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ON THE NUMERICAL RANGE WITH RESPECT TO A FAMILY OF

PROJECTIONS

WAED DADA, JOACHIM KERNER, AND NAZIFE ERKURŞUN-ÖZCAN

Abstract. In this note we introduce the concept of a numerical range of a bounded

linear operator on a Hilbert space with respect to a family of projections. We give
a precise definition and elaborate on its connection to the classical numerical range
as well as to generalizations thereof such as the quadratic numerical range, block
numerical range, and product numerical range. In general, the importance of this

new notion lies within its unifying aspect.

1. Introduction

In this paper, we establish an abstract notion of a numerical range which forms a
direct generalization of the well-known (classical) numerical range of a bounded linear
operator, defined on a (separable, complex) Hilbert space, as well as of other existing
versions of a numerical range. For a given operator A, the classical numerical range is
defined as

(1.1) W (A) := {〈Ax, x〉 : x ∈ H , ‖x‖ = 1} ⊂ C .

Originally introduced for linear operators on C
n (i.e., matrices) by Toeplitz [19] and

Hausdorff [8], it was later extended to more general operators by Stone [16]. Unlike the
spectrum, the numerical range is a unitary invariant but in general not invariant under
similarity transformations and hence provides additional information about the operator
[17]. In particular, the numerical range allows to localize the spectrum and to estimate
the resolvent. More generally, one has the following:

(1) If H = C
2 then W (A) is a (possibly degenerate) ellipse.

(2) If H is finite-dimensional then W (A) is compact.

(3) σ(A) ⊆ W (A) and σp(A) ⊆ W (A). (Spectral Inclusion)
(4) W (A) ⊂ C is convex. (Toeplitz-Hausdorff Theorem)

(5) ‖(λ−A)−1‖ ≤ 1

dist(λ,W (A))
, λ /∈ W (A).

Furthermore, as shown in [4], if A is compact on an infinite-dimensional H then W (A)
is closed if 0 ∈ W (A). If, in addition, A is self-adjoint then W (A) is the convex hull of
the point spectrum of A (see also Proposition 3.4).

The great advantage of the numerical range, when compared to the spectrum, is that it
is relatively easy to compute (certainly in the case of matrices). It was for this reason why
it became a useful tool in many applications in physics [2] and different branches of pure
and applied mathematics such as control theory [15], numerical analysis [7] and operator
theory [13]. Most importantly, however, the concept of the numerical range turned
out to be much more flexible and adaptable to applications which consequently led to
various different versions of a numerical range: quadratic and block numerical range [10],
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c-numerical range [11], essential numerical range [5, 1], joint numerical range [18] and
higher numerical range [3, 12] whose motivation came from quantum error correction.

In this paper, besides the connection to the classical numerical range, we are partic-
ularly interested in the connection of the abstract notion of a numerical range to the
quadratic and block numerical range since these concepts proved particularly powerful
in localizing the spectrum of the operator and sharpening resolvent estimates [9, 10]. In
addition, we establish a connection to the so-called product numerical range which plays
an important role in quantum information theory [14, 6].

2. Preliminaries and definitions

Since we are interested in the definition of the numerical range of a linear bounded
operator A with respect to families of orthogonal projections we define, for k ∈ N,

P := {P ∈ L(H) : P orthogonal projection in H} ,(2.1)

Pk := {P ∈ P : dim(ran(P )) = k} ,(2.2)

as well as

PA := {P ∈ P : PA = AP, dim(ran(P )) < ∞} .(2.3)

Proposition 2.1. The sets P,Pk ⊂ L(H) are closed with respect to the operator norm.

Definition 2.2. For A ∈ L(H) and P ∈ P we define an operator AP on the range ran(P )
by

AP : ran(P ) → ran(P ) , x 7→ APx := PAx .

The relation between AP and A can be expressed by

APP = PAP .

The operator AP is called the compression of A to ran(P ) and A is called a dilation of
AP to H.

Remark 2.3. We have W (AP ) ⊂ W (A): For any λ ∈ W (AP ) there exists x ∈ ran(P )
with ‖x‖ = 1, Px = x and

λ = 〈APx, x〉 = 〈PAPx, x〉 = 〈APx, Px〉 = 〈Ay, y〉 ,

where y := Px. Since ‖y‖ = ‖Px‖ = ‖x‖ = 1 we conclude λ ∈ W (A) .

