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ON NEW POINTS OF THE DISCRETE SPECTRUM UNDER

SINGULAR PERTURBATIONS

H. V. TUHAI

Dedicated to Professor V. D. Koshmanenko on his 75 birthday

Abstract. We study the emergence problem of new points in the discrete spectrum
under singular perturbations of a positive operator. We start with the sequential
approach to construction of additional eigenvalues for perturbed operators, which
was produced by V. Koshmanenko on the base of rigged Hilbert spaces methods.

Two new observations are established. We show that one can construct a point of
the discrete spectrum of any finite multiplicity in a single step. And that the method
of rigged Hilbert spaces admits an application to the modified construction of a new
point of the discrete spectrum under super-singular perturbations.

1. Introduction

The problem of new points of the discrete spectrum under perturbations of self-adjoint
operator has a long history and important applications. In particular, this problem
is actual under singular perturbations (see, for example, [1, 7, 11, 12, 18, 23, 24]). The
original approach to construction of any number of additional points of the discrete
spectrum for singular perturbed operator was developed by V. Koshmanenko in a series
of publications [2–10,16,21,22,25]. Let us shortly recall the main ideas of this approach.

Let A ≥ 1 denote a self-adjoint operator in a Hilbert space H with norm ‖ · ‖ and
inner product (·, ·). With A the so-called A–scale of Hilbert spaces is associated,

(1.1) H−k ⊐ H0 ≡ H ⊐ Hk ≡ Hk(A), k > 0,

where Hk =DomAk/2 with respect to the positive norm

‖ ϕ ‖k:=‖ Ak/2f ‖, ϕ ∈ DomAk/2

and H−k is the completion of H in the negative norm

‖ h ‖−k:=‖ A−k/2h ‖, h ∈ H,
(for more details see [2, 13, 14, 16]). The notation ⊐ in (1.1) stands for a dense and
continuous embedding.

In a general approach, the singularly perturbed operator Ã is defined as a self-adjoint
operator uniquely associated with a new rigged Hilbert space H̃− ⊐ H0 ⊐ H̃+ con-

structed from a given singular perturbation of A. In [15] some parametrization of Ã
is produced in terms of singular quadratic forms γS and associated bounded mappings
S : Hk → H−k with additional properties.

In accordance with the theory of rigged spaces (see [13, 14]) the operator A can be
reconstructed from any pair of spaces H ⊐ Hk with k > 0 (or a conjugate couple H−k ⊐

H). Since A is positive, one can write A = k
√
Dk, where Dk denotes the restriction of the
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unitary mappingD−k,k : Hk → H−k to the set Dk ≡ Hk/2 = {ϕ ∈ Hk |D−k,kϕ ∈ H} (for
details see [2,15]). Thus, A is uniquely defined byDk with each fixed k > 0. Therefore one
can use the same connection between the singular (or super-singular) positive perturbed

operators Ã and the corresponding associated scale of Hilbert spaces,

(1.2) H̃−k ⊐ H0 ≡ H ⊐ H̃k, H̃k = DomÃk/2, k > 0.

In fact, the developed in [2,3,5,16,21,22] the rigged Hilbert spaces method generalizes

the well-known form-sum method, where Ã is defined as an operator associated with the
triplet H̃−1 ⊐ H ⊐ H̃1. Indeed, for consideration of singular perturbations of highest

orders one has at first to build one of the spaces H̃k or H̃−k, k ≥ 2, take an operator

of type D̃k (see above), and finally to construct its restriction to H. We recall that

according to [24], Ã is a singular perturbation of A in a wide sense, if there exists

k ≥ 1 such that the operators Ãk, Ak are coincide on a set Mk ⊂ H̃k

⋂Hk which is

dense in H. Clearly that in such a case the inner products in H̃k,Hk coincide on this set,
(ϕ,ψ)k = (ϕ,ψ)∼k , ϕ, ψ ∈ Mk. In particular, if k > 2, then the set Mk possibly is dense

not only in H but in H2 =DomA too. Therefore the symmetric operator Ȧ := A|Mk

is essentially self-adjoint and it is impossible to use the standard self-adjoint extensions
method. However, one can work in terms of differences between the singular and super-
singular perturbations, i.e., between some powers of Ã and A in terms of the operators
S acting from Hk to H−k, k ≥ 2. In this way the problem of new eigenvalues (points of
the discrete spectrum) is viewed as admissible.

