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Abstract. Found are conditions on a scalar type spectral operator A in a complex

Banach space necessary and sufficient for all weak solutions of the evolution equation

y′(t) = Ay(t), t ≥ 0,

to be strongly Gevrey ultradifferentiable of order β ≥ 1, in particular analytic or

entire, on [0,∞). Certain inherent smoothness improvement effects are analyzed.

1. Introduction

We find conditions on a scalar type spectral operator A in a complex Banach space
X necessary and sufficient for all weak solutions of the evolution equation

(1.1) y′(t) = Ay(t), t ≥ 0,

to be strongly Gevrey ultradifferentiable of order β ≥ 1, in particular analytic or entire,
on [0,∞) and analyze certain inherent smoothness improvement effects to generalize the
corresponding results for equation (1.1) with a normal operator A in a complex Hilbert
space [21].

The results of the present paper develop those of [27], where similar consideration is
given to the strong differentiability of the weak solutions of (1.1) on [0,∞) and (0,∞).

Definition 1.1 (Weak solution).
Let A be a closed densely defined linear operator in a Banach space X. A strongly
continuous vector function y : [0,∞) → X is called a weak solution of equation (1.1) if,
for any g∗ ∈ D(A∗),

d

dt
〈y(t), g∗〉 = 〈y(t), A∗g∗〉, t ≥ 0,

where D(·) is the domain of an operator, A∗ is the operator adjoint to A, and 〈·, ·〉 is the
pairing between the space X and its dual X∗ (see [1]).

Due to the closedness of A, the weak solution of (1.1) can be equivalently defined to
be a strongly continuous vector function y : [0,∞) 7→ X such that, for all t ≥ 0,

∫ t

0

y(s) ds ∈ D(A) and y(t) = y(0) +A

∫ t

0

y(s) ds

and is also called a mild solution (cf. [6, Ch. II, Definition 6.3], see also [29, Preliminar-
ies]).
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Such a notion of weak solution, which need not be differentiable in the strong sense,
generalizes that of classical one, strongly differentiable on [0,∞) and satisfying the equa-
tion in the traditional plug-in sense, the classical solutions being precisely the weak ones
strongly differentiable on [0,∞).

When a closed densely defined linear operator A in a complex Banach space X gen-
erates a C0-semigroup {T (t)}t≥0 of bounded linear operators (see, e.g., [6, 13]), i.e., the

associated abstract Cauchy problem (ACP)

(1.2)

{

y′(t) = Ay(t), t ≥ 0,

y(0) = f

is well-posed (cf. [6, Ch. II, Definition 6.8]), the weak solutions of equation (1.1) are the
orbits

(1.3) y(t) = T (t)f, t ≥ 0,

with f ∈ X [6, Ch. II, Proposition 6.4] (see also [1, Theorem]), whereas the classical
ones are those with f ∈ D(A) (see, e.g., [6, Ch. II, Proposition 6.3]).

Observe that, in our discourse, the associated ACP may be ill-posed, i.e., the scalar
type spectral operator A need not generate a C0-semigroup (cf. [24]).

2. Preliminaries

For the reader’s convenience, we outline in this section certain essential preliminaries.

2.1. Scalar type spectral operators.

Henceforth, unless specified otherwise, A is supposed to be a scalar type spectral ope-
rator in a complex Banach space (X, ‖ ·‖) and EA(·) to be its strongly σ-additive spectral
measure (the resolution of the identity) assigning to each Borel set δ of the complex
plane C a projection operator EA(δ) on X and having the operator’s spectrum σ(A) as
its support [2, 5].

Observe that, in a complex finite-dimensional space, the scalar type spectral operators
are those linear operators on the space, for which there is an eigenbasis (see, e.g., [2, 5])
and, in a complex Hilbert space, the scalar type spectral operators are precisely those
that are similar to the normal ones [33].

Associated with a scalar type spectral operator in a complex Banach space is the Borel
operational calculus analogous to that for a normal operator in a complex Hilbert space
[2, 4, 5, 31], which assigns to any Borel measurable function F : σ(A) → C a scalar type
spectral operator

F (A) :=

∫

σ(A)

F (λ) dEA(λ)

defined as follows:

F (A)f := lim
n→∞

Fn(A)f, f ∈ D(F (A)), D(F (A)) :=
{

f ∈ X
∣

∣

∣
lim

n→∞
Fn(A)f exists

}

,

where

Fn(·) := F (·)χ{λ∈σ(A) | |F (λ)|≤n}(·), n ∈ N,

(χδ(·) is the characteristic function of a set δ ⊆ C, N := {1, 2, 3, . . . } is the set of natural
numbers) and

Fn(A) :=

∫

σ(A)

Fn(λ) dEA(λ), n ∈ N,

are bounded scalar type spectral operators on X defined in the same manner as for a
normal operator (see, e.g., [4, 31]).
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In particular,

(2.4) An =

∫

σ(A)

λn dEA(λ), n ∈ Z+,

(Z+ := {0, 1, 2, . . . } is the set of nonnegative integers, A0 := I, I is the identity operator
on X) and

(2.5) ezA :=

∫

σ(A)

ezλ dEA(λ), z ∈ C.

The properties of the spectral measure and operational calculus, exhaustively delin-
eated in [2,5], underlie the entire subsequent discourse. Here, we touch upon a few facts
of special importance.

Due to its strong countable additivity, the spectral measure EA(·) is bounded [3,5], i.e.,
there is such an M > 0 that, for any Borel set δ ⊆ C,

(2.6) ‖EA(δ)‖ ≤ M.

Observe that the notation ‖·‖ is recycled here to designate the norm in the space L(X) of
all bounded linear operators on X. We shall adhere to this rather conventional economy
of symbols in what follows adopting the same notation for the norm in the dual space
X∗ as well (cf. [6, 24]).

For any f ∈ X and g∗ ∈ X∗, the total variation v(f, g∗, ·) of the complex-valued Borel
measure 〈EA(·)f, g

∗〉 is a finite positive Borel measure with

(2.7) v(f, g∗,C) = v(f, g∗, σ(A)) ≤ 4M‖f‖‖g∗‖

(see, e.g., [25, 26]).
Also (Ibid.), for a Borel measurable function F : C → C, f ∈ D(F (A)), g∗ ∈ X∗, and

a Borel set δ ⊆ C,

(2.8)

∫

δ

|F (λ)| dv(f, g∗, λ) ≤ 4M‖EA(δ)F (A)f‖‖g∗‖.