Due to the spectral inclusion (see 5. in the list above) Remark 2.3 implies, in particular,
that each λ ∈ σ(AP ) is contained in W (A) given that dim(ran(P )) < ∞. This motivates
the following definition.

Definition 2.4 (Numerical range with respect to a family of projections). Let A ∈ L(H)
be a bounded operator and P ⊆ P. Then

(2.4) WP(A) :=
⋃

P∈P

σ(AP )

is called the numerical range of A with respect to the family of orthogonal projections P
or P-numerical range of A for short.

Remark 2.5.
(1) WP(A) is in general not closed.
(2) WP(A) ⊂ {λ ∈ C : |λ| ≤ ‖A‖}.

(3) WP(A
∗) =

(
WP(A)

)∗
.

(4) For A ∈ L(H) self-adjoint one has WP(A) ⊆ R.
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3. Main Results

3.1. Connection to the classical numerical range, higher-rank numerical range
and the (point) spectrum. The first result establishes the connection with the clas-
sical numerical range. For the proof note that, for each P ∈ Pk and for any orthonormal
basis {fi}

k
i=1 of ran(P ), one has

(3.1) Px =
k∑

i=1

〈x, fi〉fi ∀x ∈ H .

Theorem 3.1. For A ∈ L(H) we have WP1
(A) = W (A).

Proof. Let λ ∈ WP1
(A). Then there exist P ∈ P1 and f ∈ ran(P ) with ‖f‖ = 1 such

that PAPf = λf . Therefore

(3.2) 〈Af, f〉 = 〈APf, Pf〉 = 〈PAPf, f〉 = 〈λf, f〉 = λ

and hence λ ∈ W (A).
If λ ∈ W (A) then there exists f ∈ H with ‖f‖ = 1 such that λ = 〈Af, f〉. Let P

denote the orthogonal projection onto span{f}. Then, according to (3.1),

(3.3) PAPf = PAf = 〈Af, f〉f = λf

and hence λ ∈ σ(AP ). Thus λ ∈ WP1
(A). �

Remark 3.2. Theorem 3.1 is interesting from the following point of view: In general the
spectrum forms only a “small” subset of W (A) (for example, think of a matrix A ∈ C

2

for which the spectrum consists of two points whereas W (A) is a (possibly degenerate)
ellipse). However, by considering the union of all σ(AP ) for P ∈ P1 instead, the whole
classical numerical range is obtained by “filling it up” with spectral values, see also Propo-
sition 3.4.

Remark 3.3. By Theorem 3.1, WP1
(A) is a convex set.

In order to illustrate Remark 3.2 even more, we present the following statement which
is due to [4].

Proposition 3.4. Let A ∈ L(H) be a compact, self-adjoint operator. Then one has

WP1
(A) = co{σp(A)} .

Proof. “ ⊇ ” Since co{σp(A)} ⊆ co{W (A)} = W (A)
Prop. 3.1

= WP1
(A) .

“ ⊆ ” We follow [4]: Let λ ∈ WP1
(A)\co{σp(A)} be given. Since λ ∈ WP1

(A) there
exists x ∈ ran(P ) with (w.l.o.g.) ‖x‖ = 1 such that PAPx = λx. Hence

(3.4) λ = 〈λx, x〉 = 〈PAPx, x〉 = 〈APx, Px〉 = 〈Ax, x〉 .

Employing the spectral theorem one obtains λ =
∑∞

n=1 µn|〈x, en〉|
2, {µn} being the

eigenvalues of A with associated eigenvectors {en}, and consequently we obtain the re-
lation

(3.5)

∞∑

n=1

(λ− µn)|〈x, en〉|
2 = 0 .

Without loss of generality one can assume that |〈x, en〉| 6= 0 for all n and hence we
conclude that there exist n1, n2 ∈ N such that (λ − µn1

), (λ − µn2
) have opposite sign.

However, this readily implies that λ ∈ [µn1
, µn2

] and consequently λ ∈ co{σp(A)} which
is a contradiction. �

The following statement is a direct generalization of Theorem 3.1.