The purpose of this article is to demonstrate the rigged spaces method in the problem
of emergence of the multiplicative point spectrum and, in addition, to apply it to some
special case of super-singular perturbations.

2. The rigged Hilbert spaces method

Here we repeat in more details the rigged Hilbert spaces method presented in [24] for
cases k = 1, 2.

Consider a part of the A-scale (1.1)

(2.1) H−2 ⊐ H−1 ⊐ H ⊐ H1 ⊐ H2 ≡ H2(A),

where H2 =DomA with the norm ‖ϕ‖2 := ‖Aϕ‖, H1 = DomA1/2 with the norm
‖ϕ‖1 := ‖A1/2ϕ‖, and H−2, H−1 are conjugated spaces. We recall that there exists a
one to one correspondence between operators A = A∗ ≥ 1 in H and the rigged Hilbert
spaces of the form (2.1) or the whole scale of Hilbert spaces (1.1) (see Theorem 2.1 in [2]).

By the construction, the linear functional lω(ϕ) := 〈ϕ, ω〉1,−1 is defined for each ω ∈
H−1 and is continuous onH1 (〈·, ·〉k,−k, k > 0 stands for the dual inner product between
Hk and H−k ). Due to the Riesz theorem we have the equality: lω(ϕ) = (ϕ,ψ)1, where
ψ = ψ(ω) ∈ H1, ‖ψ‖1 = ‖ω‖−1. Let D−1,1 : H1 ∋ ψ → ω ∈ H−1 denote the canonical
unitary isomorphism (see [2, 13,14]). And let

D1 := D−1,1|D2, D1 := {ϕ ∈ H1|D−1,1ϕ ∈ H}.
Then it is not difficult to understand that A = D1. And D1 = H2 in the norm ‖ϕ‖2 =
‖Aϕ‖.

Similarity, repeating this way with k = 2 we find that A2 = D2, and therefore A =√
D2. Thus, in general case we have A = (Dk)

1/k, k ≥ 1.
If we change the inner product in one of the spaces Hk, k = 1, 2 (or H−k) , i.e., to

replace (·, ·)k with (·, ·)∼k or ((·, ·)−k on (·, ·)∼
−k), then using the starting couple H ⊐ H̃k

(or H̃−k ⊐ H) one can construct a new scale of spaces of the form (1.2)

(2.2) H̃−2 ⊐ H̃−1 ⊐ H ⊐ H̃1 ⊐ H̃2.
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By definition the associated operator Ã is a singular perturbation with respect to A in a
wide sense.

3. The singular perturbations with the multiple point spectrum

We are able to formulate our main result on the multiple point spectrum as follows.

Theorem 3.1. Let A be a positive self-adjoint operator in Hilbert space H, any real
E ∈ R, and orthogonal vectors ψi ∈ H+1, i = 1, ..., n ≥ 2 which satisfy the condition:

span{ψi} ∩ D(A) = 0. Let Ã = An be a rank n singular perturbation of the operator A,
i.e., An solves the multiple eigenvalues problem (for its existence see [4, 9, 16,21])

(3.1) Anψi = Eψi, i = 1, . . . , n.

We assert that An admits a one step construction as a generalized operator sum,

An = A+̃Tn,

where

(3.2) Tn = −
n∑

i,j=1

β
(n)
ij 〈·, (A− E)ψi〉(A− E)ψj , A ≡ A0 = Acl : H+1 → H−1.