In particular, for δ = σ(A),

(2.9)

∫

σ(A)

|F (λ)| dv(f, g∗, λ) ≤ 4M‖F (A)f‖‖g∗‖.

Observe that the constant M > 0 in (2.7)–(2.9) is from (2.6).
Further, for a Borel measurable function F : C → [0,∞), a Borel set δ ⊆ C, a sequence

{∆n}
∞
n=1 of pairwise disjoint Borel sets in C, and f ∈ X, g∗ ∈ X∗,

(2.10)

∫

δ

F (λ) dv(EA(∪
∞
n=1∆n)f, g

∗, λ) =

∞
∑

n=1

∫

δ∩∆n

F (λ) dv(EA(∆n)f, g
∗, λ).

Indeed, since, for any Borel sets δ, σ ⊆ C,

EA(δ)EA(σ) = EA(δ ∩ σ)

[2, 5], for the total variation,

v(EA(δ)f, g
∗, σ) = v(f, g∗, δ ∩ σ).

Whence, due to the nonnegativity of F (·) (see, e.g., [12]),
∫

δ

F (λ) dv(EA(∪
∞
n=1∆n)f, g

∗, λ) =

∫

δ∩∪∞
n=1∆n

F (λ) dv(f, g∗, λ)
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=

∞
∑

n=1

∫

δ∩∆n

F (λ) dv(f, g∗, λ) =

∞
∑

n=1

∫

δ∩∆n

F (λ) dv(EA(∆n)f, g
∗, λ).

The following statement, allowing to characterize the domains of Borel measurable
functions of a scalar type spectral operator in terms of positive Borel measures, is fun-
damental for our discourse.

Proposition 2.1 ([23, Proposition 3.1]).
Let A be a scalar type spectral operator in a complex Banach space (X, ‖ · ‖) with spectral
measure EA(·) and F : C → C (or F : σ(A) → C) be Borel measurable function. Then
f ∈ D(F (A)) iff

(i) for each g∗ ∈ X∗,

∫

σ(A)

|F (λ)| dv(f, g∗, λ) < ∞ and

(ii) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | |F (λ)|>n}

|F (λ)| dv(f, g∗, λ) → 0, n → ∞,

where v(f, g∗, ·) is the total variation of 〈EA(·)f, g
∗〉.

The succeeding key theorem provides a full description of the weak solutions of equa-
tion (1.1) with a scalar type spectral operator A in a complex Banach space.

Theorem 2.1 ([23, Theorem 4.2]).
Let A be a scalar type spectral operator in a complex Banach space (X, ‖ · ‖). A vector

function y : [0,∞) → X is a weak solution of equation (1.1) iff there is an f ∈
⋂

t≥0

D(etA)

such that

(2.11) y(t) = etAf, t ≥ 0,

the operator exponentials understood in the sense of the Borel operational calculus (see
(2.5)).

Theorem 2.1 generalizes [20, Theorem 3.1], its counterpart for a normal operator A in
a complex Hilbert space, and implies, in particular,

• that the subspace
⋂

t≥0 D(etA) of all possible initial values of the weak solutions of

equation (1.1) is the largest permissible for the exponential form given by (2.11),
which highlights the contextual naturalness of the notion of weak solution, and

• that associated ACP (1.2), whenever solvable, is solvable uniquely.

Observe that the initial-value subspace
⋂

t≥0 D(etA) of equation (1.1), containing the

dense in X subspace
⋃

α>0 EA(∆α)X, where

∆α := {λ ∈ C | |λ| ≤ α} , α > 0,

which coincides with the class E {0}(A) of entire vectors of A of exponential type (see
below), is dense in X as well.

When a scalar type spectral operator A in a complex Banach space generates a C0-
semigroup {T (t)}t≥0,

T (t) = etA and D(etA) = X, t ≥ 0,

[24], and hence, Theorem 2.1 is consistent with the well-known description of the weak
solutions for this setup (see (1.3)).

We also need the following characterization of a particular weak solution’s of equation
(1.1) with a scalar type spectral operator A in a complex Banach space being strongly
infinite differentiable on a subinterval I of [0,∞).



ON THE GEVREY ULTRADIFFERENTIABILITY OF WEAK SOLUTIONS 353

Proposition 2.2 ([27, Corollary 3.2] with T = ∞).
Let A be a scalar type spectral operator in a complex Banach space (X, ‖ · ‖) and I
be a subinterval of [0,∞). A weak solution y(·) of equation (1.1) is strongly infinite
differentiable on I iff, for each t ∈ I,

y(t) ∈ C∞(A),

in which case
y(n)(t) = Any(t), n ∈ N, t ∈ I.

Subsequently, the frequent terms “spectral measure” and “operational calculus” are
abbreviated to s.m. and o.c., respectively.

2.2. Gevrey classes of functions.

Definition 2.1 (Gevrey classes of functions).
Let (X, ‖·‖) be a (real or complex) Banach space, C∞(I,X) be the space of all X-valued
functions strongly infinite differentiable on an interval I ⊆ (−∞,∞), and 0 ≤ β < ∞.

The following subspaces of C∞(I,X)

E
{β}(I,X) :=

{

g(·) ∈ C∞(I,X)
∣

∣∀[a, b] ⊆ I ∃α > 0 ∃c > 0 :

max
a≤t≤b

‖g(n)(t)‖ ≤ cαn[n!]β , n ∈ Z+

}

,

E
(β)(I,X) :=

{

g(·) ∈ C∞(I,X)
∣

∣∀[a, b] ⊆ I ∀α > 0 ∃c > 0 :

max
a≤t≤b

‖g(n)(t)‖ ≤ cαn[n!]β , n ∈ Z+

}

are called the βth-order Gevrey classes of strongly ultradifferentiable vector functions on
I of Roumieu and Beurling type, respectively (see, e.g., [7, 14–16]).

