u〉 = 0 for every u ∈ Dom(Ṡ0(q)) and some f ∈ R. Integrating
by parts we obtain

0 = 〈f, u〉 =

∫

R

f ′u′d x+

∫

R

fud p = −

∫

R

fu′′d x+

∫

R

fud p = (f,Bu)L2(R),

according to lemma 5.1.
But B(Dom(Ṡ0(q))) is dense in L2(R), hence f = 0, which proves the lemma. �

Theorem 5.3. The domain of the operator B1/2 coincides with R.

Proof. We first note that Dom(Ṡ0(q)) is dense in Dom(S(q)) in the graph norm, because

S is the closure of its restriction to Dom(Ṡ0(q)). Using well-known functional calculus

for operators, we then conclude that Dom(Ṡ0(q)) is also dense in the domain of B1/2 in
the corresponding graph norm. Since

(

B1/2u,B1/2u
)

L2(R)
= (Bu, u)L2(R) = 〈u, u〉

for all u ∈ Dom(Ṡ0(q)), then the domain of B1/2 is obtained by closing Dom(Ṡ0(q)) with
respect to the norm in R. Thus

Dom(B1/2) ⊂ R.

But Lemma 5.2 shows that Dom(B1/2) cannot be a proper subset of R, for then some

f ∈ R\{0} would be orthogonal to all h ∈ Dom(B1/2) and hence to all u ∈ Dom(Ṡ0(q)),
which is possible only for f = 0. Thus

Dom(B1/2) = R

and the theorem is proved. �

Remark that we have not given any explicit form for the inner product 〈f, g〉 of
arbitrary elements inR. It may be of interest to note, however, that an integral expression
corresponding to (5.1) does give the inner product 〈f, g〉 for arbitrary f, g ∈ R.

Lemma 5.4. The inner product in R is given by

〈f, g〉 = lim
M,N→∞

(

∫ N

−M

f ′g′d x+

∫ N

−M

fgd p

)

.

Proof. It is sufficient to prove that for every f ∈ R

(5.6) 〈f, f〉 = lim
M,N→∞

(

∫ N

−M

|f ′|2d x+

∫ N

−M

|f |2d p

)

,

because then

4〈f, g〉 = 〈f + g, f + g〉 − 〈f − g, f − g〉+ i [〈f + ig, f + ig〉 − 〈f − ig, f − ig〉]

= lim
M,N→∞

4

(

∫ N

−M

f ′g′d x+

∫ N

−M

fgd p

)

.

We define

〈f, f〉n =

∫ n

n−1

|f ′|2d x+

∫ n

n−1

|f |2d p

for any f ∈ R and infer from the Corollary 2.3.1 to Lemma 2.3 that the number 〈f, f〉n
is non-negative for all n. We proceed to prove that the series

(5.7) P (f) =
∞
∑

n=−∞

〈f, f〉n

converges to 〈f, f〉.
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For any h ∈ H1
comp(R) the series in (5.7) is finite and P (h) = 〈h, h〉. Now, let f be an

arbitrary element in R, defined by a Cauchy-sequence {fν}
∞
1 of elements in H1

comp(R).
Then, as we have seen, f ′ν converges in L2(R) to f ′ and fν converges uniformly to f
on compacts. Thus the individual terms 〈fν , fν〉n converge to 〈f, f〉n for every n. But
〈fν , fν〉 converges to 〈f, f〉 and hence Fatou’s lemma shows that

P (f) =
∞
∑

n=−∞

〈f, f〉n =
∞
∑

n=−∞

lim
ν→∞

〈fν , fν〉n ≤ lim
ν→∞

∞
∑

n=−∞

〈fν , fν〉n

= lim
ν→∞

P (fν) = lim
ν→∞

〈fν , fν〉 = 〈f, f〉.

Thus, the series P (f) converges, because its terms are non-negative, and P (f) ≤ 〈f, f〉.
To obtain the converse inequality, we define 〈f, h〉n for f ∈ R and h ∈ H1

comp(R) by

〈f, h〉n =

∫ n

n−1

f ′h′d x+

∫ n

n−1

fhd p.

Lemma 5.1 shows that

〈f, h〉 =

∞
∑

n=−∞

〈f, h〉n,

the series in fact being finite. Since 〈f, f〉n is positive definite we get by Schwarz’ in-
equality

|〈f, h〉n|
2 ≤ 〈f, f〉n〈h, h〉n.

Hence

|〈f, h〉|2 =

∣

∣

∣

∣

∣

∞
∑

n=−∞

〈f, h〉n

∣

∣

∣

∣

∣

2

≤

∞
∑

n=−∞

〈f, f〉n

∞
∑

n=−∞

〈h, h〉n = P (f)〈h, h〉.

