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ON UNIQUENESS OF FIXED POINTS OF QUADRATIC

STOCHASTIC OPERATORS ON A 2D SIMPLEX

M. SABUROV AND N. A. YUSOF

Abstract. The Perron–Frobenius theorem states that a linear stochastic operator

associated with a positive square stochastic matrix has a unique fixed point in the
simplex and it is strongly ergodic to that fixed point. However, in general, the similar
result for quadratic stochastic operators associated with positive cubic stochastic
matrices does not hold true. Namely, it may have more than one fixed point in the

simplex. Moreover, the uniqueness of fixed points does not imply the strong ergodicity
of quadratic stochastic operators. In this paper, for some classes of positive cubic
stochastic matrices, we provide a uniqueness criterion for fixed points of quadratic
stochastic operators acting on a 2D simplex. Some supporting examples are also

presented.

1. Quadratic stochastic operators

Let us first provide some necessary definitions of non-homogeneous Markov chains and
quadratic stochastic processes by following the papers [5, 6, 26].

Let Ωm−1 =

{

x = (x1, x2, · · · , xm) ∈ R
m :

m
∑

i=1

xi = 1, xi ≥ 0, ∀ i = 1,m

}

be a stan-

dard simplex. An element of the simplex Ωm−1 is called a stochastic vector. A family of

square stochastic matrices

{

P
[r,t] =

(

p
[r,t]
ik

)m

i,k=1
: r, t ∈ N, t− r ≥ 1

}

is called a discrete

time non-homogeneous Markov chain if for any natural numbers r, s, t with r < s < t

the following condition, known as the Chapman–Kolmogorov equation, is satisfied

p
[r,t]
ik =

m
∑

j=1

p
[r,s]
ij p

[s,t]
jk , 1 ≤ i, k ≤ m.(1)

A linear operator L[r,t] : Ωm−1 → Ωm−1 associated with the square stochastic matrix

P
[r,t] =

(

p
[r,t]
ik

)m

i,k=1

(

L[r,t](x)
)

k
=

(

xP[r,t]
)

k
=

m
∑

i=1

xip
[r,t]
ik , 1 ≤ k ≤ m,(2)

is called a linear stochastic operator (a Markov operator).
Notice that the Chapman–Kolmogorov equation can be written in the following form:

L[r,t] = L[s,t] ◦ L[r,s], r < s < t.(3)
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A stochastic vector x ∈ Ωm−1 is called a stationary distribution of the non-homoge-
neous Markov chain if one has that xP[r,t] = x for all r, t ∈ N. It is clear that a set of all
stationary distributions of the non-homogeneous Markov chain is nothing but a set of all
common fixed points of the linear Markov operators (2) for all r, t ∈ N.

Let P = (pijk)
m
i,j,k=1 be a cubic matrix and let pij• = (pij1, pij2, · · · , pijm) for all

1 ≤ i, j ≤ m. A cubic matrix P = (pijk)
m
i,j,k=1 is called stochastic if pij• is a stochastic

vector for all 1 ≤ i, j ≤ m. Without loss of generality, we may assume that pijk = pjik
for any 1 ≤ i, j, k ≤ m.

A family of cubic stochastic matrices

{

P [r,t] =
(

p
[r,t]
ijk

)m

i,j,k=1
: r, t ∈ N, t− r ≥ 1

}

with

an initial distribution x(0) ∈ S
m−1 is called a discrete time quadratic stochastic process

if for any natural numbers r, s, t with r < s < t either one of the following conditions,
the so-called the nonlinear Chapman–Kolmogorov equations, is satisfied

(A) p
[r,t]
ijk =

m
∑

α,β=1

p
[r,s]
ijα x

(s)
β p

[s,t]
αβk, 1 ≤ i, j, k ≤ m,

(B) p
[r,t]
ijk =

m
∑

α,β,γ,δ=1

x
(r)
α p

[r,s]
iαβ x

(r)
γ p

[r,s]
jγδ p

[s,t]
βδk , 1 ≤ i, j, k ≤ m,

where x
(ν)
k =

m
∑

i,j=1

x
(0)
i x

(0)
j p

[0,ν]
ijk . We remark that the conditions (A) and (B) are not

equivalent to each other. The reader may refer to [5, 26] for an exposition of quadratic
stochastic processes.