In view of Stirling’s formula, the sequence
{

[n!]β
}∞

n=0
can be replaced with

{

nβn
}∞

n=0
.

For 0 ≤ β < β′ < ∞, the inclusions

E
(β)(I,X) ⊆ E

{β}(I,X) ⊆ E
(β′)(I,X) ⊆ E

{β′}(I,X) ⊆ C∞(I,X)

hold.

• For 1 < β < ∞, the Gevrey classes are non-quasianalytic (see, e.g., [15]).
• For β = 1, E {1}(I,X) is the class of all analytic on I, i.e., analytically continuable
into complex neighborhoods of I, vector functions and E (1)(I,X) is the class of
all entire, i.e., allowing entire continuations, vector functions [19].

• For 0 ≤ β < 1, the Gevrey class E {β}(I,X) (E (β)(I,X)) consists of all functions
g(·) ∈ E (1)(I,X) such that, for some (any) γ > 0, there is an M > 0 for which

(2.12) ‖g(z)‖ ≤ Meγ|z|
1/(1−β)

, z ∈ C,

[22]. In particular, for β = 0, E {0}(I,X) and E (0)(I,X) are the classes of entire
vector functions of exponential and minimal exponential type, respectively (see,
e.g., [17]).

2.3. Gevrey classes of vectors.

One can consider the Gevrey classes in a more general sense.

Definition 2.2 (Gevrey classes of vectors).
Let A be a densely defined closed linear operator in a (real or complex) Banach space
(X, ‖ · ‖), 0 ≤ β < ∞, and

C∞(A) :=

∞
⋂

n=0

D(An)

be the subspace of infinite differentiable vectors of A.
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The following subspaces of C∞(A)

E
{β}(A) :=

{

x ∈ C∞(A)
∣

∣ ∃α > 0 ∃c > 0 : ‖Anx‖ ≤ cαn[n!]β , n ∈ Z+

}

,

E
(β)(A) :=

{

x ∈ C∞(A)
∣

∣ ∀α > 0 ∃c > 0 : ‖Anx‖ ≤ cαn[n!]β , n ∈ Z+

}

are called the βth-order Gevrey classes of ultradifferentiable vectors of A of Roumieu
and Beurling type, respectively (see, e.g., [9–11]).

In view of Stirling’s formula, the sequence
{

[n!]β
}∞

n=0
can be replaced with

{

nβn
}∞

n=0
.

For 0 ≤ β < β′ < ∞, the inclusions

E
(β)(A) ⊆ E

{β}(A) ⊆ E
(β′)(A) ⊆ E

{β′}(A) ⊆ C∞(A)

hold.
In particular, E {1}(A) and E (1)(A) are the classes of analytic and entire vectors of

A, respectively [8, 30] and E {0}(A) and E (0)(A) are the classes of entire vectors of A of
exponential and minimal exponential type, respectively (see, e.g., [11, 32]).

In view of the closedness of A, it is easily seen that the class E (1)(A) forms the subspace
of initial values in X generating the (classical) solutions of (1.1), which are entire vector
functions represented by the power series

∞
∑

n=0

tn

n!
Anf, t ≥ 0, f ∈ E

(1)(A),

the classes E {β}(A) and E (β)(A) with 0 ≤ β < 1 being the subspaces of such initial
values for which the solutions satisfy growth condition (2.12) with some (any) γ > 0 and
some M > 0, respectively (cf. [17]).

As is shown in [9] (see also [10, 11]), if 0 < β < ∞, for a normal operator A in a
complex Hilbert space,

(2.13) E
{β}(A) =

⋃

t>0

D(et|A|1/β ) and E
(β)(A) =

⋂

t>0

D(et|A|1/β ),

the operator exponentials et|A|1/β , t > 0, understood in the sense of the Borel operational
calculus (see, e.g., [4, 31]).

In [26,28], descriptions (2.13) are extended to scalar type spectral operators in a com-
plex Banach space, in which form they are basic for our discourse. In [28], similar nature
descriptions of the classes E {0}(A) and E (0)(A) (β = 0), known for a normal operator A
in a complex Hilbert space (see, e.g., [11]), are also generalized to scalar type spectral
operators in a complex Banach space. In particular [28, Theorem 5.1],

E
{0}(A) =

⋃

α>0

EA(∆α)X,

where
∆α := {λ ∈ C | |λ| ≤ α} , α > 0.

3. Gevrey ultradifferentiability of a particular weak solution

Here, we characterize a particular weak solution’s of equation (1.1) with a scalar type
spectral operator A in a complex Banach space being strongly Gevrey ultradifferentiable
on a subinterval I of [0,∞).

Proposition 3.1. Let A be a scalar type spectral operator in a complex Banach space
(X, ‖ ·‖) with spectral measure EA(·), 0 ≤ β < ∞, and I be a subinterval of [0,∞). Then
the restriction of a weak solution y(·) of equation (1.1) to I belongs to the Gevrey class
E {β}(I,X) (E (β)(I,X)) iff, for each t ∈ I,

y(t) ∈ E
{β}(A) (E (β)(A), respectively),
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in which case
y(n)(t) = Any(t), n ∈ N, t ∈ I.

Proof.
”Only if” part. Assume that a weak solution y(·) of (1.1) restricted to I belongs to

E {β}(I,X) (E (β)(I,X)).
This immediately implies that y(·) ∈ C∞(I,X). Whence, by Proposition 2.2,

y(t) ∈ C∞(A), t ∈ I,

and
y(n)(t) = Any(t), n ∈ N, t ∈ I.

Furthermore, the fact that the restriction of y(·) to I belongs to E {β}(I,X) (E (β)(I,X))
implies that, for an arbitrary t ∈ I, some (any) α > 0, and some c > 0:

‖Any(t)‖ = ‖y(n)(t)‖ ≤ cαn[n!]β , n = Z+.

Therefore, for each t ∈ I,
y(t) ∈ E

{β}(A) (E (β)(A)).

”If” part. Let y(·) be a weak solution of equation (1.1) such that, for each t ∈ I,

y(t) ∈ E
{β}(A) (E (β)(A)).

Hence, for an arbitrary t ∈ I and some (any) α > 0, there is a c(t, α) > 0 such that

(3.14) ‖Any(t)‖ ≤ c(t, α)αn[n!]β , n ∈ Z+.

