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CONTINUOUS SYMMETRIC 3-HOMOGENEOUS POLYNOMIALS ON
SPACES OF LEBESGUE MEASURABLE ESSENTIALLY BOUNDED
FUNCTIONS

T. V. VASYLYSHYN AND A. V. ZAGORODNYUK

ABSTRACT. Vector spaces of all homogeneous continuous polynomials on infinite di-
mensional Banach spaces are infinite dimensional. But spaces of homogeneous contin-
uous polynomials with some additional natural properties can be finite dimensional.
The so-called symmetry of polynomials on some classes of Banach spaces is one of
such properties.

In this paper we consider continuous symmetric 3-homogeneous polynomials on
the complex Banach space Lo of all Lebesgue measurable essentially bounded complex-
valued functions on [0, 1] and on the Cartesian square of this space. We construct
Hamel bases of spaces of such polynomials and prove formulas for representing of
polynomials as linear combinations of base polynomials.

Results of the paper can be used for investigations of algebras of symmetric con-
tinuous polynomials and of symmetric analytic functions on Lo, and on its Cartesian
square. In particular, in order to describe appropriate topologies on the spectrum
(the set of complex valued homomorphisms) of a given algebra of analytic functions,
it is useful to have representations for polynomials, obtained in this paper.

1. INTRODUCTION

Polynomials and analytic functions on a Banach space X, which are invariant (sym-
metric) with respect to a group of operators G(X) acting on X, were studied by a number
of authors [1-10,12-14,18-23]. If X has a symmetric structure, like has a symmetric
basis (a countable basis such that for every element of a unit ball, every element, formed
by a permutation of its coordinates with respect to this basis, belongs to the unit ball;
see, e.g., [15, Definition 3.a.1, p. 113]) or is rearrangement invariant, then it is natural to
consider the case when G(X) is a group of operators which preserve this structure (see,
e.g., [11]). In particular, if X is a rearrangement invariant Banach space of Lebesgue
measurable functions on [0, 1] (for every function, which belongs to the space, a composi-
tion of this function with any bijection of [0, 1], which preserves the measure, also belongs
to the space; see, e.g., [16, Definition 2.a.1, p. 117]), then G(X) is used to be the group
of all bijections of [0, 1], which preserve the measure. Firstly symmetric polynomials on
the real Banach space of Lebesgue measurable integrable in a power p functions on [0, 1],
where 1 < p < 0o, were studied by Nemirovski and Semenov in [18]. Some of their results
were generalized to real separable rearrangement invariant Banach spaces of Lebesgue
measurable functions by Gonzdlez, Gonzalo and Jaramillo in [9].

In [7] the authors together with Galindo investigated the algebra of all symmetric
continuous polynomials and the algebra of all symmetric entire functions of bounded
type on the complex Banach space L, of all Lebesgue measurable essentially bounded
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complex-valued functions on [0, 1]. In particular, it was constructed the so-called alge-
braic basis of the algebra of all symmetric continuous polynomials on L, i.e., a sequence
of some “elementary” symmetric continuous polynomials on L., such that every sym-
metric continuous polynomial on L, can be uniquely represented as a linear combination
of products of powers of these “elementary” polynomials. Consequently, such products
form Hamel bases in the spaces of homogeneous symmetric continuous polynomials on
L. Although the existence and the uniqueness of the above-mentioned representation
are proved in [7, Theorem 4.3], a constructive method of the evaluation of its coefficients
is not known in the general case. But the information about these coefficients is impor-
tant for the investigation of symmetric analytic functions on L,. In particular, it might
help to answer the following open question: whether every entire symmetric function on
L is bounded on bounded subsets of L.,?

Formulas for the evaluation of the coefficients of the above-mentioned representations
for 1-homogeneous (linear functionals) and 2-homogeneous symmetric continuous poly-
nomials on L, were constructed in [19] and [20] respectively. Also in [20] analogical
formulas were constructed for 1-homogeneous and 2-homogeneous symmetric (“block-
symmetric” in the terminology of [20]) continuous polynomials on the Cartesian square
of the space L.

In this paper we consider the spaces of 3-homogeneous symmetric continuous polyno-
mials on L., and on the Cartesian square of L. In Section 3 we establish some properties
of bilinear forms on L. Also we construct formulas for the evaluation of coefficients of
the representation of a symmetric continuous 3-homogeneous polynomial on L., in the
form of a linear combination of elements of the respective Hamel basis. In Section 4 we
construct a Hamel basis of the space of 3-homogeneous symmetric continuous polynomi-
als on the Cartesian square of L., and construct formulas for the evaluation of coefficients
in the respective representation.

Results of the paper can be used for investigations of algebras of symmetric continuous
polynomials and of symmetric analytic functions on L., and on its Cartesian square.
In particular, in order to describe appropriate topologies on the spectrum (the set of
complex valued homomorphisms) of a given algebra of analytic functions, it is useful to
have representations for polynomials, obtained in this paper.

2. PRELIMINARIES

A mapping P : X — C, where X is a complex Banach space, is called an n-homo-
geneous polynomial if there exists an n-linear symmetric (with respect to the permuta-
tions of its arguments) form Ap : X™ — C such that P is the restriction to the diagonal
of Ap, ie. P(x) = Ap(x,...,x) for every € X. The form Ap is called the n-linear

———

symmetric form associated with P. It is known (see, e.g., [17, Theorem 1.10]) that Ap
can be recovered from P by means of the so-called Polarization Formula:

1
(1) Ap(x1,...,2y) = Y eenPlera o+ enzn).

nl2n
€1,..,6n==%1

The Polarization Formula implies that Ap is continuous if and only if P is continuous.
Note that in the definition of an n-homogeneous polynomial it is sufficient to claim
the existence of an n-linear (not necessarily symmetric) form A : X™ — C such that
P(z) = A(z,...,x) because every n-linear form can be symmetrized by means of the
——

n
symmetrization operator

. 1
A (xlw"uxn) = E Z A(‘r‘r(l)7"‘7x7'(n))7
" TES,
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where S,, is the group of all the permutations on the set {1,...,n}, and the restriction
of A® to the diagonal is equal to the restriction of A to the diagonal.