A quadratic operator Q[r,t] : Ωm−1 → Ωm−1 associated with the cubic stochastic

matrix P [r,t] =
(

p
[r,t]
ijk

)m

i,j,k=1
,

(

Q[r,t](x)
)

k
=

m
∑

i,j=1

xixjp
[r,t]
ijk , 1 ≤ k ≤ m,(4)

is called a quadratic stochastic operator (a nonlinear Markov operator [14]).
Obviously, we have that x(ν) = Q[0,ν](x(0)). Notice that the nonlinear Chapman–

Kolmogorov equation can be written in the following form:

Q[r,t](x(r)) = Q[s,t]
(

Q[r,s](x(r))
)

, r < s < t.(5)

The classical Perron–Frobenius theorem states that if P > 0 then a linear Markov chain
has a unique stationary distribution p ∈ Ωm−1 and it is strongly ergodic (asymptotically
stable, regular) to p, i.e., lim

k→∞
L[1,k](x) = p for any x ∈ Ωm−1 where L : Ωm−1 → Ωm−1,

L(x) = xP is a linear stochastic operator. Unlike the linear case, the structure of a set
of all stationary distributions of the higher-order Markov chains (see [1, 21] for defini-
tions) might be as complex as possible (see [16, 24, 25]). In general, an analogue of the
Perron–Frobenius theorem for positive higher-order hypermatrices is not true. However,
there are some sufficient conditions for the uniqueness of stationary distributions of the
higher-order Markov chains and some iterative methods to find the unique stationary
distribution of the higher-order Markov chains (see [3, 4, 15, 17, 20]). These sufficient
conditions are in the spirit of Banach’s contraction principle.

A quadratic stochastic operator has an incredible application in population genetics
(see [18]). The quadratic stochastic operator was first introduced in Bernstein’s work
[2] and considered an important source of analysis to study dynamical properties and
modeling in various fields of science such as biology (see [13, 18]), physics (see [27]), game
theory (see [7]), control system (see [23]). A fixed point set and an omega limiting set of
a special class of quadratic stochastic operators were deeply studied in [9, 10]. Ergodicity
and chaotic dynamics of quadratic stochastic operators on the finite dimensional simplex
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were studied in [8, 22]. In [11, 20], it was given a long self-contained exposition of recent
achievements and open problems in the theory of quadratic stochastic operators. In
general, if P > 0 then it is not necessary to be true that |Fix(Q)| = 1. In this paper,
we provide a uniqueness criterion for fixed points (stationary distributions) of positive
quadratic stochastic operators on a 2D simplex. Moreover, in general, if Fix(Q) = {p}
then it is not necessary to be true that lim

k→∞
Q(k)(x) = p for any x ∈ Ωm−1. It is worth

mentioning that there are non-contraction positive quadratic stochastic operators which
are still strongly ergodic. We also present some supporting examples.

2. The uniqueness criterion for stationary distributions

Let Q : Ω2 → Ω2 be a positive quadratic stochastic operator defined as follows:

Q(x) =





3
∑

i,j=1

pijxixj ,

3
∑

i,j=1

qijxixj ,

3
∑

i,j=1

rijxixj





T

,

where pij , qij , rij > 0 and pij+qij+rij = 1 with pij = pji, qij = qji, rij = rji, 1 ≤ i, j ≤ 3.

Remark 2.1. Let p1 6= p2, q1 6= q2. It is obvious that two quadratic equations x2+p1x+
q1 = 0 and x2 + p2x+ q2 = 0 have a unique common root if and only if their resultant is
equal to zero, i.e.,

(q2 − q1)
2 + p1(q2 − q1)(p1 − p2) + q1(p1 − p2)

2 = 0.

In this case, x =
q2 − q1

p1 − p2
is the only common root.

We first provide a uniqueness criterion for fixed points (stationary distributions) of
positive quadratic stochastic operators on a 2D simplex.