The inclusions
E

(β)(A) ⊆ E
{β}(A) ⊆ C∞(A)

imply by Proposition 2.2 that
y(·) ∈ C∞(I,X)

and
y(n)(t) = Any(t), n ∈ N, t ∈ I.

By Theorem 2.1,

y(t) = etAf, t ≥ 0, with some f ∈
⋂

t≥0

D(etA).

Fixing an arbitrary [a, b] ⊆ I, for every n ∈ Z+, we have

max
a≤t≤b

‖y(n)(t)‖ = max
a≤t≤b

‖Any(t)‖ = max
a≤t≤b

‖AnetAf‖

by the properties of the o.c;

= max
a≤t≤b

∥

∥

∥

∥

∥

∥

∥

∫

σ(A)

λnetλ dEA(λ)f

∥

∥

∥

∥

∥

∥

∥

as follows form the Hahn-Banach Theorem;

= max
a≤t≤b

sup
g∗∈X∗, ‖g∗‖=1

∣

∣

∣

∣

∣

∣

∣

〈

∫

σ(A)

λnetλ dEA(λ)f, g
∗

〉

∣

∣

∣

∣

∣

∣

∣

by the properties of the o.c;

= max
a≤t≤b

sup
g∗∈X∗, ‖g∗‖=1

∣

∣

∣

∣

∣

∣

∣

∫

σ(A)

λnetλ d〈EA(λ)f, g
∗〉

∣

∣

∣

∣

∣

∣

∣

≤ max
a≤t≤b

sup
g∗∈X∗, ‖g∗‖=1

∫

σ(A)

|λ|netRe λ dv(f, g∗, λ)
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= sup
g∗∈X∗, ‖g∗‖=1

sup
a≤t≤b

[
∫

{λ∈σ(A)|Re λ≤0}

|λ|netRe λ dv(f, g∗, λ)

+

∫

{λ∈σ(A)|Re λ>0}

|λ|netRe λ dv(f, g∗, λ)

]

≤ sup
g∗∈X∗, ‖g∗‖=1

[
∫

{λ∈σ(A)|Re λ≤0}

|λ|neaRe λ dv(f, g∗, λ)

+

∫

{λ∈σ(A)|Re λ>0}

|λ|nebRe λ dv(f, g∗, λ)

]

≤ sup
g∗∈X∗, ‖g∗‖=1







∫

σ(A)

|λ|neaRe λ dv(f, g∗, λ) +

∫

σ(A)

|λ|nebRe λ dv(f, g∗, λ)







by the properties of the o.c (see (2.4) and [5, Theorem XVIII.2.11 (f)]) and (2.9);

≤ sup
g∗∈X∗, ‖g∗‖=1

4M
[

‖AneaAf‖+ ‖AnebAf‖
]

‖g∗‖ ≤ 4M
[

‖AneaAf‖+ ‖AnebAf‖
]

= 4M [‖Any(a)‖+ ‖Any(b)‖] = 4M
[

‖y(n)(a)‖+ ‖y(n)(b)‖
]

.

Hence, in view of (3.14),

max
a≤t≤b

‖y(n)(t)‖ ≤ 4M [c(a, α) + c(b, α)]max [α(a), α(b)]
n
[n!]β , n ∈ Z+,

which implies that y(·) restricted to I belongs to the Gevrey class E {β}(I,X) (E (β)(I,X)
completing the proof. �

Thus, we have obtained a generalization of [21, Proposition 3.1], the counterpart for
a normal operator A in a complex Hilbert space.

4. Gevrey ultradifferentiability of weak solutions

In this section, we characterize the strong Gevrey ultradifferentiability of order β ≥ 1
on [0,∞) of all weak solutions of equation (1.1) with a scalar type spectral operator A
in a complex Banach space.

Theorem 4.1. Let A be a scalar type spectral operator in a complex Banach space
(X, ‖ · ‖) with spectral measure EA(·) and 1 ≤ β < ∞. Then the following statements are
equivalent.

(i) Every weak solution of equation (1.1) belongs to the βth-order Gevrey class
E (β) ([0,+∞), X) of Beurling type.

(ii) Every weak solution of equation (1.1) belongs to the βth-order Gevrey class
E {β} ([0,+∞), X) of Roumieu type.

(iii) There is a b+ > 0 such that the set σ(A) \ P
β
b+
, where

P
β
b+

:=
{

λ ∈ C

∣

∣

∣
Re λ ≥ b+| Im λ|1/β

}

,

is bounded (see Fig. 1).

Proof. We are to prove the closed chain of implications

(i) ⇒ (ii) ⇒ (iii) ⇒ (i),
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Figure 1

the implication (i) ⇒ (ii) following directly from the inclusion

E
(β) ([0,+∞), X) ⊆ E

{β} ([0,+∞), X)

(see Sec. 2.2).
To prove the implication (iii) ⇒ (i), suppose that there is a b+ > 0 such that the set

σ(A) \ P
β
b+

is bounded and let y(·) be an arbitrary weak solution of equation (1.1).

By Theorem 2.1,

y(t) = etAf, t ≥ 0, with some f ∈
⋂

t≥0

D(etA).

Our purpose is to show that y(·) ∈ E (β) ([0,+∞), X), which, by Proposition 3.1 and
(2.13), is accomplished by showing that, for each t ≥ 0,

y(t) ∈ E
(β) (A) =

⋂

s>0

D(es|A|1/β ).

Let us proceed by proving that, for any t ≥ 0 and s > 0,

y(t) ∈ D(es|A|1/β )

via Proposition 2.1.
For any s > 0, t ≥ 0 and an arbitrary g∗ ∈ X∗,

(4.15)

∫

σ(A)

es|λ|
1/β

etRe λ dv(f, g∗, λ) =

∫

σ(A)\P
β
b+

es|λ|
1/β

etRe λ dv(f, g∗, λ)

+

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ<1

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

+

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

es|λ|
1/β

etRe λ dv(f, g∗, λ) < ∞.