Here

(3.3) β
(n)
ij = (−1)i+j |M ji

n |
|Mn|

,

where

(3.4) Mn = (cij)
n
i,j=1 , cij = 〈ψi, (A− E)ψj〉, i, j = 1, . . . , n,

and |M i,j
n | denotes the minor of the matrix Mn which is produced by omitting the ith row

and the jth column.

Proof. It is known [4, 9, 16, 21] that one can construct the operator Tn consistently in
n steps using the rank one singular perturbations αi〈·, ωi〉ωi at each step, where ωi =
(Ai−1 − E)ψi, αi = −1/〈ψi, ωi〉, i = 1, . . . , n. Here Ai = Ai−1 + αi〈·, ωi〉ωi = A0 + Ti :
H+1 → H−1, with A ≡ A0, T0 = 0. Thus

(3.5) Tn =

n∑

i=1

αi〈·, ωi〉ωi.

We will prove (3.2) using the method of mathematical induction. So at the the first step
we have

A1 = A+̃T1

with

T1 = α1〈·, ω1〉ω1, where ω1 = (A− E)ψ1, α1 = − 1

〈ψ1, ω1〉
= β

(1)
11 ,

where we introduced the notations β
(1)
11 := −1/c11, c11 := 〈ψ1, ω1〉. At the second step

we obtain

(3.6) A2 = A+̃T2,

where

(3.7) T2 = α1〈·, ω1〉ω1 + α2〈·, ω2〉ω2

with

(3.8) ω2 = (A1 − E)ψ2 = (A− E)ψ2 + α1〈ψ2, ω1〉ω1 = (A− E)ψ2 −
c21
c11

ω1,
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where c21 = 〈ψ2, ω1〉 and by the construction,

(3.9) α−1
2 = −〈ψ2, ω2〉.

Using (3.8), (3.4), we get

(3.10)

α−1
2 =− 〈ψ2, (A− E)ψ2〉+

1

〈ψ1, (A− E)ψ1〉
|〈ψ2, (A− E)ψ1〉|2α−1

2

=−
(
c22 −

c12c21

c11

)
= −|M2|

|M1|
= β

(2)
22 .

Substituting (3.8) and (3.10) in (3.7) we have

T2 =− 1

c11
〈·, (A− E)ψ1〉

+
c11
|M2|

〈·, (A− E)ψ2 −
c21
c11

(A− E)ψ1〉
(
(A− E)ψ2 −

c21
c11

(A− E)ψ1

)
.

After simple transformations we obtain

T2 =− 1

c11

(
1 +

c12c21
|M2|

)
〈·, (A− E)ψ1〉(A− E)ψ1

+
c21
|M2|

〈·, (A− E)ψ2〉(A− E)ψ1

+
c12
|M2|

〈·, (A− E)ψ1〉〉(A− E)ψ2 −
c22
|M2|

〈·, (A− E)ψ2〉(A− E)ψ2.

Thus

T2 =
2∑

i,j=1

β
(2)
ij 〈·, (A− E)ψi〉(A− E)ψj ,

where

β
(2)
ij = (−1)i+j |M ji

2 |
|M2|

, i, j = 1, 2.

Assume that (3.2) is true for k = n− 1,

(3.11) Tn−1 = −
n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
〈·, (A− E)ψi〉(A− E)ψj .

Let us prove a similar formula for k = n. By construction,

(3.12) Tn = Tn−1 + αn〈·, ωn〉ωn,

where

(3.13) ωn = (An−1 − E)ψn = (A− E)ψn + Tn−1ψn, α−1
n = −〈ψn, ωn〉.

We will find αn using (3.11),

(3.14)

α−1
n = −〈ψn, (A− E)ψn〉+ 〈ψn, Tn−1ψn〉

= −cnn +

n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
〈ψn, (A− E)ψi〉〈ψn, (A− E)ψj〉

= −cnn +

n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
cincnj

= − 1

|Mn−1|


cnn|Mn−1| −

n−1∑

i,j=1

(−1)i+j |M ji
n−1|cincnj


 = − |Mn|

|Mn−1|
.
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Substituting (3.13) and (3.14) in (3.12) we obtain

(3.15) Tn = Tn−1 −
|Mn−1|
|Mn|

〈·, (A− E)ψn + Tn−1ψn〉 ((A− E)ψn + Tn−1ψn) .