Let p be the Lebesgue measure on [0, 1] and L, be the complex Banach space of all
Lebesgue measurable essentially bounded complex-valued functions z on [0, 1] with norm

[2]loc = esssup,epo,y|2(2)]-

Let = be the set of all bijections o : [0,1] — [0, 1] such that both ¢ and c~! are Lebesgue
measurable and both ¢ and 0! preserve the measure. A function F : Loo — C is called
E-symmetric (or just symmetric when the context is clear) if for every x € Lo, and 0 € =

(2) F(zoo)=F(x).

By [7, Remark 4.1], for every n-homogeneous Z-symmetric polynomial @ its associated
symmetric n-linear form Ag has the property that

(3) Ag(zr00,...,2n00) = Ag(z1,...,2n)

for every z1,...,x, € Ly and 0 € =.

For every n € NU {0} we define R, : Lo« — C by R, (z) = fol a™(t) dt. The functions
R, are called the elementary symmetric polynomials. In [7, Theorem 4.3] it is shown that
every continuous Z-symmetric n-homogeneous polynomial P : Lo, — C can be uniquely

represented as

k1 pk ko
(4) P = E Qg k.. B Re® o Ry
k14+2ko+---+nk,=n

where ki, ko, ..., k, € NU{0} and o, k,,..x, € C. In particular, for every continuous
linear E-symmetric functional f : Lo, — C and for every € Lo,
(5) f(@) = f(1)Ri(z).

Note that formula (5) was firstly proved in [19]. By (4), the set of polynomials
{RFRY .. RE ki ko, .. kn € NU{O}, ki + 2ko + - + 1k, =n}

is a Hamel basis of the vector space of all continuous =-symmetric n-homogeneous poly-
nomials.

Let (L )? be the Cartesian square of the space Lo, endowed with norm ||(z,y)| =
max{||7||so, |y]lc }- We say that a function F : (Lo)? — C is Z-symmetric if for every
(,9) € (Le)? and 0 € =

F((zoao,yoo)) = F((z,y)).

Note that such functions are also called block-symmetric (see [20]).
For every E C [0,1] let

1, ifteE
1E(t){o, ift € 0,1\ E.

Let
1= 1[0,1] and r = 1[07%] — 1[%71]

3. SYMMETRIC 3-HOMOGENEOUS POLYNOMIALS ON L,

By (4), every continuous Z-symmetric 3-homogeneous polynomial on L., can be
uniquely represented in the form aR$ + BR; Ry + vR3, where a, 3,y € C. Consequently,
the set of polynomials {R3, Ri Ry, R3} is a Hamel basis of the space of continuous =-
symmetric 3-homogeneous polynomials on L. In this section we shall construct formu-
las for the evaluation of coefficients «, 3,~. First, we prove some properties of bilinear
forms.
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Proposition 3.1. Let B : (Ly)? — C be a continuous bilinear symmetric form such
that

(6) B(zoo,yoo) = B(xz,y)

for every x,y € Ly, and o € Z. Then

1
Ba.y) = aRs(a)Raly) + 8 | a(t)y(t) .
where « = B(1,1) — B(r,r) and 8 = B(r,r).

Proof. Let B be the restriction of B to the diagonal. Since B is a continuous bilinear
symmetric form, B is a continuous 2-homogeneous polynomial. By (6), B is Z-symmetric.
By (4), there exist coefficients o and 8 such that

(7) B = aR?+ BR,.
By (7), B(1) = a + 8 and B(r) = 8. Therefore, o = B(1,1) — B(r,r) and 8 = B(r,r).
By the Polarization Formula,
B(x,y) = 1 (B +y) - Bla—y)).
Therefore,
Bla,y) = (aR3(a +y) + 6Rae +y) ~ aR}(x —y) ~ BRofx — ).
It can be checked that
Ri(z +y) — Ri(z — y) = 4R (2) Ri(y)
and )
Roe +y) — Ra(e —y) = 4/0 2By (t) dt.

Therefore,

Bla,y) = aRi(2)Ri(y) + 8 / 2(t)y(t) dt.

O

[1]

We define linear continuous operators ¢y, 75 : Loo — Lo and mappings vy, v : = —
by

i = { 500 el

o)) ={ Yy 1y el
wioe = { 7@ H ey
w@0={ Yoo _14 1, e

Lemma 3.1. For every x € Lo, and 0 € 2 we have

(@)

so(x 0 0) = s9(x) 0 va(0),
1(x) = 1 (x) 0 va(0),
o(x) = sa(x) ov1(0).
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Proof. Let us prove the first equality. For ¢ € [0, 3] we have v1(0)(t) = 20(2t). Since
o(2t) € [0,1], it follows that 1o(2t) € [0, 3]. Therefore,
71(2)(v1(0) (1) = 2(2v1(0)(1)) = 2(0(2)) = 21 (z 0 )(D).
For t € (3,1] we have vy (0)(t) = t. Therefore,
71(2)(v1(0)(t)) = 0 = s (z 0 0)(D).
Thus, s (x) o v1(0) = 3¢1(x 0 7).