Indeed,
∫

σ(A)\P
β
b+

es|λ|
1/β

etRe λ dv(f, g∗, λ) < ∞

and
∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ<1

}

es|λ|
1/β

etRe λ dv(f, g∗, λ) < ∞
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due to the boundedness of the sets

σ(A) \ P
β
b+

and
{

λ ∈ σ(A) ∩ P
β
b+

∣

∣

∣
Re λ < 1

}

,

the continuity of the integrated function on C, and the finiteness of the measure v(f, g∗, ·).
Further, for any s > 0, t ≥ 0 and an arbitrary g∗ ∈ X∗,

(4.16)

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

≤

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

es[|Re λ|+| Im λ|]1/βetRe λ dv(f, g∗, λ)

since, for λ ∈ σ(A) ∩ P
β
b+
, b−β

+ Re λβ ≥ | Im λ|;

≤

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

es[Re λ+b−β
+ Re λβ]

1/β

etRe λ dv(f, g∗, λ)

since, in view of Re λ ≥ 1 and β ≥ 1, Re λβ ≥ Re λ;

≤

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

es(1+b−β
+ )

1/β
Re λetRe λ dv(f, g∗, λ)

=

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1

}

e

[

s(1+b−β
+ )

1/β
+t

]

Re λ
dv(f, g∗, λ)

since f ∈
⋂

t≥0

D(etA), by Proposition 2.1;

< ∞.

Also, for any s > 0, t ≥ 0 and an arbitrary n ∈ N,

(4.17) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)
∣

∣

∣
es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)\P
β
b+

∣

∣

∣
es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

+ sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ<1, es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

+ sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1, es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

→ 0, n → ∞.

Indeed, since, due to the boundedness of the sets

σ(A) \ P
β
b+

and
{

λ ∈ σ(A) ∩ P
β
b+

∣

∣

∣
Re λ < 1

}
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and the continuity of the integrated function on C, the sets
{

λ ∈ σ(A) \ P
β
b+

∣

∣

∣
es|λ|

1/β

etRe λ > n
}

and
{

λ ∈ σ(A) ∩ P
β
b+

∣

∣

∣
Re λ < 1, es|λ|

1/β

etRe λ > n
}

are empty for all sufficiently large n ∈ N, we immediately infer that, for any s > 0 and
t ≥ 0,

lim
n→∞

sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)\P
β
b+

∣

∣

∣
es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ) = 0

and

lim
n→∞

sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ<1, es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ) = 0.

Further, for any s > 0, t ≥ 0, and an arbitrary n ∈ N,

sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1, es|λ|1/β etRe λ>n

}

es|λ|
1/β

etRe λ dv(f, g∗, λ)

as in (4.16);

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{

λ∈σ(A)∩P
β
b+

∣

∣

∣
Re λ≥1, es|λ|1/β etRe λ>n

}

e

[

s(1+b−β
+ )

1/β
+t

]

Re λ
dv(f, g∗, λ)

since f ∈
⋂

t≥0

D(etA), by (2.8);

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

4M

∥

∥

∥

∥

EA

({

λ ∈ σ(A) ∩ P
β
b+

∣

∣

∣
Re λ ≥ 1, es|λ|

1/β

etRe λ > n
})

e

[

s(1+b−β
+ )

1/β
+t

]

A
f

∥

∥

∥

∥

‖g∗‖

≤ 4M

∥

∥

∥

∥

EA

({

λ ∈ σ(A) ∩ P
β
b+

∣

∣

∣
Re λ ≥ 1, es|λ|

1/β

etRe λ > n
})

e

[

s(1+b−β
+ )

1/β
+t

]

A
f

∥

∥

∥

∥

by the strong continuity of the s.m.;

→ 4M

∥

∥

∥

∥

EA (∅) e

[

s(1+b−β
+ )

1/β
+t

]

A
f

∥

∥

∥

∥

= 0, n → ∞.

By Proposition 2.1 and the properties of the o.c. (see [5, Theorem XVIII.2.11 (f)]),
(4.15) and (4.17) jointly imply that, for any t ≥ 0 and s > 0,

f ∈ D(es|A|1/βetA).

In view of (2.13), the latter implies that, for each t ≥ 0,

y(t) = etAf ∈
⋂

s>0

D(es|A|1/β ) = E
(β)(A).

Whence, by Proposition 3.1, we infer that

y(·) ∈ E
(β)([0,∞), X),

which completes the proof of the implication (iii) ⇒ (i).
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Let us prove the remaining implication (ii) ⇒ (iii) by contrapositive assuming that,

for any b+ > 0, the set σ(A) \P
β
b+

is unbounded. In particular, this means that, for any

n ∈ N, unbounded is the set

σ(A) \ P
β
n−2 =

{

λ ∈ σ(A)
∣

∣

∣
Re λ < n−2| Im λ|1/β

}

.

Hence, we can choose a sequence of points {λn}
∞
n=1 in the complex plane as follows:

λn ∈ σ(A), n ∈ N,

Re λn < n−2| Im λn|
1/β , n ∈ N,

λ0 := 0, |λn| > max [n, |λn−1|] , n ∈ N.

The latter implies, in particular, that the points λn, n ∈ N, are distinct (λi 6= λj ,
i 6= j).

Since, for each n ∈ N, the set
{

λ ∈ C

∣

∣

∣
Re λ < n−2| Im λ|1/β , |λ| > max

[

n, |λn−1|
]

}

is open in C, along with the point λn, it contains the open disk

∆n := {λ ∈ C | |λ− λn| < εn}

of some radius εn > 0, i.e., for each λ ∈ ∆n,

(4.18) Re λ < n−2| Im λ|1/β and |λ| > max
[

n, |λn−1|
]

.

Furthermore, under the circumstances, we can regard the radii of the disks to be small
enough so that

0 < εn <
1

n
, n ∈ N, and

∆i ∩∆j = ∅, i 6= j (i.e., the disks are pairwise disjoint).
(4.19)

Whence, by the properties of the s.m.,

EA(∆i)EA(∆j) = 0, i 6= j,

where 0 stands for the zero operator on X.
Observe also, that the subspaces EA(∆n)X, n ∈ N, are nontrivial since

∆n ∩ σ(A) 6= ∅, n ∈ N,

with ∆n being an open set in C.
By choosing a unit vector en ∈ EA(∆n)X, n ∈ N, we obtain a vector sequence {en}

∞
n=1

such that

(4.20) ‖en‖ = 1, n ∈ N, and EA(∆i)ej = δijej , i, j ∈ N,

where δij is the Kronecker delta.
As is easily seen, (4.20) implies that the vectors en, n ∈ N, are linearly independent.
Furthermore, there is an ε > 0 such that

(4.21) dn := dist (en, span ({ei | i ∈ N, i 6= n})) ≥ ε, n ∈ N.

