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AUTOMORPHISMS GENERATED BY UMBRAL CALCULUS ON A

NUCLEAR SPACE OF ENTIRE TEST FUNCTIONS

FERDINAND JAMIL, YURI KONDRATIEV, SHEILA MENCHAVEZ, AND LUDWIG STREIT

Abstract. In this paper we show that Sheffer operators, mapping monomials to

certain Sheffer polynomial sequences, such as falling and rising factorials, Charlier,
and Hermite polynomials extend to continuous automorphisms on the space of entire
functions of first order growth and minimal type.

1. Introduction

In the 1970s, the theory of generalized functionals of infinitely many variables with
a dual pairing between spaces of test and generalized functions generated by Gaussian
measures was introduced independently by Yu. M. Berezansky [2], Yu. G. Kondratiev
[12], and T. Hida [10]. The underlying principle for this analysis is the construction of
suitable Gelfand triples of test and generalized functions. A very effective approach is
to embed polynomials into a countably Hilbert space. Depending on the specific choice
of these Hilbert spaces one thus obtains e.g. the spaces of Hida or the Kondratiev test
functions. The latter in particular extend the polynomials to a topological space of
entire functions [13]. Moreover, a characterization of the spaces considered in terms of
analytic and growth properties of the corresponding S-transforms, was established [11].
Kondratiev test and generalized functions of one complex variable were studied in [6].

Umbral calculus is a kind of spatial combinatorics, a mathematical tool developed
systematically by G. C. Rota (see e.g., [14, 16, 19]) and S. Roman [18] in the 1970s (see
also a survey paper [5] for a list of references and applications). It deals with Sheffer
sequences, polynomials systems with generating functions of exponential type from
which we will elaborate in Section 2. Inspired by the construction of Kondratiev test
functions in infinite dimensional analysis we construct a countable family of Hilbert
spaces {Hp}∞p=0 of entire functions such that their intersection E =

⋂

p
Hp is a space of

entire functions of exponential type, endowed with the projective limit topology.
Sheffer operators will transform the monomials into polynomials, we consider in
particular the Charlier polynomials, the ”rising”, and the ”falling factorials”, and the
Hermite polynomials. While an extension of these results to infinite dimensional
analysis is now on the way [7] we shall advance further in the one dimensional case, also
to pave the way for further developments in infinite dimension.

Our principal result is that these maps induce continuous automorphisms on the space
E1
0 of entire functions of order one and minimal type. To this end, in Section 2, we shall

collect necessary concepts from umbral calculus and present pertinent examples, as well
as regarding countably Hilbert spaces, and properties of entire functions . Section 3 is
dedicated to the automorphism theorems and their proof.
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2. Preliminaries

2.1. Elements of umbral calculus [18]. Denote by P the vector space of all
polynomials in the single variable z over the field C of complex numbers. A polynomial
is said to be a monic polynomial if the leading coefficient of its highest degree term is
equal to one. A polynomial sequence {pn(z)}n∈N0

is a sequence of monic polynomials
such that pn(z) has degree exactly n.

Definition 2.1. A sequence {pn(z)}n∈N0
is called a Sheffer sequence if its generating

function has the form
∞
∑

n=0

pn(z)

n!
tn = A(t)ezB(t),

where A(t) =
∑∞

n=0 Ant
n and B(t) =

∑∞
n=1 Bnt

n are formal power series with A0 6= 0
and B1 6= 0.

Furthermore, the linear operator on P given by λ : zn → pn(z) is called the Sheffer
operator for the sequence {pn(z)}n∈N0

.

2.1.1. Examples. We consider the following Sheffer sequences.

1. For z ∈ C, monomials pn(z) = zn have a generating function

etz =

∞
∑

n=0

zn

n!
tn.

2. The falling factorials

(z)n =
Γ(z + 1)

Γ(z − n+ 1)

=

{

1, if n = 0,

z(z − 1) . . . (z − n+ 1), if n ∈ N

are given by the generating function

e+(t, z) := ez ln(1+t) =
∞
∑

n=0

(z)n
n!

tn for |t| < 1.

One extends the notation
(

m
n

)

to z ∈ C by
(

z

n

)

:=
(z)n
n!

.

3. The rising factorials

(z)n =

{

1, if n = 0,

z(z + 1) . . . (z + n− 1), if n ∈ N

can be defined via the generating function

e−(t, z) := e−z log(1−t) =

∞
∑

n=0

(z)n

n!
tn, t ∈ C, |t| < 1.

4. The Charlier polynomials

Ca
n(z) =

n
∑

k=0

(

n

k

)(

z

k

)

k!(−a)n−k

have the generating function

C(z, t) := e−at(1 + t)z =
∞
∑

n=0

Ca
n(z)

n!
tn, a 6= 0.
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For simplicity we use the notation

Cn(z) := C1
n(z).