The second equality can be proved analogically to the first one.
Let us prove the third equality. For t € [0, 1) we have vs(0)(t) = ¢t and so

71(2)(v2(0)(t) = s (2)(t).
Since v2(0)(t) € [5,1] for t € [1,1], it follows that
1(2)(v2(0)(t)) = 0

in this case. Thus, s (x) = 51 (x) o va(0).
The fourth equality can be proved analogically to the third one. O

Proposition 3.2. Let B : (Ly)? — C be a continuous bilinear form such that
(8) B(zoo,yoo)= B(z,y)
for every x,y € Ly, and 0 € Z. Then B is symmetric.

Proof. The bilinear form B can be represented as the sum of symmetric and antisym-
metric forms

B*(z,y) = 3 (Bx,y) + B(y, )
and
(9 B*(r,y) = 5 (B(r.y) - B(y.)
respectively.
By (8) and (9),
(10) B*(zoo,yo0) = B*(z,y)

for every z,y € Lo, and 0 € =.
Let us show that B*(z,y) = 0 for every z,y € L.
We prove that Ba(l[o,%], 1[%71]) = 0. By the antisymmetry of B?,
B* (Lo, L3.1) = =B (Lgg11, Lo, 1)
On the other hand, on substituting o(t) = 1 — ¢ into (10) we obtain
B* (o, 30: Lig.n) = B* (1,1 0 0y Ly 0 0) = B*(Lpy 17, Lo, 3y)-

2
Hence, B¢ (1[07%], 1[%71]) = 0.
For a fixed y € Lo the mapping
(11) [ BGala), 72(y))
is a continuous linear functional. For x € L, and 0 € 2
fxoo) =B (ro0),x(y)).
By Lemma 3.1, s¢1(z 0 0) = 51 (x) o v1(0) and s2(y) = s2(y) o v1(o). Therefore, by (10),
B (a1 (x 0 0),30(y)) = B*(5aa(x) o vi(0), 32(y) o vi(0)) = B*(>a(x), 52(y)).
Thus, f is Z-symmetric. By (5),

B (a(x), 72(y)) = B (3a(1), s2(y)) Ra ().
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Analogically, for the fixed x € L, the mapping
g:y = BGa(x), 2(y))

is a continuous linear =-symmetric functional. Therefore,

B (5a1(1), 522(y)) = B*(5a(1), 222(1)) R (y)-
Thus, for every x,y € Ly

B (a1 (2), 52(y)) = B (5.(1), 222 (1)) Ra () Ra (y)-
Taking into account s¢1(1) = 1o 17, 22(1) = 1j1 4) and B*(1jg 17,11 1) = 0, we have

(12) B (s (), 702(y)) = 0
for every z,y € Lo
Let E C [0, 3] and F C [%,1] be measurable sets. On substituting = = 5 *(1x) and

y = 55 ' (1F) into (12) we obtain

B*(1g,1p) = 0.
Let G and H be disjoint measurable subsets of [0,1] such that u(G),u(H) < 1. By [7,
Proposition 2.2], there exists the mapping og, g € E such that 1g = 1[0,a) © 0G,m and
lg = ljgaty © 0c,H, Where a = u(G),b = pu(H). Let

t—a+1i, ifte [a a+b)

o1(t) =4 t—%+4a, ifte[i I+

t, otherwise.

Since 1[0,(1] = 1[0 al 001 and 1[a a+b) = 1[1 1+b] co1, it follows that lG = 1[07(1] 00100G,H

and 1y = 1[ 44 © 010 0G,H- Therefore,

b3
B(1g,1g) = (1[0,(1] 00100G,H, 1[%7%4_()] 0010 UG,H) = Ba(l[o’a], 1[%7%_’_{)]) =0.
Thus, B%(1g,1g) = 0 for every disjoint measurable subsets G, H C [0, 1], such that

M(G)a M(H> < i
Let G and H be arbitrary disjoint measurable subsets of [0, 1]. Note that

4 4
1G:Z]'G-7 and ].H:ZlHj,

j=1
where G; = G N [%, ﬂ and H; = HN []T’ i] for j € {1,...,4}. Therefore,

4 4
“(a,1m) =YY B"(lg, 1m,)-

j=1 k=
Since G and H are disjoint, it follows that G; and Hj are disjoint for every j,k €
{1,...,4}. Also note that u(G;),u(H;) < % for every j € {1,...,4}. Therefore,
B*(G;, H) = 0 for every j,k € {1,...,4}. Consequently, B*(1g,1x) = 0.
Let G and H be arbitrary measurable subsets of [0, 1] (not necessarily disjoint). Then
l¢ =lgna +1le\p and 1lp =lgnm + lme-

Therefore,

B*(1g,1x) = B*(1gnu, lenn) + B*(lgna, 1m\a)
+ B*(1g\u: lanm) + B*(levw, lma)-

Since B® is antisymmetric, B*(1gnm, leng) = —B*(lgnm, legng) = 0. Since G N H
and H \ G are disjoint, B*(lgnm, lg\¢) = 0. Analogically, B*(1g\m, lgng) = 0 and
B*(1g\m;1m\a¢) = 0. Thus, B*(1g,1x) = 0 for every measurable sets G, H C [0, 1].
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Note that the set of all simple measurable functions is dense in L.,. Let x and y be
simple measurable functions. Then there exist complex numbers ci,...,ca,dq, ..., dy
and measurable sets Cy,...,Cyr, Dy, ...,Dn C [0,1], where M, N € N, such that

M N
J;:chlcj and y:Zdlej.
j=1

Jj=1

Therefore,
M N
B(z,y) =Y > ¢dB(l¢,,1p,) = 0.

Thus, B%(x,y) = 0 for every simple measurable functions z and y. By the continuity of
B® we have that B%(x,y) = 0 for every x,y € L. Thus, the form B is symmetric. O

Let us find the coefficients in (4) for a continuous 3-homogeneous E-symmetric poly-
nomial on L.