Indeed, the opposite implies the existence of a subsequence
{

dn(k)
}∞

k=1
such that

dn(k) → 0, k → ∞.

Then, by selecting a vector

fn(k) ∈ span ({ei | i ∈ N, i 6= n(k)}) , k ∈ N,

such that

‖en(k) − fn(k)‖ < dn(k) + 1/k, k ∈ N,
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we arrive at

1 = ‖en(k)‖ since, by (4.20), EA(∆n(k))fn(k) = 0;

= ‖EA(∆n(k))(en(k) − fn(k))‖ ≤ ‖EA(∆n(k))‖‖en(k) − fn(k)‖ by (2.6);

≤ M‖en(k) − fn(k)‖ ≤ M
[

dn(k) + 1/k
]

→ 0, k → ∞,

which is a contradiction proving (4.21).
As follows from the Hahn-Banach Theorem, for any n ∈ N, there is an e∗n ∈ X∗ such

that

(4.22) ‖e∗n‖ = 1, n ∈ N, and 〈ei, e
∗
j 〉 = δijdi, i, j ∈ N.

Let us consider separately the two possibilities concerning the sequence of the real
parts {Re λn}

∞
n=1: its being bounded above or unbounded above.

First, suppose that the sequence {Re λn}
∞
n=1 is bounded above, i.e., there is such an

ω > 0 that

(4.23) Re λn ≤ ω, n ∈ N,

and consider the element

f :=

∞
∑

k=1

k−2ek ∈ X,

which is well defined since
{

k−2
}∞

k=1
∈ l1 (l1 is the space of absolutely summable se-

quences) and ‖ek‖ = 1, k ∈ N (see (4.20)).
In view of (4.20), by the properties of the s.m.,

(4.24) EA(∪
∞
k=1∆k)f = f and EA(∆k)f = k−2ek, k ∈ N.

For any t ≥ 0 and an arbitrary g∗ ∈ X∗,

(4.25)

∫

σ(A)

etRe λ dv(f, g∗, λ) by (4.24);

=

∫

σ(A)

etRe λ dv(EA(∪
∞
k=1∆k)f, g

∗, λ) by (2.10);

=

∞
∑

k=1

∫

σ(A)∩∆k

etRe λ dv(EA(∆k)f, g
∗, λ) by (4.24);

=

∞
∑

k=1

k−2

∫

σ(A)∩∆k

etRe λ dv(ek, g
∗, λ)

since, for λ ∈ ∆k, by (4.23) and (4.19), Re λ = Re λk + (Re λ− Re λk)

≤ Re λk + |λ− λk| ≤ ω + εk ≤ ω + 1;

≤ et(ω+1)
∞
∑

k=1

k−2

∫

σ(A)∩∆k

1 dv(ek, g
∗, λ) = et(ω+1)

∞
∑

k=1

k−2v(ek, g
∗,∆k)

by (2.7);

≤ et(ω+1)
∞
∑

k=1

k−24M‖ek‖‖g
∗‖ = 4Met(ω+1)‖g∗‖

∞
∑

k=1

k−2 < ∞.

Similarly, for any t ≥ 0 and an arbitrary n ∈ N,
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(4.26) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

etRe λ dv(f, g∗, λ)

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

et(ω+1)
∞
∑

k=1

k−2

∫

{λ∈σ(A) | etRe λ>n}∩∆k

1 dv(ek, g
∗, λ)

by (4.24);

= et(ω+1) sup
{g∗∈X∗ | ‖g∗‖=1}

∞
∑

k=1

∫

{λ∈σ(A) | etRe λ>n}∩∆k

1 dv(EA(∆k)f, g
∗, λ)

by (2.10);

= et(ω+1) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

1 dv(EA(∪
∞
k=1∆k)f, g

∗, λ)

by (4.24);

= et(ω+1) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

1 dv(f, g∗, λ) by (2.8);

≤ et(ω+1) sup
{g∗∈X∗ | ‖g∗‖=1}

4M
∥

∥EA

({

λ ∈ σ(A)
∣

∣ etRe λ > n
})

f
∥

∥ ‖g∗‖

≤ 4Met(ω+1)
∥

∥EA

({

λ ∈ σ(A)
∣

∣ etRe λ > n
})

f
∥

∥

by the strong continuity of the s.m.;

→ 4Met(ω+1) ‖EA (∅) f‖ = 0, n → ∞.

By Proposition 2.1, (4.25) and (4.26) jointly imply that

f ∈
⋂

t≥0

D(etA),

and hence, by Theorem 2.1,

y(t) := etAf, t ≥ 0,

is a weak solution of equation (1.1).
Let

(4.27) h∗ :=

∞
∑

k=1

k−2e∗k ∈ X∗,

the functional being well defined since {k−2}∞k=1 ∈ l1 and ‖e∗k‖ = 1, k ∈ N (see (4.22)).
In view of (4.22) and (4.21), we have

(4.28) 〈en, h
∗〉 = 〈ek, k

−2e∗k〉 = dkk
−2 ≥ εk−2, k ∈ N.

For any s > 0,
∫

σ(A)

es|λ|
1/β

dv(f, h∗, λ) by (2.10) as in (4.25);

=
∞
∑

k=1

k−2

∫

σ(A)∩∆k

es|λ|
1/β

dv(ek, h
∗, λ) since, for λ ∈ ∆k, by (4.18), |λ| ≥ k;

≥
∞
∑

k=1

k−2esk
1/β

∫

σ(A)∩∆k

1 dv(ek, h
∗, λ) =

∞
∑

k=1

k−2esk
1/β

v(ek, h
∗,∆k)
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≥
∞
∑

k=1

k−2esk
1/β

|〈EA(∆k)ek, h
∗〉| by (4.20) and (4.28);

≥
∞
∑

k=1

εk−4esk
1/β

= ∞.