5. The Hermite polynomials1

Hen(z) = (−1)nez
2/2 dn

dzn
e−z2/2 = n!

⌊n
2
⌋

∑

m=0

(−1)m

2mm!(n− 2m)!
zn−2m

have the generating function

ezt−
1
2
t2 =

∞
∑

n=0

Hen(z)

n!
tn.

In what follows, we enumerate some of the well-known [18] relations among the
polynomial sequences under consideration.

For monomials and falling factorials there is a relation

(1) (z)n =

n
∑

k=0

s(n, k)zk,

where s(n, k) are the (signed) Stirling numbers of the first kind, with bound [3]

(2) |s(n, k)| ≤ n!

(1− e−1)nk!
for 1 ≤ k ≤ n.

Conversely,

(3) zn =

n
∑

k=0

S(n, k)(z)k,

where S(n, k) is the Stirling number of the second kind, with bound [17]

(4) 0 < S(n, k) ≤ 1

2

(

n

k

)

kn−k.

For rising factorials the corresponding formulas follow from the identity

(5) (z)n = (−1)n(−z)n.

For the representations of falling factorials in terms of Charlier polynomials and vice
versa there are the following relations:

(6) Ca
n(z) =

n
∑

k=0

(

n

k

)

(−a)n−k(z)k

and

(7) (z)n =

n
∑

k=0

(

n

k

)

an−kCa
k (z).

Finally, we note

(8) zn = n!

⌊n
2
⌋

∑

m=0

1

2mm!(n− 2m)!
Hen−2m(z).

1we choose the Hermite polynomials Hen over the family Hn because of its relation to the standard
normal distribution [1].
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2.2. Hilbert spaces of power series and their projective limit. In this section,
we consider for the power series f(z) =

∑∞
n=0 anz

n an increasing countable system of
Hilbert norms with parameter p = 0, 1, 2, . . . as follows.

Definition 2.2. For p = 0, 1, 2, . . . , we define Hilbert spaces

Hp :=
{

f(z) =

∞
∑

n=0

anz
n
∣

∣

∣
‖f‖2p :=

∞
∑

n=0

|an|2epn(n!)2 < ∞
}

.

Remark 2.3.

(i) The monomials

e(p)n (z) = c(p)n zn with c(p)n = e
−pn

2 (n!)−1 and n = 0, 1, 2, . . .

are an orthonormal base in Hp.
(ii) We have a chain of dense continuous embeddings

. . . ⊂ Hp+1 ⊂ Hp ⊂ Hp−1 . . . .

(iii) For p > q the embedding Hp ⊂ Hq is injective, hence the corresponding scalar
products are compatible.

Definition 2.4. We define the space E as the projective limit of the spaces Hp, i.e.,

E := proj lim
p→∞

Hp =
⋂

p≥0

Hp.

In the projective limit topology a neighborhood basis for E is given by

Up,ǫ = {f ∈ E : ‖f‖p < ǫ}, p ≥ 0, ǫ > 0.(9)

For more detail on such topological vector spaces see [8, 9], and for a related
construction see Chapter 3 and Appendix A5 of [10]. From the compatibility of the
above norms it follows that E is a complete, countably Hilbert, metrizable space, hence
a locally convex Fréchet space. It is easy to verify that it is nuclear, i.e, embeddings are
Hilbert-Schmidt.

2.3. Order and type of entire functions. In this section, we first recall some facts
and notations on order of growth and type of the entire functions that are essential in
this paper (see e.g., [4, 15]).

Theorem 2.5. [4] Let f(z) =
∑∞

n=0 anz
n be an entire function of order

ρ := inf

{

K : max
|z|=r

|f(z)| as< exp(rK)

}

,

where
as
< means ”for sufficiently large argument.” Then

(10) ρ = lim sup
n→∞

n lnn

ln(1/|an|)
.

Moreover, if f(z) is an entire function of order of growth ρ and type

τ := inf

{

A : max
|z|=r

|f(z)| as< exp(Arρ)

}

,

then

(11) τ =
1

ρe
lim sup
n→∞

(

n n
√

|an|ρ
)

.
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Lemma 2.6. [15] If the asymptotic inequality

max
|z|=r

|f(z)| as< exp(Arρ)

is fulfilled, then

(12) |an|
as
<

(

eAρ

n

)
n
ρ

.

Furthermore, if the asymptotic inequality (12) is fulfilled, then

max
|z|=r

|f(z)| as< exp((A+ ǫ)rρ), ∀ǫ > 0.

Lemma 2.7. The functions f in Hp are of at most first order of growth and type τ ≤ e
−p
2 .