2.1. The uniqueness criterion. Let us define the following constants:

α11 = p11 + p33 − 2p13, α22 = p22 + p33 − 2p23, α12 = p33 + p12 − p13 − p23,

β11 = q11 + q33 − 2q13, β22 = q22 + q33 − 2q23, β12 = q33 + q12 − q13 − q23,

α0 = p33, α1 = p13 − p33, α2 = p23 − p33, β0 = q33, β1 = q13 − q33, β2 = q23 − q33,

γ0 = β0α11 − α0β11, γ1 = (2β2 − 1)α11 − 2α2β11, γ2 = α11β22 − α22β11,

δ0 = (2α1 − 1)β11 − 2β1α11, δ1 = α12β11 − β12α11, ∆1 = γ2δ
2
0 − 2γ1δ0δ1 + 4γ0δ

2
1 ,

λ0 = α11γ
2
0 + (2α1 − 1)γ0δ0 + α0δ

2
0 , λ4 = α11γ

2
2 + 4α12γ2δ1 + 4α22δ

2
1 ,

λ3 = 2α11γ2γ1 + 2α12γ2δ0 + 4α12γ1δ1 + 4α1γ2δ1 − 2γ2δ1 + 4α22δ1δ0 + 8α2δ
2
1 ,

λ2 = 2α11γ2γ0 + α11γ
2
1 + 2α12γ1δ0 + 4α12γ0δ1 +

+2α1γ2δ0 + 4α1γ1δ1 − γ2δ0 − 2γ1δ1 + α22δ
2
0 + 8α2δ1δ0 + 4α0δ

2
1 ,

λ1 = 2α11γ1γ0 + 2α12γ0δ0 + 2α1γ1δ0 + 4α1γ0δ1 − γ1δ0 − 2γ0δ1 + 2α2δ
2
0 + 4α0δ1δ0.

Theorem 2.2. Let α11β11∆1 6= 0. The positive quadratic stochastic operator Q : Ω2 →
Ω2 has a unique fixed point (a stationary distribution) if and only if the quartic equation

λ4a
4 + λ3a

3 + λ2a
2 + λ1a+ λ0 = 0

has a unique real root a0 ∈ (0, 1) \ {− δ0
2δ1

} which satisfies 0 < A0 < 1 and 0 < B0 < 1,
where

A0 =
γ2a

2
0 + γ1a0 + γ0

2δ1a0 + δ0
,

B0 =
(γ2 + 2δ1)a

2
0 + (γ1 + δ0)a0 + γ0

2δ1a0 + δ0
.
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Moreover, in this case, the only fixed point (a stationary distribution) is (A0, a0, 1−B0)
T .

Proof. In order to find all fixed points of the positive quadratic operator Q : Ω2 → Ω2,
we have to solve the following system of equations:











x1 = p11x
2
1 + p22x

2
2 + p33x

2
3 + 2p12x1x2 + 2p13x1x3 + 2p23x2x3,

x2 = q11x
2
1 + q22x

2
2 + q33x

2
3 + 2q12x1x2 + 2q13x1x3 + 2q23x2x3,

x3 = r11x
2
1 + r22x

2
2 + r33x

2
3 + 2r12x1x2 + 2r13x1x3 + 2r23x2x3.

(6)

Since x3 = 1−x1−x2, it is enough to find all solutions (x1, x2) of the first two equations
of the system (6) which satisfy the following conditions x1, x2 > 0 and 0 < x1 + x2 < 1.

By plugging x3 = 1 − x1 − x2 into the first and second equations of the system (6),
we can get the following system of equations with respect to (x1, x2):

{

α11x
2
1 + α22x

2
2 + 2α12x1x2 + (2α1 − 1)x1 + 2α2x2 + α0 = 0,

β11x
2
1 + β22x

2
2 + 2β12x1x2 + 2β1x1 + (2β2 − 1)x2 + β0 = 0.

.

Let x1 = x be a variable and x2 = a be a parameter. Since α11β11 6= 0, the last
system of equations takes the following form:















x2 +
2α12a+ 2α1 − 1

α11
x+

α22a
2 + 2α2a+ α0

α11
= 0,

x2 +
2β12a+ 2β1

β11
x+

β22a
2 + (2β2 − 1)a+ β0

β11
= 0.

Let

A1 =
2α12a+ 2α1 − 1

α11
, B1 =

α22a
2 + 2α2a+ α0

α11
,

A2 =
2β12a+ 2β1

β11
, B2 =

β22a
2 + (2β2 − 1)a+ β0

β11
.