Whence, by Proposition 2.1 and (2.13), we infer that

y(0) = f /∈
⋃

s>0

D(es|A|1/β ) = E
{β}(A)

which, by Proposition 3.1, implies that the weak solution y(t) = etAf , t ≥ 0, of equation
(1.1) does not belong to the Gevrey class E {β} ([0,+∞), X) of Roumieu type and com-
pletes our consideration of the case of the sequence’s {Re λn}

∞
n=1 being bounded above.

Now, suppose that the sequence {Re λn}
∞
n=1 is unbounded above.

Therefore, there is a subsequence {Re λn(k)}
∞
k=1 such that

(4.29) Re λn(k) ≥ k, k ∈ N.

Consider the elements

f :=

∞
∑

k=1

e−n(k) Re λn(k)en(k) ∈ X and h :=

∞
∑

k=1

e−
n(k)

2 Re λn(k)en(k) ∈ X,

well defined since, by (4.29),
{

e−n(k) Re λn(k)

}∞

k=1
,
{

e−
n(k)

2 Re λn(k)

}∞

k=1
∈ l1

and ‖en(k)‖ = 1, k ∈ N (see (4.20)).
By (4.20),

(4.30) EA(∪
∞
k=1∆n(k))f = f and EA(∆n(k))f = e−n(k) Re λn(k)en(k), k ∈ N,

and

(4.31) EA(∪
∞
k=1∆n(k))h = h and EA(∆n(k))h = e−

n(k)
2 Re λn(k)en(k), k ∈ N.

For any t ≥ 0 and an arbitrary g∗ ∈ X∗,

(4.32)

∫

σ(A)

etRe λ dv(f, g∗, λ) by (2.10) as in (4.25);

=

∞
∑

k=1

e−n(k) Re λn(k)

∫

σ(A)∩∆n(k)

etRe λ dv(en(k), g
∗, λ)

since, for λ ∈ ∆n(k), by (4.19), Re λ = Re λn(k) + (Re λ− Re λn(k))

≤ Re λn(k) + |λ− λn(k)| ≤ Re λn(k) + 1;

≤
∞
∑

k=1

e−n(k) Re λn(k)et(Re λn(k)+1)

∫

σ(A)∩∆n(k)

1 dv(en(k), g
∗, λ)

= et
∞
∑

k=1

e−[n(k)−t] Re λn(k)v(en(k), g
∗,∆n(k)) by (2.7);

≤ et
∞
∑

k=1

e−[n(k)−t] Re λn(k)4M‖en(k)‖‖g
∗‖ = 4Met‖g∗‖

∞
∑

k=1

e−[n(k)−t] Re λn(k)

< ∞.
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Indeed, for all k ∈ N sufficiently large so that

n(k) ≥ t+ 1,

in view of (4.29),

e−[n(k)−t] Re λn(k) ≤ e−k.

Similarly, for any t ≥ 0 and an arbitrary,

(4.33) sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

etRe λ dv(f, g∗, λ)

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

et
∞
∑

k=1

e−[n(k)−t] Re λn(k)

∫

{λ∈σ(A) | etRe λ>n}∩∆n(k)

1 dv(en(k), g
∗, λ)

= et sup
{g∗∈X∗ | ‖g∗‖=1}

∞
∑

k=1

e−[
n(k)

2 −t]Re λn(k)e−
n(k)

2 Re λ(k)

∫

{λ∈σ(A) | etRe λ>n}∩∆n(k)

1 dv(en(k), g
∗, λ)

since, by (4.29), there is an L > 0 such that e−[
n(k)

2 −t]Re λn(k) ≤ L, k ∈ N;

≤ Let sup
{g∗∈X∗ | ‖g∗‖=1}

∞
∑

k=1

e−
n(k)

2 Re λn(k)

∫

{λ∈σ(A) | etRe λ>n}∩∆n(k)

1 dv(en(k), g
∗, λ)

by (4.31);

= Let sup
{g∗∈X∗ | ‖g∗‖=1}

∞
∑

k=1

∫

{λ∈σ(A) | etRe λ>n}∩∆n(k)

1 dv(EA(∆n(k))h, g
∗, λ)

by (2.10);

= Let sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

1 dv(EA(∪
∞
k=1∆n(k))h, g

∗, λ)

by (4.31);

= Let sup
{g∗∈X∗ | ‖g∗‖=1}

∫

{λ∈σ(A) | etRe λ>n}

1 dv(h, g∗, λ) by (2.8);

≤ Let sup
{g∗∈X∗ | ‖g∗‖=1}

4M
∥

∥EA

({

λ ∈ σ(A)
∣

∣ etRe λ > n
})

h
∥

∥ ‖g∗‖

≤ 4LMet‖EA({λ ∈ σ(A) | etRe λ > n})h‖

by the strong continuity of the s.m.;

→ 4LMet ‖EA (∅)h‖ = 0, n → ∞.

By Proposition 2.1, (4.32) and (4.33) jointly imply that

f ∈
⋂

t≥0

D(etA),

and hence, by Theorem 2.1,
y(t) := etAf, t ≥ 0,

is a weak solution of equation (1.1).
Since, for any λ ∈ ∆n(k), k ∈ N, by (4.19), (4.29),
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Re λ = Re λn(k) − (Re λn(k) − Re λ) ≥ Re λn(k) − |Re λn(k) − Re λ|

≥ Re λn(k) − εn(k) ≥ Re λn(k) − 1/n(k) ≥ k − 1 ≥ 0

and, by (4.18),

Re λ < n(k)−2| Im λ|1/β ,

we infer that, for any λ ∈ ∆n(k), k ∈ N,

|λ| ≥ | Im λ| ≥
[

n(k)2 Re λ
]β

≥
[

n(k)2(Re λn(k) − 1/n(k))
]β

.