This proves P (f) ≥ 〈f, f〉, as H1
comp(R) is dense in R. Therefore, P (f) = 〈f, f〉 in view

of the inequality obtained above.
We have thus proved that the integral in (5.6) converges to 〈f, f〉 when Z ∋M,N →

∞. But f and f ′ are both in L2(R); therefore we can apply Lemma 2.3 to arbitrary M
and N (as in the proof of Theorem 3.2) to obtain

∫ [N ]+1

−[M ]−1

|f ′|2d x+

∫ [N ]+1

−[M ]−1

|f |2d p+ o(1) ≥

∫ N

−M

|f ′|2d x+

∫ N

−M

|f |2d p

≥

∫ [N ]

−[M ]

|f ′|2d x+

∫ [N ]

−[M ]

|f |2d p− o(1),

with [N ] denoting the greatest integer ≤ N . But we have proved that the expressions on
the left and on the right both tend to 〈f, f〉. Hence the lemma is proved. �

Theorem 5.5. The equality

Dom(B1/2) =

{

u ∈ H1(R)

∣

∣

∣

∣

∃

∫

R

|u|2d q ∈ R

}

,

holds, where the integral
∫

R
uvd q(x) is considered as improper Riemann–Stieltjes integral.

Proof. We have just shown that the limit in (5.6) exists and is finite for all f ∈ R. Since
f and f ′ are in L2(R), then the potential energy exists and is finite.

Conversely, if f satisfies the conditions of the theorem, the formula

F (g) = lim
M,N→∞

(

∫ N

−M

g′f ′d x+

∫ N

−M

gfd p

)
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defines a continuous functional realized by some element h ∈ R, and it is not difficult
to prove that the function f − h must then be an L2-solution to the equation Bu = 0.
Since B is positive this implies f = h, hence f ∈ R and the theorem is proved. �

6. Some remarks

Standard arguments show that the minimal operator S0(q) is bounded from below
in the Hilbert space L2(R) if and only if minimal operators S±0 (q), generated by the
differential expression S(q) in Hilbert spaces L2(R±) correspondingly are bounded from
below. Herein the discreteness of the spectrum of operator S0(q) is equivalent to the
discreteness of the both spectra of the operators S±D(q) that correspond to the selfadjoint

extensions of operators S±0 (q) with homogeneous Dirichlet condition at the end of the
semi-axis R±. Therefore Theorems A and B (reformulated accordingly) also hold for
the Schrödinger operators on the semi-axis, which were studied in [1]. These theorems
generalize the results [1, Lemma III.1] and [1, Theorem IV.1].

The following example illustrates the difference between our results and the former
ones.

Example. Let {xn}
∞
n=1 be an arbitrary strictly increasing unbounded sequence of posi-

tive numbers such that xn+1 − xn → 0 as n→ ∞. Choose ρ > 0 and {α2n−1}
∞
n=1 ⊂ R+

arbitrarily. Consider the potential of the form

q′(x) =
∞
∑

n=1

(ρ+ α2n−1)δ(x− x2n−1)−
∞
∑

n=1

ρδ(x− x2n).

Simple verification shows that the Radon measure q′(x) does not satisfy conditions (A)
and (B) from paper [2] and conditions of Theorem IV.1 from [1]. However, q′(x) satisfies
condition (Br). Therefore, operator S+D(q) is bounded from below and self-adjoint. Due
to Theorem B its spectrum is discrete if and only if

∑

x2n−1∈∆

α2n−1 → +∞,

where the interval ∆ ⊂ R+ moves to +∞ preserving its length.

Appendix

Let us formulate some known statements about the operators Ṡ0(q), S0(q) and S(q),
which are used in the paper. Their proofs may be found in [9, 10, 6, 5].

Proposition. The operators Ṡ0(q), S0(q), and S(q) have the following properties:

10. The domain Dom(Ṡ0(q)) of the preminimal operator Ṡ0(q) is dense in the Hilbert

space L2(R).

20. The operator Ṡ0(q) is symmetric and therefore it is closable.

30. Let S0(q) :=
(

Ṡ0(q)
)∼

. Then

(

Ṡ0(q)
)∗

= S(q) and Ṡ0(q) ⊂ S0(q) ⊂ S(q).

40. The minimal operator S0(q) is a densely defined, closed, and symmetric operator

with the deficiency index (d, d), where 0 ≤ d ≤ 2. The operators S0(q) and S(q)
are mutually adjoint, i. e.

S∗0(q) = S(q) and S∗(q) = S0(q).
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50. The domain Dom(S0(q)) of the minimal operator S0(q) has the form

Dom(S0(q)) = {u ∈ Dom(S(q)) |[u, v]+∞ − [u, v]−∞ = 0 ∀v ∈ Dom(S(q))} ,

where [u, v] ≡ [u, v](x) := u(x)v[1](x)− u[1](x)v(x).

60. The domains of the operators Ṡ0(q), S0(q) and S(q) satisfy the embeddings

Dom(Ṡ0(q)) ⊂ H1
comp(R),

Dom(S0(q)) ⊂ H1
loc(R) ∩ L

2(R),

Dom(S(q)) ⊂ H1
loc(R) ∩ L

2(R).
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2016.

9. V. Mikhailets, V. Molyboga, Schrödinger operators with complex singular potentials, Methods

Funct. Anal. Topology 19 (2013), no. 1, 16–28.
10. V. Mikhailets, V. Molyboga, Remarks on Schrödinger operators with singular matrix potentials,

Methods Funct. Anal. Topology 19 (2013), no. 2, 161–167.
11. V. Mikhailets, A. Murach, V. Novikov, Localization principles for Schrödinger operator with a

singular matrix potential , Methods Funct. Anal. Topology 23 (2017), no. 4, 367–377.
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