Proposition 3.3. Let Q) be a continuous 3-homogeneous Z-symmetric polynomial on
Lo. Then

(13) Q = aR} + SRRy + yRs,
where
o = 644900, 113400 113 91):
B = 4840(Lo. 13, 1.3 i3.41) — 4840 (L3 1ig - Lig),
7 =4Qp,17) = 12401041, Lo, 415 113, 31) + 840 (Lo, 27 12,115 18,97)

and Ag is the 3-linear symmetric form associated with Q.

Proof. Note that the existence of decomposition (13) and the uniqueness of coefficients
a, f and v are proved in [7, Theorem 4.3].
By (13),

Q(1) = aR}(1) + BR1(1)R2(1) +vRs(1)

(14) Q(L,1) = aRi(10,1)) + BR1(1, 1)) Ra(L)0,1)) + ¥ R5(1p0 1)
Q(Ljo,1)) = aR¥(10,1)) + BRi(1p,1)) R2(1)0,1)) + Y R5(10, 1))
Note that
1 .
R;(1)=1, R;(lp ) = > Ri(1p,1)) = 1 (J=1,2,3).
Therefore, the equations (14) can be rewritten as
T T
(15) M(0[7677) = (Q(1)7 Q(I[O,%])a Q(I[O,%])) 5
where
1 1 1
M=(1 1 1
R A
64 16 1
Let dl,dg,d3,d4 S [0, 1] be such that dy < dy < d3 < d4 and dy — d; = d4 — d3. Let
t, ift [O,dl)U(d27d3)U(d4,1]
U[dl,d2],[d3,d4](t) = t—dy+ds, ifte [dl,dg]

t—ds+dy, ifte [dg, d4]
Then 0(q, d,),[ds,ds) € Z- Also note that

Ld1,do] © Ody o] [ds,da) = Lids,da)  @0A L[dy d4) © O[dy do),[ds,da] = Ld,da]-
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Let [a,b] C [0,1] and ¢ = %*b. Then, by the Binomial Formula,
QLap) = AQ(La ) Yas)s Lap) = AQ(Lja,e) + Lie,t)s Liase] + Liest)s Liase] + Lie,s))
= Q([a,q)) +3A¢(L[a,c)> Lae]s L)) + 3AQ(Lase)s Leyp)s Lies) + QL))
By (2) and (3), where we set 0 = 04,¢],[c.,t]»
Q(Lep) = Q(Lia,g)
and

A (Lases Liew)s Liew) = AQ(Lie,p)s Liaye) ia,g))-
By the symmetry of Ag,

AQ (e Layes Lare)) = AQ(Lja,e)» Laye]s L[e.))-

Thus,

AQ(La,e)s Lie)s Liew) = AQ(Lare)s Lare)s L))
Therefore,
(16) Q(Lap) = 2Q(Lia,q) + 64 (La,qs Lare) Lep))-
By (16),
(17) Q1) =2Q(1p 31) + 64 (110,13 110,27, 13 17)
and
(18) Q1p0,21) = 2Q(1,17) + 6Aq (11,13, 119,11, 112 1)

By the 3-linearity of Ag and by the symmetry of Ag, taking into account 1p, 1y =

Lig,gp+1pa 3y and g gy = 1pg o+ 1z ),
AQ(L0,115 10,275 112.11) = AQ(Lo,215 10,175 111 27) + ALy, 19, 110,19, 12 17)
+ 240,41 1410 g 31) + 240,37 g g L)
+ A 1y Lt ap Ygsp) + A 1y Lt gy g )
By (3),
AQ(Lpo,31: 10,17 113,37) = Ae(Ljo,17 Lo, 475 12, 1p)s
AQ(Lpo,2p Lo, 1z 1) = AL, 2 Lo, 21 12, 49)
AQ(Lpo,2p 12,15 1z ) = Ae(Ljo,17 11,19 112,99)s
ALy 15 1,19 11g.91) = A (Ljo,17: Lo, 17 1t 1)
AL 1y Lia 4 1gap) = AL, 2y Lo, 17 Lt 1)
where we set
T = O A3
0 =001 41,1300
0 =0[4,3],13.10)
7= 900,41,15.31 ° 915.31.13.3]

and

respectively. Therefore,
(19)  AqQ(l,1p, 10,17, 1
By (17), (1 )and( 9),
(20) Q) =4Q(Ljp,11) + 3640121 10,315 113,3) + 2440 (10,27 12 17 118, 97)-

11
27
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Thus,

T
= K(Q(p,3): Ao, 11 Lo.41- 1t 1) A@ (Lo, 31 1t - Lip3))
where
436 24
K=[2 6 o0
10 0

By (15) and (21),

T _
(.8,7) = MK (Q(Lp,17), Ag(Ljp,1), 10,17 1
We obtain
o =64A4q(L 17, 112 1, 111 29),

274

B =4840(lo. 41, 1.1 ig.41) — 4840 (lp.3p 1g 40 Lig )

1°2

7= 4Q0p.4) — 12400043, Lo, 1y 0) + 840U, g 1,

oo
N

4. SYMMETRIC 3-HOMOGENEOUS POLYNOMIALS ON (L )?

In this section we shall construct a Hamel basis of the space of continuous Z-symmetric

3-homogeneous polynomials on (L. )2.

Let P : (Ls)? — C be a continuous Z-symmetric 3-homogeneous polynomial and let
Ap be the symmetric 3-linear form associated with P. By the Polarization Formula and
by the Z-symmetry of P,

(22) Ap((z100,y100),(2200,y200),(x300,y300)) = Ap((21,51), (¥2,2), (3,93))
for every z1,%2,%3,y1,Y2,ys € Lo and o € =.