Using this estimate, for an arbitrary s > 0 and the functional h∗ ∈ X∗ defined by
(4.27), we have

(4.34)

∫

σ(A)

es|λ|
1/β

dv(f, h∗, λ) by (2.10) as in (4.25);

=
∞
∑

k=1

e−n(k) Re λn(k)

∫

σ(A)∩∆n(k)

es|λ|
1/β

dv(en(k), h
∗, λ)

≥
∞
∑

k=1

e−n(k) Re λn(k)esn(k)
2(Re λn(k)−1/n(k))v(en(k), h

∗,∆n(k))

≥
∞
∑

k=1

e−n(k) Re λn(k)esn(k)
2(Re λn(k)−1/n(k))|〈EA(∆n(k))en(k), h

∗〉|

by (4.20) and (4.28);

≥
∞
∑

k=1

εe(sn(k)−1)n(k) Re λn(k)−sn(k)n(k)−2 = ∞.

Indeed, for all k ∈ N sufficiently large so that

sn(k) ≥ s+ 2,

in view of (4.29),

e(sn(k)−1)n(k) Re λn(k)−sn(k)n(k)−2 ≥ e(s+1)n(k)−sn(k)n(k)−2 = en(k)n(k)−2

→ ∞, k → ∞.

By Proposition 2.1 and (2.13), (4.34) implies that

y(0) = f /∈
⋃

s>0

D(es|A|1/β ) = E
{β}(A)

which, by Proposition 3.1, further implies that the weak solution y(t) = etAf , t ≥ 0,
of equation (1.1) does not belong to the Gevrey class E {β} ([0,+∞), X) of Roumieu
type and completes our consideration of the case of the sequence’s {Re λn}

∞
n=1 being

unbounded above.
With every possibility concerning {Re λn}

∞
n=1 considered, the proof by contrapositive

of the implication (ii) ⇒ (iii) is complete and so is the proof of the entire statement. �

For β = 1, we obtain the following important particular case.

Corollary 4.1 (Characterization of the entireness of weak solutions).
Let A be a scalar type spectral operator in a complex Banach space (X, ‖ · ‖). Every weak
solution of equation (1.1) is an entire vector function iff there is a b+ > 0 such that the
set σ(A) \ P1

b+
, where

P
1
b+ := {λ ∈ C |Re λ ≥ b+| Im λ|} ,
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is bounded (see Fig. 2).

Figure 2

Observe that the region P1
b+

is an angular sector with the vertex at the origin, bisected

by the positive x-semi-axis (see Fig. 2).
Thus, we have obtained generalizations of Theorem 4.1 and the entireness characteri-

zation contained in [21], the counterparts for a normal operator A in a complex Hilbert
space.

As follows from the prior characterization, all weak solutions of equation (1.1) with a
scalar type spectral operator A in a complex Banach space can attain the level of strong
smoothness as high as entireness while the operator A remains unbounded, e.g., when A
is a semibounded below self-adjoint unbounded operator in a complex Hilbert space (see
[21, Corollary 4.1] and, for symmetric operators, [21, Theorem 6.1]). This fact contrasts
the situation when a closed densely defined linear operator A in a complex Banach space
generates a C0-semigroup, in which case the strong differentiability of all weak solutions
of (1.1) at 0 immediately implies boundedness for A (cf. [6], see also [24]).

5. Certain inherent smoothness improvement effects

Theorem 4.1 implies, in particular, that

if, for some 1 ≤ β < ∞, every weak solution of equation (1.1) with
a scalar type spectral operator A in a complex Banach space X belongs
to the Gevrey class E {β} ([0,∞), X) of Roumieu type, then all of them
belong to the narrower Gevrey class E (β) ([0,∞), X) of Beurling type,

which is a jump-like effect of the weak solutions’ smoothness improvement.
Notably, for β = 1, we obtain the following statement:

if every weak solution of equation (1.1) with a scalar type spectral operator
A in a complex Banach space X is analytically continuable into a complex
neighborhood [0,∞) (each one into its own), then all of them are entire
vector functions,

which can be further strengthened as follows.

Proposition 5.1. Let A be a scalar type spectral operator in a complex Banach space
(X, ‖ · ‖). If every weak solution of equation (1.1) is analytically continuable into a
complex neighborhood of 0 (each one into its own), then all of them are entire vector
functions.

Proof. Let us show first that, if a weak solution y(·) of equation (1.1) is analytically
continuable into a complex neighborhood of 0, then y(0) is an analytic vector of the
operator A, i.e.,

y(0) ∈ E
{1}(A).
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Let a weak solution y(·) of equation (1.1) be analytically continuable into a complex
neighborhood of 0. This implies that there is a δ > 0 such that

y(t) =
∞
∑

n=0

y(n)(0)

n!
tn, t ∈ [0, δ].

The power series converging at t = δ, there is a c > 0 such that
∥

∥

∥

∥

y(n)(0)

n!
δn

∥

∥

∥

∥

≤ c, n ∈ Z+.

Whence, considering that, by Proposition 2.2 with I = [0, δ],

y(0) ∈ C∞(A) and y(n)(0) = Any(0), n ∈ Z+,

we infer that

‖Any(0)‖ = ‖y(n)(0)‖ ≤ c
[

δ−1
]n

n!, n ∈ Z+,

which implies

y(0) ∈ E
{1}(A).

Now, let us prove the statement by contrapositive assuming that there is a weak
solution of equation (1.1), which is not an entire vector function. This, by Theorem
4.1 with β = 1, implies that there is a weak solution y(·) of equation (1.1), which is not
analytically continuable into a complex neighborhood of [0,∞). Then, by Proposition
3.1, for some t0 ≥ 0,

y(t0) 6∈ E
{1}(A).

Therefore, for the weak solution

yt0(t) := y(t+ t0), t ≥ 0,

of equation (1.1),

yt0(0) = y(t0) /∈ E
{1}(A),

which, as is shown above, implies that yt0(·) is not analytically continuable into a complex
neighborhood of 0, and hence, completes the proof by contrapositive. �

Thus, we have obtained a generalization of [21, Proposition 5.1], the counterpart for
a normal operator A in a complex Hilbert space.

6. Concluding remark

Due to the scalar type spectrality of the operator A, Theorem 4.1 is stated exclusively
in terms of the location of its spectrum in the complex plane as well as the celebrated
Lyapunov stability theorem [18] (cf. [6, Ch. I, Theorem 2.10]), and thus, is intrinsically
qualitative (cf. [27]).
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