Lemma 3.5. For A ∈ L(H) and the family Pk the following holds:



300 WAED DADA, JOACHIM KERNER, AND NAZIFE ERKURŞUN-ÖZCAN

(1) If dim H = k, then WPk
(A) = σ(A) .

(2) If dim H < ∞, then WPk
(A) is closed for 1 ≤ k ≤ dimH .

(3) If dim H > k, then WPk
(A) = W (A) .

Proof. 1. is a direct consequence of the fact that Pk = {Id} given dim H = k.
As for 2., we remark that the cases k = 1 and k = dimH are readily covered by

Theorem 3.1 and 1. Regarding the other cases, assume that (λn)n∈N ⊆ WPk
(A) with

λn → λ ∈ C is given. Since λn ∈ WPk
(A) there exists Pn ∈ Pk and fn ∈ ran(P ) with

‖fn‖ = 1 and such that PnAPnfn = λnfn. Since the Hilbert space is finite-dimensional,
we conclude that (possibly after restricting to a subsequence)

λf = lim
n→∞

(λnfn) = lim
n→∞

(PnAPnfn) = PAPf

for some (normalized) f ∈ H and limn→∞ Pn := P ∈ Pk. Consequently, λ ∈ WPk
(A).

Regarding 3., let λ ∈ W (A) be given. Then there exists f0 ∈ H with ‖f0‖ = 1 such
that λ = 〈Af0, f0〉. Now take f1, f2, . . . , fk−1 ∈ H with ‖fi‖ = 1 such that fi ⊥ fj
, i 6= j, for i, j = 0, 1, . . . , k − 1 and fi ⊥ Af0 and i = 1, . . . , k − 1. Let P be the
orthogonal projection onto span{f0, f1, . . . , fk−1} which is a k-dimensional subspace.
Then, employing (3.1),

PAPf0 = PAf0 = 〈Af0, f0〉f0 + 〈Af0, f1〉f1 + · · ·+ 〈Af0, fk−1〉fk−1

= 〈Af0, f0〉f0 = λf0 ,
(3.6)

i.e., λ is an eigenvalue of PAP . Hence λ ∈ WPk
(A).

Now take λ ∈ WPk
(A). Then there exist P ∈ Pk and f ∈ ran(P ) with ‖f‖ = 1 such

that PAPf = λf . Hence 〈Af, f〉 = 〈PAPf, f〉 = 〈λf, f〉 = λ, implying λ ∈ W (A). �

In the next result we show how the family of projections PA is related to the point
spectrum of the operator A.

Theorem 3.6. For arbitrary A ∈ L(H) one has WPA
(A) ⊂ σP (A) .

Furthermore, if A is symmetric then WPA
(A) = σP (A) .

Proof. For arbitrary A, let λ ∈ WPA
(A) be given. Then there exists P ∈ PA and

0 6= f ∈ ran(P ) such that PAPf = λf and PAPf = APPf = APf , since f ∈ ran(P ).
We obtain APf = Af = λf and hence λ ∈ σP (A).

Now let A be symmetric: Then, for λ ∈ σP (A) there exists a normalized f ∈ H such
that Af = λf . Now, choose P to be the orthogonal projection onto span{f}. Applying
P to the eigenvalue equation directly yields PAPf = λPf = λf which shows that λ is
an eigenvalue to PAP . On the other hand, for x ∈ H,

(3.7) PAx = 〈Ax, f〉f = 〈x, f〉λf = APx .

This implies that P ∈ PA and consequently λ ∈ WPA
(A) . �

Remark 3.7. By Proposition 3.4 and Theorem 3.6 we see that WP1
(A) = co{WPA

(A)}
for A symmetric.