We then have the following two quadratic equations:

x2 +A1x+B1 = 0, x2 +A2x+B2 = 0.

Since ∆1 6= 0, we have that A1 6= A2 and B1 6= B2. This means that for any x,y ∈
Fix(Q) one has that x2 6= y2. Therefore, the system of equations (6) has a solution
(x1, x2), x1, x2 > 0 with 0 < x1 + x2 < 1 if and only if the last two quadratic equations
should have a unique common root in (0, 1) for a ∈ (0, 1). Due to Remark 2.1, the last
two quadratic equations have a unique common root if and only if

(B2 −B1)
2 +A1(B2 −B1)(A1 −A2) +B1(A1 −A2)

2 = 0

and the unique fixed point is x =
B2 −B1

A1 −A2
. It is clear that

A1 −A2 =
1

α11β11
(2δ1a+ δ0), B2 −B1 =

1

α11β11
(γ2a

2 + γ1a+ γ0).

After simple algebra, we get the following quartic equation:

(7) λ4a
4 + λ3a

3 + λ2a
2 + λ1a+ λ0 = 0.

Hence, the number of solutions (x1, x2), x1, x2 > 0 with 0 < x1 + x2 < 1 of the system
of equations (6) is the same as the number of positive roots in the interval (0, 1) of the
quartic equation (7). For every positive root a ∈ (0, 1) of the quartic equation (7), the

unique common root of two quadratic equations is x =
γ2a

2 + γ1a+ γ0

2δ1a+ δ0
. Consequently,
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the positive quadratic stochastic operator has a unique fixed point if and only if the
quartic equation (7) must have a unique real root a0 ∈ (0, 1) which satisfies

0 < A0 =
γ2a

2
0 + γ1a0 + γ0

2δ1a0 + δ0
< 1,

0 < B0 = A0 + a0 =
(γ2 + 2δ1)a

2
0 + (γ1 + δ0)a0 + γ0

2δ1a0 + δ0
< 1.

In this case, the only fixed point is (A0, a0, 1−B0)
T . This completes the proof. �

Remark 2.3. Theorem 2.2 provides a uniqueness criterion for the fixed point of the
positive quadratic stochastic operators in the case α11β11∆1 6= 0. It is worth mentioning
that there are also some positive quadratic stochastic operators having three fixed points
in the case α11β11∆1 6= 0. Similarly, the positive quadratic stochastic operator may have
one or three fixed points regardless of the condition α11β11∆1 = 0. Some supporting
examples are provided in the next section.

We now present an application of Theorem 2.2.

2.2. Applications.

Example 2.4 (Lyubich’s Example). Y. I. Lyubich, without proof (see [18], p. 296), had
provided an example for a positive quadratic stochastic operator Vε : Ω2 → Ω2 having
three fixed points

Vε :







(Vε(x))1 = (1− 4ε)x2

1 + 2εx2

2 + 10εx2

3 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

(Vε(x))2 = 2εx2

1 + (1− 3ε)x2

2 + εx
2

3 + ( 1
2
+ 2ε)x1x2 + 2εx1x3 + (1− 12ε)x2x3

(Vε(x))3 = 2εx2

1 + εx
2

2 + (1− 11ε)x2

3 + ( 3
2
− 6ε)x1x2 + (1− 6ε)x1x3 + (1 + 4ε)x2x3

,

where 0 < ε < 9−5
√
2

124 . However, it turns out that Lyubich’s example has a unique fixed
point. We want to show that Vε : Ω2 → Ω2 has the unique fixed point

(

1 + 2a0(1− a0)

2(1 + a0)
, a0,

1− 2a0
2(1 + a0)

)T

∈ Ω2

for any 0 < ε < 1
12 where a0 ∈ (0, 1

2 ) is the unique root of the quartic equation

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0.

It is clear that Vε : Ω2 → Ω2 is a positive quadratic stochastic operator whenever

0 < ε < 1
12 in which 9−5

√
2

124 < 1
12 . Let us calculate the following constants for Vε :

α11 = 2ε, α22 = 4ε, α12 = 6ε− 0.5, α1 = 0.5− 8ε, α2 = −6ε, α0 = 10ε

β11 = ε, β22 = 10ε, β12 = −0.25 + 7ε, β1 = 0, β2 = 0.5− 7ε, β0 = ε,

γ2 = 16ε2, γ1 = −16ε2, γ0 = −8ε2, δ1 = −8ε2, δ0 = −16ε2, ∆1 = 6144ε6,

λ4 = 256ε4 − 1536ε5, λ3 = 2048ε5, λ2 = 2048ε5 − 384ε4,

λ1 = −2048ε5 − 128ε4, λ0 = 640ε5.