Consider the expression Tn−1ψn

(3.16)

Tn−1ψn =

n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
〈ψn, (A− E)ψi〉(A− E)ψj

=
1

|Mn−1|

n−1∑

j=1

(−1)j+n−1
n−1∑

i=1

(−1)i+n−1|M ji
n−1|(A− E)ψj

=
1

|Mn−1|

n−1∑

j=1

(−1)j+n−1|M jn
n |(A− E)ψj .

Now (3.15) has the form

Tn = Tn−1 −
|Mn−1|
|Mn|

〈·, (A− E)ψn〉(A− E)ψn − |Mn−1|
|Mn|

〈·, (A− E)ψn〉Tn−1ψn

− |Mn−1|
|Mn|

〈·, Tn−1ψn〉(A− E)ψn − |Mn−1|
|Mn|

〈·, Tn−1ψn〉Tn−1ψn.

Using (3.11), (3.4) and (3.16) we get

Tn = −|Mn−1|
|Mn|

〈·, (A− E)ψn〉(A− E)ψn

−
n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
〈·, (A− E)ψi〉(A− E)ψj

+
1

|Mn|

n−1∑

j=1

(−1)j+n|M jn
n |〈·, (A− E)ψn〉(A− E)ψj

+
1

|Mn|

n−1∑

i=1

(−1)i+n|Mni
n |〈·, (A− E)ψi〉(A− E)ψn

− 1

|Mn||Mn−1|

n−1∑

i=1

(−1)i+n|Mni
n |〈·, (A− E)ψi〉

n−1∑

j=1

(−1)j+n|M jn
n |(A− E)ψj .

Consider the second and the last terms,

−
n−1∑

i,j=1

(−1)i+j |M
ji
n−1|

|Mn−1|
〈·, (A− E)ψi〉(A− E)ψj

− 1

|Mn||Mn−1|

n−1∑

i=1

(−1)i+n|Mni
n |〈·, (A− E)ψi〉

n−1∑

j=1

(−1)j+n|M jn
n |(A− E)ψj

= − 1

|Mn||Mn−1|

n−1∑

i,j=1

(−1)i+j
(
|Mn||M ji

n−1|+ |Mni
n ||M jn

n |
)

× 〈·, (A− E)ψi〉(A− E)ψj

= − 1

|Mn|

n−1∑

i,j=1

(−1)i+j |M ji
n |〈·, (A− E)ψi〉(A− E)ψj ,
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where we used the Sylvester’s determinant identity [17]

|Mn||M ji
n−1| = |Mnn

n ||M ji
n | − |Mni

n ||M jn
n |, |Mnn

n | = |Mn−1|.
Finally, by (3.3) we obtain

Tn = −
n∑

i,j=1

β
(n)
ij 〈·, (A− E)ψi〉(A− E)ψj ,

which proves the theorem. �

4. The case of a rank-one super-singular perturbation

Here we recall, following [15,24], a constructive way for consideration of super singular

perturbed operators Ã from the class Pn
k (A) with k > 2. More precisely we will explain

this approach for the case of rank-one super-singular perturbations.
We start with a perturbation of A in H which is given by the quadratic form

γω[ϕ] = 〈ϕ, ω〉k,−k〈ω, ϕ〉−k,k, ω ∈ H−k\H k

2

, k > 2.

The associated with γω operator acts in the rigged space as follows:

Tω : Hk ∋ ϕ→ 〈ϕ, ω〉k,−kω ∈ H−k.