Furthermore, regarding Theorem 3.6 we note the following: if A is such that σP (A) = ∅
then there cannot exist an orthogonal projection P with finite-dimensional range commut-
ing with A. As an example, one might think of the right-shift operator R on ℓ2(N) which
has no eigenvalues. This implies that R has no non-trivial finite-dimensional invariant
subspaces. On the other hand, the left-shift operator L on ℓ2(N) is known to have the open
unit disk as point spectrum. However, since the adjoint of L is the right-shift operator
R, there cannot exist any finite-dimensional reducing subspaces as asked after in (2.3)
since they would be invariant under L as well as under R. Consequently, WPL

(L) = ∅
and the inclusion in Theorem 3.6 is strict.
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In order to formulate an analogue of Theorem 3.6 for normal operators we introduce

PA∗ := {P ∈ P : PA = A∗P, dim(ran(P )) < ∞} .(3.8)

Based on this family of projections we then obtain the following result.

Theorem 3.8. Let A ∈ L(H) be a normal operator. Then WPA∗
(A) = σP (A

∗) =
(σP (A))

∗.

Proof. The proof follows the same line as the proof of Theorem 3.6. We only remark
that line (3.7) now reads, λ ∈ σP (A

∗),

PAx = 〈Ax, f〉f = 〈x,A∗f〉f = 〈x,A∗f〉λf = A∗Px .

Also note that σP (A
∗) = (σP (A))

∗ holds for all normal operators. �

3.2. Connection to the quadratic and block numerical range. As defined in [9]
(and discussed in detail in [10]), the quadratic numerical range of a 2× 2-block operator
matrix

(3.9) A =

(
A B
C D

)
,

with A acting as an operator on H1⊕H2, is the set of all eigenvalues of all 2×2-matrices

(3.10) Af,g =

(
〈Af, f〉 〈Bg, f〉
〈Cf, g〉 〈Dg, g〉

)

with f ∈ H1, g ∈ H2 and ‖f‖ = ‖g‖ = 1. The quadratic numerical range of A will be
denoted by WH1,H2

(A).
In order to relate the quadratic numerical range to a family of projections, one consid-

ers the set of all projections P ∈ P2 such that ran(P ) has dimension two and is spanned
by two vectors in H1⊕H2 of the form F1 := f1⊕0, F2 := 0⊕f2 with (non-zero) f1 ∈ H1

and f2 ∈ H2. We will denote this family of projections by PH1,H2
.

For any such P ∈ PH1,H2
we obtain

APF1 := PAF1 = 〈AF1, F1〉F1 + 〈AF1, F2〉F2 ,(3.11)

and

APF2 := PAF2 = 〈AF2, F1〉F1 + 〈AF1, F2〉F2 .(3.12)

Accordingly, AP can be represented by a 2× 2 matrix with respect to this basis as

(3.13) AP :=

(
〈AF1, F1〉 〈AF1, F2〉
〈AF2, F1〉 〈AF2, F2〉

)
∈ M2×2(C) .

Furthermore, a direct calculation shows that

(3.14) AP =

(
〈Af1, f1〉 〈Cf1, f2〉
〈Bf2, f1〉 〈Df2, f2〉

)
= AT

f1,f2
.

This allows us to establish the following result.

Theorem 3.9. Let H = H1 ⊕H2 be a Hilbert space and A ∈ L(H) a block operator of
the form (3.9). Then

(3.15) WPH1,H2
(A) = WH1,H2

(A) .

Proof. For λ ∈ WH1,H2
(A) and by definition of the quadratic numerical range there exist

(normalized) f1 ∈ H1, f2 ∈ H2 and a (non-zero) h ∈ C
2 such that Af1,f2h = λh. Let

P denote the orthogonal projection onto span{f1 ⊕ 0, 0 ⊕ f2}. Then P ∈ PH1,H2
and,

according to (3.14), σ(AP ) = σ(AT
f1,f2

) which implies λ ∈ WPH1,H2
(A).
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Now, let λ ∈ WPH1,H2
(A) be given. Then there exists a projection P ∈ PH1,H2

and

a (non-zero) element h ∈ ran(P ) such that APh = λh. Employing relation (3.14) again
yields λ ∈ WH1,H2

(A). Note that the existence of corresponding (normalized) vectors
f1 ∈ H1, f2 ∈ H2 follows from the definition of the family PH1,H2

. �

Theorem 3.9 can be directly generalized to k-block operators A acting on a Hilbert

space of the form H =
⊕k

i=1 Hi by defining the family PH1,...,Hk
of projections in analogy

to the case of k = 2. Furthermore, in analogy to the quadratic numerical range one
introduces the block numerical range WH1,...,Hk

(A) (see also [21, 20]) and can obtain the
following result.