Obviously, α11β11∆1 6= 0. Hence, we get the following quartic equation:

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0.(8)

Let f(a) = (2− 12ε)a4 + 16εa3 + (16ε − 3)a2 − (16ε + 1)a + 5ε. Since 0 < ε < 1
12 , it is

easy to check that f(0) = 5ε > 0, f(1) = 9ε − 2 < 0, f(2) = 18− 27ε > 0. This means
that the quartic equation has at least two positive roots. On the other hand, due to
Descartes’s theorem, the number of positive roots is less or equal to, the number of sign
differences between consecutive nonzero coefficients 2−12ε, 16ε, 16ε−3, −(16ε+1), 5ε
of the quartic equation, which is, two. Therefore, the quartic equation has exactly two
positive roots in which one of them belongs to (0, 1) and another one belongs to (1, 2).
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Hence, for any 0 < ε < 1
12 , there exists a unique positive root a0 of the quartic equation

which belongs to the interval (0, 1). Since f(0) = 5ε > 0, f
(

1
2

)

= 18ε−9
8 < 0, one has

that a0 ∈ (0, 1
2 ). Consequently, for any 0 < ε < 1

12 , the quadratic stochastic operator

Vε : Ω2 → Ω2 given by (8) has a unique fixed point
(

1+2a0(1−a0)
2(1+a0)

, a0,
1−2a0

2(1+a0)

)T

∈ Ω2

where a0 is a unique root in the interval (0, 1
2 ) of the quartic equation (8).

Example 2.5. We define a positive quadratic stochastic operator Rε : Ω2 → Ω2 for any
0 < ε < 1

1000 as

Rε :











(Rε(x))1 = (0.9− ε)x2
1 + εx2

2 + 0.1x2
3 + 2(1− 2ε)x1x2 + 2εx1x3 + 2εx2x3

(Rε(x))2 = 0.1x2
1 + (0.9− ε)x2

2 + εx2
3 + 2εx1x2 + 2εx1x3 + 2(1− 2ε)x2x3

(Rε(x))3 = εx2
1 + 0.1x2

2 + (0.9− ε)x2
3 + 2εx1x2 + 2(1− 2ε)x1x3 + 2εx2x3

.

We would like to show that Fix(Rε) =
{

c =
(

1
3 ,

1
3 ,

1
3

)T
}

. Let us calculate the following

constants for Rε:

α11 = 1− 3ε, α22 = 0.1− ε, α12 = 1.1− 4ε, α1 = ε− 0.1, α2 = ε− 0.1, α0 = 0.1,

β11 = 0.1− ε, β22 = −1.1 + 4ε, β12 = −1 + 3ε, β1 = 0, β2 = 1− 3ε, β0 = ε,

γ2 = −13ε2 + 7.5ε− 1.11, γ1 = 20ε2 − 9.4ε+ 1.02, γ0 = −3ε2 + 1.1ε− 0.01,

δ1 = 13ε2 − 7.5ε+ 1.11, δ0 = −2ε2 + 1.4ε− 0.12,

∆1 = −1040ε6 + 1369.6ε5 − 715.84ε4 + 176.616ε3 − 16.2708ε2 − 0.94212ε+ 0.20646,

λ4 = 1521ε5 − 2262ε4 + 1350.99ε3 − 405.18ε2 + 61.0389ε− 3.6963,

λ3 = −2028ε5 + 3016ε4 − 1801.32ε3 + 540.24ε2 − 81.3852ε+ 4.9284,

λ2 = 390ε5 − 846.4ε4 + 609.42ε3 − 196.548ε2 + 28.9314ε− 1.5318,

λ1 = 84ε5 + 3.2ε4 − 54.68ε3 + 23.544ε2 − 3.2268ε+ 0.0996,

λ0 = −15ε5 + 9.2ε4 + 0.55ε3 − 1.016ε2 + 0.1217ε+ 0.0001.