Let us define mappings p1,p2 : Loo — (Loo)? by

pl(x) = ($,0), pQ(I) = (O,Z)
For a given J = (j1, jo2,73), j1,J2, 73 € {1, 2}, we define a mapping A : (Lo )® — C by

Aj(x1, 22, 23) = Ap(pj, (21), 4 (22), pjs (%3))-
Note that both p; and p, are continuous linear operators and so Aj; is a continuous
3-linear form. By (22),
(23) Aj(xy00,2900,2300) = Aj(z1,22,23)
for every x1,29,23 € Lo, and o € E.
Let us denote
111
ay ' = As(Lp 23 1o,21: Lo, 3):

(112)
ay :AJ(1[07i]71[0,%]71&7%])7

1

121
ag® = Ay (.31, 3,41, 1o, ):

211
af = A5, 11 20,10 Lo,2):

123
0y = Ayl g 10
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Lemma 4.1. Let C,D,E C [0,1] be disjoint measurable sets such that

(24) As(le,1e,1E) = 8Xu(C)2p(E) + 45 u(C)p(E),
(25) As(le,1p,1c) = 8\ u(C)2u(E) + 45 u(C)u(E),
(26) As(1p,10,10) = 8Asu(C)u(E) + 450 w(C)u(E),
(27) A;(le,1p,1g) =8\ ;u(C)u(D)u(E),
where
Ay = 8@&123)7
VSI) _ 4a5211) . 4@5123), ijz) _ 4aL(]121) _ 40,‘(]123)7 VSB) _ 4af]112) _ 4af]123).

Proof. For a fixed function z € L, let us define B, : (L )? — C,

B.(z,y) = As(3a(z), 5(y), s2(2)).
Note that B, is a continuous bilinear form by the linearity and the continuity of s and
by the 3-linearity and the continuity of A;. For ¢ € Z and & € L, by Lemma 3.1 we
have 3¢, (z 0 0) = 51(x) ov1(0) and sa(x) = 32(x) o v1(0). Therefore,
B.(zoo,yoo)=A;(a(zo0),(yoo0), (z))
= A;(3a(z) ovi(0), 31(y) o v1(0), 522(2) 0 v1(0)).
By (23),
A;j(a(x) ovi(0), sa(y) o vi(0), 22(2) o vi(0)) = Ay (3a(z), 2a(y), 22(2)).
Therefore,
B.(xoo,yo0) = B,(x,y).
By Proposition 3.2, the form B, is symmetric, i.e. B,(y,z) = B,(x,y). By Proposi-
tion 3.1,

B.(z,y) = aRy(z)R1(y) + 6/0 x(t)y(t) dt,

where a = B.(1,1) — B:(r,7), 8 = B.(r,r) (we remind that r = 1p5 1) — 111 1)
Thus,

1
(28) A5G0 (2), 501 (), 522(2)) = aRy () Ra(y) + B / £(t)y(t) dt,

where
a=A;0a(1),2a(1),502(2)) — As(a(r), 2a(r), 2(2)),
B = A;r(5e(r),s1(r), s22(2)).
For fixed « and y the mapping f : z — A;(5e1(x), 501 (y), 22(2)) is a continuous linear
E-symmetric functional, therefore, by (5)

Aj(oa (), 51(y), 202(2)) = Ag(3e1 (), 21 (y), 22(1)) R1(2).
Thus,
a=A;0(a(1),5a(1),2(1)R1(2) — As(a(r), 21 (r), 222(1)) R1(2),
B =A;0e(r),31(r), 22(1))R1(2).
Let us denote

(29) Ay =A;(0a(1),5a(1),5(1) — As(Ga(r), sa(r), (1)),

(30) v = A;Ga(r), 5 (r), 5(1)).
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Now, by (28),

(31) Ay (), 21 (y), 222(2)) = Ay Ri (@) Ra(y) Ra(2) + V§3)/0 z(t)y(t) dt Rq(2).

Note that %1(1) = 1[07%]7%1(7“) = 1[0)%] — 1[
(29) and (30), we obtain

123
Ag =841 33, 11p. 41, Ti3.30) = 8a5 ™,

j and 563(1) = 1f1 4). Substituting this in

11
42

112 123
—4AJ( 0,27 Lo, 175 11, ]) 4AJ(1[07%]71[ (112) 4af] ),

Let us prove the equality (27). Let ¢ = p(C),d =
x =12,y = 1[1 142d) and z = 1 2 into (31). T

A0 lig,g) =4ay
w(D) and e = p(E). We substitute
n this case

%1( )21[076], %1( )—1[1 Lid) %2(2)21[%’%+e],

4’4
Rl (.13) = 20, Rl( ) = Qd, Rl (Z) = 2e.
Note that ([0,2¢] N[5, 1 + 2d]) = 0, since ¢ < . So,

1
/ xz(t)y(t)dt = 0.
0
Thus, by (31),
(32) AJ(l[ch]’l[i,ierP1[%,%+e]):8)‘J0de'
By [7, Proposition 2.2], there exists a mapping o¢,p g € Z such that

le=1pgoocnpE, 1p=1cecrqo0c,pE 1B =1lictrderdre ©0C,D.E-
We define the mapping & : [0,1] — [0,1] by

t, ift€[0,¢)
t+d+e, ift €, 1)

N t—1+c ifte[i +4d)
— 4 ? )4
=9 tie, ifte[%er,%)
t—3+c+d, ifte[?,%+e)
t, ift €[5 +e,1].