Proof. For any f ∈ Hp,

‖f‖2p =

∞
∑

n=0

|an|2epn(n!)2 < ∞

implies that

|an|2 ≤ C

(n!)2epn

for some constant C > 0. Insertion of this estimate into (10) and (11) proves the
statements of the lemma. hfill�

This result leads to

Proposition 2.8. The space E =
⋂

p≥0

Hp is the space E1
0 of entire functions of order at

most ρ = 1 and minimal type (τ = 0).

Proof. The inclusion E =
⋂

p≥0

Hp ⊂ E1
0 follows from the previous lemma. Conversely,

consider now f(z) =
∑∞

n=0 anz
n ∈ E1

0 . The first part of Lemma 2.6 implies that for any
A > 0

|an|
as
<

(

eA

n

)n

.

Hence, using Stirling’s formula

enp(n!)2|an|2
as
< 2πn(epA2)n

so that f ∈ Hp with epA2 < 1. Choosing A sufficiently small this implies that f ∈ Hp

for all p, hence in their intersection

E =
⋂

p≥0

Hp ⊃ E1
0 .

�

3. Main results and proofs

In what follows, we show that the Sheffer operator for polynomial sequences such as
the rising factorials and falling factorials, the Charlier or the Hermite polynomials, is a
continuous automorphism on E1

0 . To this end we shall use the following

Remark 3.1. To show that a linear map

L : Hp → Hp′

L : f ∈ Hp → Lf ∈ Hp′
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is bounded, it suffices to show that the Hilbert-Schmidt estimate is finite

∑

n,l

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

< ∞.

Theorem 3.2. The Sheffer operator

λ : zn → (z)n

for falling factorials acts as a continuous automorphism on E1
0 .

Proof. For the Sheffer map

λ : f(z) =

∞
∑

n=0

anz
n →

∞
∑

n=0

an(z)n

we invoke Remark 3.1 with L = λ. In this case

Le(p)n (z) = c(p)n λzn = c(p)n (z)n.

We use (1) to obtain

Le(p)n (z) = c(p)n

n
∑

k=0

s(n, k)zk = c(p)n

n
∑

k=0

s(n, k)
(

c
(p′)
k

)−1

e
(p′)
k (z).

As a consequence
(

Le(p)n , e
(p′)
l

)

Hp′

= c(p)n s(n, l)
(

c
(p′)
l

)−1

for 0 ≤ l ≤ n and zero otherwise. Using (2) we have
∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ c(p)n

(

c
(p′)
l

)−1 n!

(1− e−1)nl!
=

e
−pn+p′l

2

(1− e−1)n
,

so that
n
∑

l=0

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤ e−pn

(1− e−1)2n

n
∑

l=0

ep
′l =

e−pn

(1− e−1)2n
ep

′(1+n) − 1

ep′ − 1

and
∑

n,l

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤
∞
∑

n=0

e−(p−p′)n

(1− e−1)2n
ep

′

ep′ − 1
< ∞

if p′ = p− 1. Hence the map λ is bounded from Hp into Hp−1, uniformly as p → ∞, and
so in the limit λ : E1

0 → E1
0 is also bounded. It is continuous there since Up,ǫ of equation

(9) are a neighborhood basis on E1
0 .

For the inverse mapping we now have

L = λ−1 : (z)n ∈ Hp → zn ∈ Hp′

and applying (3) to get

λ−1e(p)n (z) = e
−pn

2 (n!)−1λ−1zn = c(p)n

n
∑

k=0

S(n, k)λ−1(z)k

= c(p)n

n
∑

k=0

S(n, k)zk = c(p)n

n
∑

k=0

S(n, k)
(

c
(p′)
k

)−1

e
(p′)
k (z),

so that
(

Le(p)n , e
(p′)
l

)

Hp′

= c(p)n S(n, l)
(

c
(p′)
l

)−1
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for 0 ≤ l ≤ n and zero otherwise. Using the estimate (13)
∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ 1

2
c(p)n

(

c
(p′)
l

)−1n!

l!

1√
2π

e(n−l)dn

=
1

2
√
2π

e
−pn+p′l

2 e(n−l)dn

and hence
n
∑

l=0

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤ 1

8π
e−pne2nd2n

n
∑

l=0

e(p
′−2)l ≤ n

8π
e−(p−p′)nd2n

for p′ ≥ 2. As a result

∑

n,l

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤ 1

8π

∞
∑

n=0

ne−(p−p′)nd2n

is uniformly bounded for p − 3 ≥ p′ ≥ 2, i.e., the map L = λ−1 : Hp → Hp′ is bounded
and so thus λ : E1

0 → E1
0 . Continuity follows as above. �

Theorem 3.3. The Sheffer operator for the system of rising factorials {(z)n : n =
0, 1, 2, . . . } is a continuous automorphism on E1

0 .

Proof. Since the rising factorials are obtained from the falling one’s by the relation (5),
the proof is a straightforward adaptation of the previous one. �

Theorem 3.4. The Sheffer operator for the system of Charlier functions {Cn(z) : n =
0, 1, 2, . . . } is a continuous automorphism on E1

0 .