Obviously, α11β11∆1 6= 0 for any 0 < ε < 1
1000 . Hence, we get the following quartic

equation:

(9) λ4a
4 + λ3a

3 + λ2a
2 + λ1a+ λ0 = 0.

Let g(a) = λ4a
4 + λ3a

3 + λ2a
2 + λ1a+ λ0. It is easy to check that

g(−1) < 0, g(0) > 0, g(0.2) < 0, g(0.5) > 0, g(1) < 0, ∀ 0 < ε <
1

1000
.

This means that the quartic equation given by (9) has three positive roots a1 < a2 < a3
in which a1 ∈ (0, 0.2), a2 ∈ (0.2, 0.5), and a3 ∈ (0.5, 1). Moreover, it is easy to check that
a2 = 1

3 is a root of the quartic equation (9) which belongs to (0.2, 0.5). Among these

three roots, only for a2 = 1
3 we have that

0 < A =

(

−1.11 + 7.5ε− 13ε2
)

a2 +
(

1.02− 9.4ε+ 20ε2
)

a− 0.01 + 1.1ε− 3ε2

2 (1.11− 7.5ε+ 13ε2) a− 2ε2 + 1.4ε− 0.12
< 1,

0 < B =

(

1.11− 7.5ε+ 13ε2
)

a2 +
(

0.90− 8ε+ 18ε2
)

a− 3ε2 + 1.1ε− 0.01

2 (1.11− 7.5ε+ 13ε2) a− 2ε2 + 1.4ε− 0.12
< 1.

Hence, in this case, we obtain that A0 = 1 − B0 = 1
3 and Fix(Rε) =

{

c =
(

1
3 ,

1
3 ,

1
3

)T
}

for any 0 < ε < 1
1000 .

We now provide some examples for positive quadratic stochastic operators which may
have one or three fixed points regardless of the condition α11β11∆1 = 0.
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Example 2.6. We pick up three points X = (0.1, 0.3, 0.6)T ,Y = (0.2, 0.3, 0.5)T and Z =
(0.7, 0.2, 0.1)T from the simplex Ω2. We define a positive quadratic stochastic operator
Q : Ω2 → Ω2 as follows:

Q :







(Q(x))
1
= 376708

440200
x
2

1 +
2952

440200
x
2

2 +
292

440200
x
2

3 +
17

10
x1x2 +

3

5
x1x3 +

1

50
x2x3,

(Q(x))
2
= 300

2201
x
2

1 +
3

5
x
2

2 +
2

5
x
2

3 +
1467902

6096770
x1x2 +

2942114

3048385
x1x3 +

240522

1219354
x2x3,

(Q(x))
3
= 873

110050
x
2

1 +
21641

55025
x
2

2 +
65957

110050
x
2

3 +
722258

12193540
x1x2 +

530250

1219354
x1x3 +

108689946

60967700
x2x3.

A straightforward calculation shows that X,Y,Z are fixed points of the positive quadratic
stochastic operator Q : Ω2 → Ω2 for which ∆1 = 0. Therefore, we obtain that |Fix(Q)| =
3 in which α11β11∆1 = 0.

Example 2.7. We define a positive quadratic stochastic operator Q : Ω2 → Ω2 as
follows:

Q :











(Q(x))1 = 0.15x2
1 + 0.17x2

2 + 0.17x2
3 + 0.32x1x2 + 0.32x1x3 + 0.30x2x3,

(Q(x))2 = 0.68x2
1 + 0.67x2

2 + 0.66x2
3 + 1.32x1x2 + 1.34x1x3 + 1.32x2x3,

(Q(x))3 = 0.17x2
1 + 0.16x2

2 + 0.17x2
3 + 0.36x1x2 + 0.34x1x3 + 0.38x2x3.

A straightforward calculation shows that the positive quadratic stochastic operator Q :
Ω2 → Ω2 is a contraction for which α11 = β11 = 0. Therefore, we obtain that |Fix(Q)| =
1 in which α11β11∆1 = 0.