It can be checked that o € Z and
1[0’4 - 1[0’6] °0, 1[%7%+d} = 1[Cvc+d] °0, 1[2,2+e] = 1[c+d ctdte] © o
Hence,
g o0 =1 1324000 =lecray 13,2400 " = lerderate)-
Thus,

(33) le =100 'oocpe, lp= Lip1,g0 c toocp.p,s

1 = 1[%,%“} o5 to 0C,D,E-
Therefore, by (23),
As(le,1p,1E) = Ao, L 1 hgps 13 1 4e)-
By (32),
A;(le,1p,1E) = 8\ jede.
Thus, the equality (27) is proved.

Let us prove the equality (24). We substitute z =y = 1jg,24 and z = 1jg 3¢ into (31).
Note that in this case

/1 z(t)y(t) dt = 2c.
0
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Therefore,

(34) Ar(Lo.g Lo 1y, 1) = 8AscPe + 40 ce

By (33), lc = 1j0g0¢ 'oocppand 1p =111 1,00 ' 0ocp g, and so by (23),
(35) As(le,1e,1p) = As(Ljo,gs Lo, 1g, 1 4e))-

qu(lali)ties (34) and (35) imply (24). Equalities (25) and (26) can be proved analogically
o (24). (]

Lemma 4.2. Let C C [0,1] be a measurable set. Then
As(le, 1o, 1e) = agp(C)? + Bru(C)? +v5u(C),

where

(36) ay = 64(1(123)’

(37) 8y = 16( (112) _|_af]121) +a5211)) _ 48af]123),
(38) Ny = 4aF1111) _ 4< (112) 82V 4 a(211)) n 8a§123).

Proof. The restriction of A; to the diagonal, which we denote by Zl\J, is a continuous
3-homogeneous polynomial. By (23), the polynomial A is Z-symmetric. Note that the
form A%, which is the symmetrization of Ay, is associated with the polynomial A;. By
Proposition 3.3,

Ay = ajR3 + ByRi Ry + vy R3,

where
ay = 6445(1p,11, 111,41, 113,29,
By = 48451021 110,17, 112.37) — 4845 (Lo, 23, 12 100 113.20)s
75 = 445,310,210 Lo, 1) = 1245 (0,31, Lpo, 25 113, 37) + 845 (Lo 7, 112 20 113, 3)

By the deﬁnltlon of the symmetrlzatlon operator

%% 3' E Ay ( -1 T(1>],1[7(227177512)]7l[f(siq’%a)]),
TES3

A7 (Lo,2p5 1110 1y

where S5 is the group of all permutations on the set {1,2,3}. For every 7 € S3 let us
define o, € = such that

1o E26)} ooy =l
[—5—, 5] 71

for every j € {1,2,3}, i.e., if t € [Z34, 2], where j € {1,2,3}, we set
j—1 (G -1
) =t——-+ —"

if t € [2,1], we set o,(t) =t. By (23), where we substitute o = o,
Ay (Uzis sy Tz ) Tz zo) = A5 g 1 41 11y )
Consequently,
As (1 l],].[ ) AJ(].[O [i’%pl[%’%])

Therefore, ay = 64a(123)
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Note that
A7 (Lo,ap Lo 3 1p.p) = (AJ( 110,410 13 4p)
+ As(lp,1, [%,%1’1[0&0+AJ“[&%M1[0,%131[%1))
1
:g(a8112)+a§121)+a5211))~
Hence,

By = 6( (112) +a(121) _'_aflzn)) —48a923),

—4a(111) 4<aF]112) +a.(1121) +a8211)) +8a§123).
Since R1(1¢) = Ra(1¢) = R3(1e) = u(C), it follows that

As(1e,10,10) = As(1e) = asu(C)? + Bru(C)? + yu(C).

Lemma 4.3. For z,y,z € Ly

1 1 1 1
(39) A,J(:c,y,z):aJ/O :E(t)dt/o y(t)dt/o ()dt+4y(”/0 x(t)dt/o y(t)z(t) dt
(2) 1 1 3) 1 1
+ 4 /Oy(t)dt/o 2(0)=(t) dt + 408 /Oz(t)dt/o 2()y(t) dt

1
s [ Oy dr
0
where
(40) ay = 64(15,123)7
(41) 1/},1) = 4af,211) — 4a§123),
(42) (2) — 4 (121) 4{15123)7
(43) 1/53) = 4af,112) — 4a8123),
(44) Ny = 4af]111) _ 4((15112) +a(J121) Jra(JQll)) +8a§123).

Proof. Let x,y, z be simple measurable functions. There are a finite sequence of disjoint
measurable sets (Ei, ..., Ey), such that p(E;) < % for every j = 1,..., N, and finite
sequences of complex numbers (x1,...,2x), (y1,...,yn) and (z1,...,zx) such that © =

ZkN:1 2plE,, y = Zivzl yplp, and z = Zgzl 2;1g, . By the 3-linearity of Ay,

N N
Aol = 3030 Y iAol sy Tn,)

ki=1ko=1kz=1
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Let us represent this expression as

N N
Aj(w,y,2) = Z riykzkAs (e 1B, 1E,) + Z Z TYkzks A (1, 1B, 1Ek~3)
k=1 k=1 ks 2k
N N
YD wkaAs (e ey, 1e) + Y Y wuezAs(le,, 16, 15,)
k=1 ko k=1 k1 £k
+ Z Ty Yoo 2ks AT (LB, s LBy LBy, )-
k1#ko#ks

By Lemma 4.2,

Aj(1g,,15,,18,) = asu(Ey)® + Bru(Er)? + vru(Er),

where
;= 64a*,
By = 16( (112) +a(121) +a§,211)) _ 48a923),
Ny = 4af,111) _ 4(a5112) n GSHI) n affll)) + 8@&123).