Proof. In this case we use equalities (6) and (1) for the Sheffer map

λ : zn → Cn(z) =
n
∑

k=0

(

n

k

)

(−1)n−k(z)k =
n
∑

k=0

(

n

k

)

(−1)n−k
k

∑

j=0

s(k, j)zj ,

so that, with L = λ

Le(p)n (z) = c(p)n

n
∑

k=0

(

n

k

)

(−1)n−k
k

∑

j=0

s(k, j)
(

c
(p′)
j

)−1

e
(p′)
j (z)

and
∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ c(p)n

n
∑

k=0

(

n

k

)

|s(k, l)|
(

c
(p′)
l

)−1

.

We estimate this further using (2)

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ c(p)n

n
∑

k=0

(

n

k

)

k!

(1− e−1)kl!

(

c
(p′)
l

)−1

= e
−pn

2

n
∑

k=0

1

(n− k)!(1− e−1)k
e

p′l
2

= e
−pn+p′l

2

n
∑

r=0

(1− e−1)r−n

r!

≤ e
−pn+p′l

2 (1− e−1)−n exp(1− e−1),
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so that
n
∑

l=0

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤ e−pn(1− e−1)−2n exp (2− 2e−1)

n
∑

l=0

ep
′l

= e−pn(1− e−1)−2n exp (2− 2e−1)
ep

′(1+n) − 1

ep′ − 1

and
∑

n,l

∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

2

≤ exp (2− 2e−1)
ep

′

ep′ − 1

∞
∑

n=0

e−(p−p′)n

(1− e−1)2n
,

which is uniformly bounded for all p − p′ ≥ 1, and λ : E1
0 → E1

0 , so that Remark 3.1 is
satisfied.

For the inverse map use equations (3) and (7)

λ−1 : zn =
n
∑

k=0

S(n, k)
k

∑

j=0

(

k

j

)

(−1)k−jCj(z) →
n
∑

k=0

S(n, k)
k

∑

j=0

(

k

j

)

(−1)k−jzj

or in terms of the orthonormal base e
(p)
n (z)

λ−1e(p)n (z) → Le(p)n (z) = c(p)n

n
∑

k=0

S(n, k)

k
∑

j=0

(

k

j

)

(−1)k−j
(

c
(p′)
j

)−1

e
(p′)
j (z),

so that
∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ c(p)n

n
∑

k=l

S(n, k)

(

k

l

)

(

c
(p′)
l

)−1

.

Now we use (13)
∣

∣

∣

∣

(

Le(p)n , e
(p′)
l

)

Hp′

∣

∣

∣

∣

≤ c(p)n

(

c
(p′)
l

)−1 n
∑

k=l

(

k

l

)

1

2

n!

k!

1√
2π

e(n−k)dn

=
1

2
√
2π

e
−pn+p′l

2 endn
n
∑

k=l

1

(k − l)!ek

as in the previous proof to conclude the argument. �

Theorem 3.5. The Sheffer operator for the Hermite polynomials

λ : zn → Hen(z)

acts as a continuous automorphism on E1
0 .

Remark 3.6. For this result see also [6].

Proof. To apply Remark 3.1 for λ one uses

L = λ : zn → Hen(z) = n!

⌊n
2
⌋

∑

m=0

(−1)m

2mm!(n− 2m)!
zn−2m

and proceeds as in the previous proofs.
To control the inverse map one uses (8)

L : zn = n!

⌊n
2
⌋

∑

m=0

1

2mm!(n− 2m)!
Hen−2m(z) → n!

⌊n
2
⌋

∑

m=0

1

2mm!(n− 2m)!
zn−2m

with identical estimates as in the first half of the proof. �
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4. Appendix: An estimate for S(n, l)

Starting from (4)

0 < S(n, l) <
1

2

(

n

l

)

ln−l =
1

2

n!

l!

ln−l

(n− l)!

we now use the Stirling approximation to obtain

ln−l

(n− l)!
≤ 1√

2π
en−l

(

l

n− l

)n−l

.

Now we bound
(

l

n− l

)n−l

= e(n−l)(ln l−ln(n−l)) = eg(l).

For the maximum of g one has

d

dl
g(l) =

1

l
(n+ l ln(n− l)− l ln l) = 0

or equivalently
n

l
= − ln

(

n

l
− 1)

)

,

which has the solution
n

l
≈ 1.2785 . . .

respectively

l = cn with c ≈ 0.782

for which

(

l
n−l

)n−l

is maximal, so that we have bound

(

l

n− l

)n−l

≤
(

c

1− c

)n

and

0 < S(n, l) <
1

2

n!

l!

1√
2π

e(n−l)dn(13)

with

d =
c

1− c
≈ 3.5872.
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