Theorem 3.10. Let H =
⊕k

i=1 Hi be a Hilbert space and A ∈ L(H) a block operator
on H, i.e., (A)1≤i,j≤k = Aij with Aij : Hj → Hi bounded linear operators. Then

(3.16) WPH1,...,Hk
(A) = WH1,...,Hk

(A) .

Remark 3.11. Regarding Theorem 3.9 and Theorem 3.10 we observe the following: If
A is a n × n-matrix acting on C

n, we can divide it into blocks as to obtain a k-block
operator acting on C

n1 ⊕ · · · ⊕ C
nk with n1 + · · · + nk = n. Also, dividing each C

nj

further and hence obtaining a refined partition of Cn yields a p-block operator acting on
C

ñ1 ⊕ · · · ⊕ C
ñp with ñ1 + · · · + ñp = n, p > k. Denoting all three operators by A, the

definition of the families PH1,...,Hk
from above allows us to obtain the inclusion

(3.17) WP
C
ñ1 ,...,C

ñp
(A) ⊆ WP

C
n1 ,...,Cnk

(A) ⊆ WP1
(A) = W (A) ,

where the last equality is due to Proposition 3.1. Regarding the block numerical ranges
we therefore obtain the inclusion

(3.18) W
Cñ1 ,...,Cñp (A) ⊆ WCn1 ,...,Cnk (A) ⊆ W (A) .

It is interesting to note that equation (3.18) was already obtained in [21] by different
methods.

3.3. Connection to the product numerical range. In quantum physics and quan-
tum information theory in particular, another notion of numerical range has proven
interesting, namely, the so-called product numerical range; see [14, 6] and references
therein.

To introduce this, assume that the underlying Hilbert space H is given as a tensor
product of two (separable) Hilbert spaces Hk and Hl, i.e.,

H = Hk ⊗Hl .

Note that, in quantum information theory, one is often interested in the case where H is
finite-dimensional of composite dimension n = kl where dimHk = k and dimHl = l.

In any case, for A ∈ L(Hk ⊗Hl), the product numerical range is defined as

(3.19) Λ⊗(A) := {〈(fk ⊗ fl), A(fk ⊗ fl)〉 : fk ∈ Hk and fl ∈ Hl}

with ‖fk‖Hk
= 1 as well as ‖fl‖Hl

= 1. In order to identify (3.19) as a numerical range
with respect to a family of projections we introduce

P̃ := {P ∈ P : ∃ fk ∈ Hk, fl ∈ Hl such that P = fk ⊗ fl · 〈fk ⊗ fl, ·〉} ,

again with ‖fk‖Hk
= 1 as well as ‖fl‖Hl

= 1. In other words, for any P ∈ P̃ one has

Ph = fk ⊗ fl · 〈fk ⊗ fl, h〉

for some normalized elements fk ∈ Hk and fl ∈ Hl and all h ∈ H. Furthermore, we can
establish the following statement.

Theorem 3.12. For A ∈ L(Hk ⊗Hl) we have W
P̃
(A) = Λ⊗(A).
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Proof. In a first step, assume that λ ∈ Λ⊗(A): then there exist normalized fk ∈ Hk and
fl ∈ Hl with

λ = 〈(fk ⊗ fl), A(fk ⊗ fl)〉 .

Then, define P to be projection onto the one-dimensional subspace spanned by fk ⊗ fl,

i.e., P = fk ⊗ fl · 〈fk ⊗ fl, ·〉. Clearly, P ∈ P̃. In addition,

(PA)(fk ⊗ fl) = λ(fk ⊗ fl)

and hence λ ∈ W
P̃
(A).

In a next step, assume that λ ∈ W
P̃
(A): again there exist normalized vectors gk ∈ Hk

and gl ∈ Hl such that
(PA)(gk ⊗ gl) = λ(gk ⊗ gl)

with P = gk ⊗ gl · 〈gk ⊗ gl, ·〉. However, the structure of P also immediately implies that
λ = 〈(gk ⊗ gl), A(gk ⊗ gl)〉 which concludes the statement. �
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