3. Positivity 6⇒ Uniqueness of fixed points 6⇒ Strong ergodicity 6⇒
Contraction

Let Q : Ω2 → Ω2 be a positive quadratic stochastic operator defined as follows:

Q(x) =





3
∑

i,j=1

pijxixj ,

3
∑

i,j=1

qijxixj ,

3
∑

i,j=1

rijxixj





T

,

where pij , qij , rij > 0 and pij + qij + rij = 1 with pij = pji, qij = qji, and rij = rji, 1 ≤
i, j ≤ 3.

Proposition 3.1 ([18, 25]). If P > 0 then one has that |Fix(Q) ∩ Ω2| = 1 or 3.

3.1. Positivity 6⇒ The uniqueness of fixed points. Now, we are aiming to provide
an example for positive quadratic stochastic operators having three fixed points in the
simplex.

Example 3.2 ([24, 25]). We pick up three points A = (0.1, 0.2, 0.7)T ,B = (0.4, 0.3, 0.3)T

and C = (0.59, 0.31, 0.1)T from the simplex Ω2. We define a positive quadratic stochastic
operator Q0 : Ω2 → Ω2 as follows:

Q0 :







(Q0(x))1 = 232873

319300
x
2

1 +
4717

10300
x
2

2 +
207

63860
x
2

3 +
7

5
x1x2 +

3

5
x1x3 +

1

50
x2x3,

(Q0(x))2 = 27

100
x
2

1 +
1

2
x
2

2 +
3

20
x
2

3 +
470171

814300
x1x2 +

378421

407150
x1x3 +

158157

814300
x2x3,

(Q0(x))3 = 54

79825
x
2

1 +
433

10300
x
2

2 +
27037

31930
x
2

3 +
18409

814300
x1x2 +

191589

407150
x1x3 +

1454157

814300
x2x3.

A straightforward calculation shows that A,B,C are fixed points of the positive quadratic
stochastic operator Q0 : Ω2 → Ω2. We can define another positive quadratic stochastic
operator Q1 : Ω2 → Ω2 as follows:

Q1 :







(Q1(x))1=
17322871

22351000
x
2

1
+ 990257

2163000
x
2

2
+ 1559

13410600
x
2

3
+ 13

10
x1x2 + 16

25
x1x3 + 11

500
x2x3,

(Q1(x))2=
224

1000
x
2

1
+ 488

1000
x
2

2
+ 125

1000
x
2

3
+ 703327

1017875
x1x2 + 19461451

24429000
x1x3 + 8271787

24429000
x2x3,

(Q1(x))3=
4301

4470200
x
2

1
+ 117199

2163000
x
2

2
+ 2933179

3352650
x
2

3
+ 18371

2035750
x1x2 + 13761989

24429000
x1x3 + 1601951

977160
x2x3.

A straightforward calculation shows that A,B,C are also fixed points of the positive
quadratic stochastic operator Q1 : Ω2 → Ω2. Now, we can define a family of positive
quadratic stochastic operators Qε : Ω2 → Ω2 as Qε(x) = (1− ε)Q0(x) + εQ1(x) for any
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x ∈ Ω2 and 0 ≤ ε ≤ 1. It is clear that A,B,C are also fixed points of the family of
positive quadratic stochastic operators Qε : Ω2 → Ω2.

Remark 3.3. It is easy to check in Example 3.2 that α11β11∆1 6= 0. This shows that
one can have |Fix(Q)| = 3 in the case α11β11∆1 6= 0.

3.2. Uniqueness of fixed points 6⇒ Strong ergodicity. Now, we shall provide ex-
amples for positive quadratic stochastic operators having a unique fixed point in which
they are not strongly ergodic.

Example 3.4. We again consider a positive quadratic stochastic operator Rε : Ω2 → Ω2,

Rε :











(Rε(x))1 = (0.9− ε)x2
1 + εx2

2 + 0.1x2
3 + 2(1− 2ε)x1x2 + 2εx1x3 + 2εx2x3,

(Rε(x))2 = 0.1x2
1 + (0.9− ε)x2

2 + εx2
3 + 2εx1x2 + 2εx1x3 + 2(1− 2ε)x2x3,

(Rε(x))3 = εx2
1 + 0.1x2

2 + (0.9− ε)x2
3 + 2εx1x2 + 2(1− 2ε)x1x3 + 2εx2x3.