By Lemma 4.1,

As(Lg, L Ley,) = 8\ ()’ 1By ) + 4057 1) Biy),

As(Lg, 1m,, 16,) = 8Asu(Er)*u(Er,) + 405 n(Ey) p( B, ),

As(,, e, 1m,) = S\ p(E)*w(Ex,) + 40 u(B) (i, ),

AJ(lEkl ) lEk2 ) 1Ek3) = 8/\J//'(Ek1 )U(Ekz):u(Eks)v

where

Ay = 8@(}23)’

VSI) _ 4a5211) _4a5123)) VSZ) _ 4a(121) —4CL(123) ( ) — 4a (112) _4a 5123).

Note that oy =8\ and 8y = 41/5” + 4V§2) + 41/ %) . Thus,

N
Ay(,y,2) =) wryrz (aJu(Ek) + (a5 + 4P + ) (B + VJM(Ek))
k=1

N
30 wner (@B 1 By) + 457 w( Bl Er,))

k=1 ks#£k

N
+ 30 3 a s (osm(B () + 4057 p(Eon(E,))

k=1 ko#k

N

+3 Z w, gk (B 2u(Er,) + 4050 p(Byu(Er,) )
k=1

+ D T Yk 2k (B, (B, ) p( By
k1#ko#ks
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After reordering of terms we have

N
Aj(z,y,2) =y (Z Trp(Er) - yri(Ey) - 2ep(Er)
k=1
N N
+D 0 wpp(Er) - ykp(Ex) - 2y p(Bry) + Y Y ain(Er) - Yo (Ex,) - 21 B
k=1 kg £k k=1 kok
N
YD ak (B, -y Er) - 2ep(Bx) + Y @k p(Bry) - ko tt(Ey ) - %M(Ekg)>
k=1 k1#k k1#kaFk3
N N
+ 4w (Z o p(Er) - yrzrp(Br) + > > an (B, - ykaM(Ek)>
k=1 k=1k1#k

N N
k=1

k=1 kok

N N
+ 4 (Z 2 Br) - wxyit(Br) + Y Y 2kt Bry) - kaykM(Ek)>
k=1

k=1 ks#k
N
+95 Y TRykzrp(Er).
k=1
Note that the expression in the first brackets is equal to
N N N
(Z xw(Ek)) (Z yw(Ek)) (Z zw(Ek)),
k=1 k=1 k=1
which in turn is equal to
1 1 1
/ z(t) dt/ y(t) dt/ z(t) dt.
0 0 0
Also note that
N N
> wki(Br) - yrzei(Be) + Y > wh, (Br,) - yeze(Er)
k=1 k=1 k1#k
N N 1 1
— (Sawnten)) (Smanntzn)) = [ st [ viosto)a
k=1 k=1 0 0
Analogically,

N N

1 1
D uki(Br) - wxzep(Be) + > Y yko i Bry) - w2kpi(Br) :/0 y(t) dt/o z(t)z(t) dt

k=1 k=1 ko#k

and
N N

1 1
S wi(By) () + 5 S s u(Bry) - wrp(Br) = / 2(t)dt / £(t)y(t) dr.

k=1 k=1 ka#k

Also note that
N

> () = [ aOuv:(0

k=1
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So, we have proved that the equality (39) holds for every simple functions z,y and z.
Since the set of such functions is dense in L., and the form A is continuous, the equality
(39) holds for every x,y, 2z € Lo. O

Let us define mappings R, : (Loo)? — C by

(45) R ((,)) = / 2 ()" (1) dt,

where m,n € NU{0}. Note that every mapping R, is a continuous (m+n)-homogeneous
polynomial as the restriction to the diagonal of the continuous (m + n)-linear form

(@190)s s (Eogns Yomgn) > / 1(t) - (s (1) - Yon (£) .

It is clear that every polynomial R,,, is =-symmetric. Let us call R,,, by elemen-
tary Z-symmetric polynomials on (L, )?. Following theorem shows that every continuous

3-homogeneous Z-symmetric polynomial on (Ls)? can be uniquely represented as an

algebraic combination of elementary Z-symmetric polynomials on (L )?.

Theorem 4.1. Let P be a continuous 3-homogeneous Z-symmetric polynomial on (Lo )?.

Then
(46) P =ay R}, + 4(vy, Mg V(Q) + V(IS))RwP@o + 71,30
+3ay, R Roy +12(v5) + v?) RigRix + 1205Y Rog Rot + 377, Roy
+ 3o, RioRGy + 12V] 'RioRoz + 12(vy,] @ uff))Ran + 375, Ra2
tay RS+ 4(V§ ' o2+ VY Roy Roa + 77 Ros,
where JO =(1,1,1), 1 = (1,1,2), J> = (1,2,2),J3 = (2,2,2), and coefficients a, e

J
1/52), Z/J ) and ~s are defined by formulas (40) —(44).

Proof. For (z,y) € (Lso)?, by the Binomial Formula,
(47) P((.’L‘,y)) = P((Q?,O) + (07y>) = AP((*T7 0)7 (;L‘70), (.%', 0)) + 3AP((*7"’ 0)7 (:L‘,O), (07y>)
+34p((2,0),(0,),(0,9)) + Ap((0,9). (0,¥),(0,y))
= AJU (JC,.CE,IE) + 3AJ1 (:E,l‘,y) + 3AJ2 («T,:%y) + AJa (y7y7y)'
By Lemma 4.3,

(48) Ay (z,z,2) = ay Ri(x) + 4(S) + v + V) Ri(2)Ra() + 74, Ra(2),

(49) Aj(z,2,y) = ap R2(2)Ri(y) +4(5) + v Ri() /01 2(t)y(t) dt
P RR) + 0, [ Ou0
(50) A (w,y,y) = o, Ri(2)R3(y) + 405 Ry (2) R W 1
+ 402 + VD) Ry () /O 2y (t) dt + vy, /O 22 (t) dt,
(G1)  Agy) = anRiy) + 405 + 5 + 05D Ri()Ra(y) + 75, R (y).