It belongs to the S−k-class since the set

KerSω = Kerγω = {ϕ ∈ Hk|〈ϕ, ω〉k,−k = 0}
is dense in H

−
k

2

due to ω 6∈ H
−

k

2

. So, for sufficiently large k the set KerSω is dense

in H2 =DomA and one can not apply any usual way for construction of the perturbed

operator Ã. Another way is to consider γω or Sω as perturbations for A
k

2 : Hk → H.

In particular, one can define Ã by using the inverse operator (A−
k

2 + Bω)
2

k , where Bω

acts in H as the rank one operator

Bω = βω(·, η0)η0, η0 := A−
k

2ω,

with an appropriate constant βω. That is, we have to take βω = 1 − cω, where the
constant cω should satisfy the inequality ‖η0‖2−1 ≤ cω < 1, which guaranties Ã ≥ 1
(see [2]).

If we need to obtain a new point of the discrete spectrum then we take ω = cω(A
k

2ψ−
λψ) with some ψ ∈ H\H k

2

, ‖ψ‖ = 1, λ ∈ R. Then, according to the above, the Krein’s

resolvent formula has the form

(Ã
k

2 − z)−1 = (A
k

2 − z)−1 +Bω(z), Bω(z) = βω,z(·, ηz̄)ηz
with

ηz = (A
k

2 − λ)(A
k

2 − z)−1ψ, βω,z =
1

(λ− z)(ψ, ηz̄)
.

By construction, the operator Ã
k

2 solves the eigenvalue problem: Ã
k

2ψ = λψ. Therefore
the operator Ã solves the eigenvalue problem too, Ãψ = λ

2

kψ.

5. On eigenvalue problem for H−4 perturbations

In this section we are interesting in new eigenvalues and eigenvectors for a rank-one
super-singular perturbed operators [15, 24]. We will again use the method developed in
[21,24]. Especially we will show that one can construct a rank-one singular perturbations
of a strictly positive self-adjoint operator A and its square power A2 in such a way
that both of them solve the eigenvalue problem with the same eigenvector but different

eigenvalues: λ for Ã and λ2 for Ã2.
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Let A > c > 1 be a positive unbounded self-adjoint operator with domA ≡ D(A) in a
Hilbert space H.

Let us recall that in accordance with [24] a self-adjoint operator Ã 6= A is said to be

(pure) singularly perturbed with respect to A (write Ã ∈ Ps(A)), if the set

D =
{
ϕ ∈ D(A) ∩ D(Ã) : Aϕ = Ãϕ

}

is dense in H.
Let us introduce from A an extended rigged space [13], which is a part of the A-scale

of Hilbert spaces,

(5.1) H−4 ⊃ H−2 ⊃ H ⊃ H+2 ⊃ H+4,

where H+2 = D(A), H+4 = D(A2) with graph-norms A and A2, respectively.
By definition (see. [15]) each rank-oneH−4-super-singular perturbation of the operator

A is given by a vector ω ∈ H−4 \H−2. In terminology [15], such kind of the perturbation
is super-singular since the set Φ0 = {ϕ ∈ H+4 : (ω, ϕ)−4,4 = 0} is a domain of essential
self-adjoint for A. However for A2 this vector ω produces a rank-one H−2-singular
perturbation, which can be considered using the well-known methods. Namely, using the
Krein resolvent formula, the corresponding constructions developed in [2, 4, 24, 26]) we

can define a singularly perturbed operator Ã2,

(5.2) (Ã2)−1 = (A2)−1 + b0 (·, η) η,
where η = (A2)−1ω ∈ H, b0 ∈ R is a fixed positive number.

According to [4, 16, 21, 24] the operator Ã2 solves the eigenvalue problem, Ã2ϕ = λϕ
with λ > 0 and ϕ, which are defined by ω and b0 which satisfy the equation

b0 (ϕ, η) η =
(
λ−1 − (A2)−1

)
ϕ
(
A2 − λ

)
λ−1(A2)−1ϕ,

where
λb0 (ϕ, η)A

2(A2 − λ)−1η = ϕ,

and
λb0 (ϕ, η)

(
A2(A2 − λ)−1η, η

)
= (ϕ, η) .