We have already showed that Fix(Rε) =
{

c =
(

1
3 ,

1
3 ,

1
3

)T
}

for any 0 < ε < 1
1000 . Let us

study the local behavior of the unique fixed point c =
(

1
3 ,

1
3 ,

1
3

)T
of the quadratic stochastic

operator Rε. To do so, we have to calculate absolute values of eigenvalues of the Jacobian

matrix J(Rε) at the fixed point c =
(

1
3 ,

1
3 ,

1
3

)T
under the constrain x1+x2+x3 = 1. The

eigenvalues are roots of the following quadratic equation (see [18], pp. 292–293)
∣

∣

∣

∣

∣

∣

∣

∂(Rε(x))1
∂x1

− λ
∂(Rε(x))1

∂x2

∂(Rε(x))1
∂x3

∂(Rε(x))2
∂x1

∂(Rε(x))2
∂x2

− λ
∂(Rε(x))2

∂x3

1 1 1

∣

∣

∣

∣

∣

∣

∣

x=c

= 0 ,

which is

λ2 + (4ε− 1.8)λ+
16

3
ε2 − 4.8ε+ 1.08 = 0.

The last quadratic equation has two complex roots in which

|λ1| = |λ2| =

√

1.08− 4.8ε+
16

3
ε2 > 1, ∀ 0 < ε <

1

1000
.

Consequently, the fixed point c =
(

1
3 ,

1
3 ,

1
3

)T
is repelling. This means that the trajectory

of the quadratic stochastic operator Rε starting from any initial point does not converge

to the unique fixed point c =
(

1
3 ,

1
3 ,

1
3

)T
, i.e., it is not strongly ergodic.

3.3. Strong ergodicity 6⇒ Contraction. Now, we shall provide examples for the non-
contraction positive quadratic stochastic operators which are strongly ergodic.

Example 3.5 ([23]). Let a1 = (0.1, 0.3, 0.6)T , a2 = (0.7, 0.1, 0.2)T , a3 = (0.2, 0.6, 0.2)T .
Let us consider the following positive quadratic stochastic operator Qa1a2a3

: Ω2 → Ω2,

Qa1a2a3
(x) = a1x

2
1 + a2x

2
2 + a3x

2
3 + 2a3x1x2 + 2a2x1x3 + 2a1x2x3.

One can see that

P1 =
(

a1 a3 a2
)

, P2 =
(

a3 a2 a1
)

, P3 =
(

a2 a1 a3
)

are doubly stochastic matrices. Therefore, Qa1a2a3
: Ω2 → Ω2 is strongly ergodic, i.e.,

lim
k→∞

Q
(k)
a1a2a3

(x) = c for any x ∈ Ω2 where c = ( 13 ,
1
3 ,

1
3 )

T . However, Qa1a2a3
: Ω2 →

Ω2 is not contraction. Indeed, if x0 = (0.85, 0.1, 0.05)T and y0 = (0.9, 0.1, 0)T then
‖Qa1a2a3

(x0)−Qa1a2a3
(y0)‖1 = 0.1005 > 0.1 = ‖x0 − y0‖1.
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Remark 3.6. It is well-known that if P > 0 then the corresponding positive linear
stochastic operator L : Ωn → Ωn, L(x) = Px is strongly ergodic if and only if it is a
contraction. Example 3.5 shows that unlike the linear case, the class of positive strongly
ergodic quadratic stochastic operators does not coincide with the class of contraction
quadratic stochastic operators. This is an unexpected situation. However, there are a
lot of non-negative linear (quadratic) stochastic operators which are strongly ergodic but
not contractions. For example, let us consider the following linear stochastic operator

L : Ω3 → Ω3, L(x) = Px, where P =





1 1
2 0

0 1
2

1
2

0 0 1
2



 is a column-stochastic matrix. It is

clear Fix(L) = {e1}. Since P
n =





1 1− 1
2n 1− an − 1

2n

0 1
2n an

0 0 1
2n



 where an+1 = 1
2 (

1
2n + an)

with a1 = 1
2 , the linear stochastic operator L : Ω3 → Ω3 is strongly ergodic. However, it

is not a contraction because of ‖L(e1)− L(e3)‖1 = ‖e1 − e3‖1 = 2. In this sense, it was
naturally expected to have a lot of non-positive quadratic stochastic operators which are
strongly ergodic but not contractions (for example, see [12, 19]).
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