Taking into account the equality (45) and on substituting (48)—(51) into (47), we get (46).
]
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Corollary 4.1. The set of polynomials

{R}y, RioRa0, R30, R}gRo1, RioRi1, RooRo1, Ra1, R1oR3y, RioRoz2, R11 Rox,

Ri2, Ry, Roi Roz, Ros }

is a Hamel basis of the space of all continuous Z-symmetric 3-homogeneous polynomials

on (Leo

10.
11.

12.

13.

14.

15.
16.

17.
18.

19.
20.

21.

).

REFERENCES

R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebras of symmetric holomorphic functions
on {p, Bull. London Math. Soc. 35 (2003), no. 2, 55-64. doi:10.1112/50024609302001431.

. R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a

Banach space, Bull. London Math. Soc. 48 (2016), no. 5, 779-796. doi:10.1112/blms/bdw043.

. I. Chernega, Symmetric polynomials and holomorphic functions on infinite dimensional

spaces, Journal of Vasyl Stefanyk Precarpathian National University 2 (2015), no. 4, 23—49.
doi:10.15330/jpnu.2.4.23-49.

. I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic func-

tions and their spectra, Proc. Edinburgh Math. Soc. 55 (2012), no. 1, 125-142.
doi:10.1017/50013091509001655.

. I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of al-

gebras of symmetric analytic functions, J. Math. Anal. Appl. 395 (2012), no. 2, 569-577.
doi:10.1016/j.jmaa.2012.04.087.

. L. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras

of symmetric analytic functions, Revista Matematica Complutense 27 (2014), no. 2, 575-585.
doi:10.1007/s13163-013-0128-0.

. P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions

on Lo, Proc. Roy. Soc. Edinburgh Sect. A Mathematics 147 (2017), no. 4, T743-761.
doi:10.1017/S0308210516000287.

. P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, Symmetric and finitely symmetric polynomials on

the spaces oo and Loo[0,+00), Math. Nachr. 2018, 1-15. doi:10.1002/mana.201700314.

. M. Gonzélez, R. Gonzalo, J. A. Jaramillo, Symmetric polynomials on rearrange-

ment invariant function spaces, J. London Math. Soc. 59 (1999), no. 2, 681-697.
doi:10.1112/50024610799007164.

V. Kravtsiv, The analogue of Newton’s formula for block-symmetric polynomials, International
Journal of Mathematical Analysis 10 (2016), no. 7, 323-327. doi:10.12988/ijma.2016.617.

W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafririv, Symmetric Structures in Banach
Spaces, vol. 217 of Mem. Amer. Math. Soc., 1979.

V. V. Kravtsiv, A. V. Zagorodnyuk, Representation of spectra of algebras of block-symmetric
analytic functions of bounded type, Carpathian Math. Publ. 8 (2016), no. 2, 263-271.
doi:10.15330/cmp.8.2.263-271.

V. Kravtsiv, A. Zagorodnyuk, On algebraic bases of algebras of block-symmetric polynomials
on Banach spaces, Matematychni Studii 37 (2012), no. 1, 109-112.

V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric
polynomials on £,(C™), Journal of Function Spaces 2017 (2017), Article ID 4947925, 8 pages.
doi:10.1155/2017/4947925.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol. I, Sequence Spaces, Springer-Verlag,
1977.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol. II, Function Spaces, Springer-
Verlag, 1979.

J. Mujica, Complex Analysis in Banach Spaces, North Holland, 1986.

A. S. Nemirovskii, S. M. Semenov, On polynomial approximation of functions on Hilbert space,
Mat. USSR Sbornik 21 (1973), no. 2, 255-277. doi:10.1070/SM1973v021n02ABEH002016

T. Vasylyshyn, Symmetric continuous linear functionals on complex space Lo, Carpathian
Math. Publ. 6 (2014), no. 1, 8-10. d0i:10.15330/cmp.6.1.8-10.

T. Vasylyshyn, Continuous block-symmetric polynomials of degree at most two on the space
(Lo)?, Carpathian Math. Publ. 8 (2016), no. 1, 38-43. doi:10.15330/cmp.8.1.38-43.

T. Vasylyshyn, Topology on the spectrum of the algebra of entire symmetric functions
of bounded type on the complex Loo, Carpathian Math. Publ. 9 (2017), no. 1, 22-27.
doi:10.15330/cmp.9.1.22-27.



398 T. V. VASYLYSHYN AND A. V. ZAGORODNYUK

22. T. Vasylyshyn, Metric on the spectrum of the algebra of entire symmetric functions of

bounded type on the complex Lo, Carpathian Math. Publ. 9 (2017), no. 2, 198-201.
doi:10.15330/cmp.9.2.198-201.

23. T. Vasylyshyn, Symmetric polynomials on the space of bounded integrable functions on

the semi-axis, International J. of Pure and Appl. Math. 117 (2017), no. 3, 425-430.
doi:10.12732/ijpam.v117i3.7.

VASYL STEFANYK PRECARPATHIAN NATIONAL UNIVERSITY, 57 SHEVCHENKA STR., IVANO-FRANKIVSK,
76018, UKRAINE

E-mail address: taras.v.vasylyshyn@gmail.com
VASYL STEFANYK PRECARPATHIAN NATIONAL UNIVERSITY, 57 SHEVCHENKA STR., [VANO-FRANKIVSK,

76018, UKRAINE
E-mail address: andriyzag@yahoo.com

Received 29/03/2017; Revised 03/05/2018