In particular, due to (5.2), it follows that

(5.3)
(
Ã2
)
−1

ϕ = (A2)−1ϕ+ b0 (ϕ, η) η =
1

λ
ϕ.

Thus, one can solve the inverse problem putting ϕ = A2(A2 − λ)−1η, and η =
(A2 − λ)−1A−2ϕ with

b0 =
1

λ (A2(A2 − λ)−1η, η)
.

Now we will construct an operator Ã associated with Ã2, which solves the eigenvalue

problem Ãϕ =
√
λϕ and can be considered as a rank-one H−2-singular perturbation for

A.
Put

µ = (A−
√
λ)A−1ϕ, p0 =

1
√
λ
(
A(A−

√
λ)−1µ, µ

)

and define
Ã−1 = A−1 + p0 (·, µ)µ.

Using η and λ we rewrite the last formula as

(5.4) Ã−1 = A−1 +

(
·, A(A+

√
λ)−1η

)

√
λ
(
A2(A2 − λ)−1)−1η,A(A+

√
λ)−1η

)A(A+
√
λ)−1η.
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Now it is easy to check that our operator solves the above mentioned eigenvalue problem.
Thus the following statement is true.

Theorem 5.1. Let in a separable Hilbert space H for a positive self-adjoint operator A =
A∗ > c > 1, a rank-one super-singular perturbation in a form of vector ω ∈ H−4 \ H−2

be given. And let the operator Ã2 be singularly perturbed with respect to A2. Assume

it is defined by the Krein formula on ω and some real b0. Assume also that Ã2 solves

the eigenvalue problem, Ã2ϕ = λϕ. Then the associated operator Ã ∈ P1
s (A) defined by

formula (5.4) solves the eigenvalue problem, Ãϕ =
√
λϕ.

We note that under the above construction,
√
Ã2ϕ = Ãϕ, however, in general,

√
Ã2 6=

Ã.

Example. Let A is the multiplication by x in L2 = L2([1,∞), dx). Then the part of
scale (5.1) has the form

L2([1,∞), x−4dx) ⊃ L2([1,∞), x−2dx) ⊃ L2([1,∞), dx)

⊃ L2([1,∞), x2dx) ⊃ L2([1,∞), x4dx).

Take ω = x, λ = 0, 25. Then, due to A2f(x) = x2f(x) we have

Ã2
−1

= x−2 + b0
(
·, x−1

)
x−1,

where

b0 = 4
(
x2
(
x2 − 0, 25

)
−1
x−1, x−1

)
−1

.

Now

ϕ = x2
(
x2 − 0, 25

)
−1
x−1 =

4x

4x2 − 1
.

It is easy to calculate that

∞∫

1

x2

x2 (x2 − 0, 25)
dx = 2

∞∫

1

(
1

2x− 1
− 1

2x+ 1

)
dx = ln

2x− 1

2x+ 1

∣∣∣∣
∞

1

= ln 3.

Therefore b0 = 4/ ln 3. Let us denote

µ = (x− 0, 5)x−1ϕ = x (x+ 0, 5)
−1
x−1 =

2

2x+ 1

and

p0 =
1√

λ(A(A−
√
λ)−1µ, µ)

.

Since
∞∫

1

4xdx

(2x− 1)(2x+ 1)2
=

(
1

4
ln

∣∣∣∣
2x− 1

2x+ 1

∣∣∣∣−
1

2

1

2x+ 1

)∣∣∣∣
∞

1

=
1

6
+

1

4
ln 3,

we find that

Ã−1 = A−1 +
12

2 + 3 ln 3

(
·, 2

2x+ 1

)
2

2x+ 1
.

Now it is easy to check that

Ã2ϕ = 0, 25ϕ, Ãϕ = 0, 5ϕ.
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