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MEASURE OF NONCOMPACTNESS, ESSENTIAL APPROXIMATION

AND DEFECT PSEUDOSPECTRUM

AYMEN AMMAR, AREF JERIBI, AND KAMEL MAHFOUDHI

Abstract. The scope of the present research is to establish some findings concerning

the essential approximation pseudospectra and the essential defect pseudospectra of
closed, densely defined linear operators in a Banach space, building upon the notion
of the measure of noncompactness. We start by giving a refinement of the defini-
tion of the essential approximation pseudospectra and that of the essential defect

pseudospectra by means of the measure of noncompactness. From these characteri-
zations we shall deduce several results and we shall give sufficient conditions on the
perturbed operator to have its invariance.

1. Introduction

Let X be an infinite-dimensional Banach space. We denote by L(X) (resp. C(X)) the
set of all bounded (resp. closed, densely defined) linear operators from X into X. The
set of all compact operators of L(X) is denoted by K(X). For T ∈ C(X), we denote
by σ(T ), ρ(T ), σap(T ), σδ(T ), N (T ) and R(T ) (resp. the spectrum, the resolvent, the
approximation spectrum, the defect spectrum, the null space and the range of T ). The
nullity of T , α(T ), is defined as the dimension of N (T ) and the deficiency of T , β(T ) is
defined as the codimension of R(T ) in X.

In what follows, we need to introduce some important classes of operators. The set of
upper semi-Fredholm operators from X into X is defined by

Φ+(X) := {T ∈ C(X) : α(T ) < ∞, R(T ) is closed in X},

the set of all lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ C(X) : β(T ) < ∞, R(T ) is closed in X}.

The set of all semi-Fredholm operators is defined by

Φ±(X) := Φ+(X) ∪ Φ−(X)

and the class Φ(X) of all Fredholm operators is defined by

Φ(X) := Φ+(X) ∩ Φ−(X).

The index of a semi-Fredholm operator T is defined by i(T ) = α(T ) − β(T ). The set of
bounded Fredholm operators from X into X is defined by

Φb(X) := Φ(X) ∩ L(X).

The set of bounded upper (resp. lower) semi-Fredholm operators from X into X is
defined by

Φb
+(X) := Φ+(X) ∩ L(X) (resp. Φb

−(X) := Φ−(X) ∩ L(X)).
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Now, we define the minimum modulus

m(T ) := inf
{

‖Tx‖ : x ∈ D(X) and ‖x‖ = 1
}

,

and the surjectivity modulus

q(T ) := sup
{

r > 0 : rBX ⊂ TBX

}

,

where BX is the closed unit ball of X. Note that m(T ) > 0 if, and only if, T is bounded
below, i.e. T is injective and has closed range, and q(T ) > 0 if, and only if, T is surjective.
Recall also that m(T ∗) = q(T ) and q(T ∗) = m(T ) where, T ∗ ∈ L(X∗) is the adjoint of
T acting on X∗ (dual space), for more information see [13]. It is clear that

σap(T ) :=
{

λ ∈ C : m(λ− T ) = 0
}

and

σδ(T ) :=
{

λ ∈ C : q(λ− T ) = 0
}

.

Let T be a closed linear operator on a Banach space X. For x ∈ D(T ) the graph norm
of x is defined by

‖x‖T := ‖x‖+ ‖Tx‖.

It follows from the closedness of T that D(T ) endowed with the norm ‖.‖T is a Banach
space. Let XT denote (D(T ), ‖.‖T ). In this new space the operator T satisfies ‖Tx‖ ≤

‖x‖T and consequently, T is a bounded operator from XT into X. If T̂ denotes the
restriction of T to D(T ), we observe that

(1.1)

{

α(T̂ ) = α(T ), N (T̂ ) = N (T ),

β(T̂ ) = β(T ) and R(T̂ ) = R(T ).

In this paper we are concerned with the following essential pseudospectra:

σeap,ε(T ) =
⋂

K∈K(X)

σap,ε(T +K),

σeδ,ε(T ) =
⋂

K∈K(X)

σδ,ε(T +K),

where

σap,ε(T ) := σap(T ) ∪
{

λ ∈ C : m(λ− T ) < ε
}

and

σδ,ε(T ) := σδ(T ) ∪
{

λ ∈ C : q(λ− T ) < ε
}

.

The subsets σeap,ε(T ), σeδ,ε(T ), σap,ε(T ) and σδ,ε(T ) are the essential approximation
pseudospectrum, the essential defect pseudospectra, the approximation pseudospectrum
[19] and the defect pseudospectra [11].

This paper is a continuation of the research which was undertaken by A. Ammar
and A. Jeribi in works [1, 2, 3, 4], and was devoted to special subsets of the essential
pseudospectrum of closed, densely defined linear operators

σe,ε(T ) :=
⋂

K∈K(X)

σε(T +K),

where

σε(T ) := σ(T ) ∪

{

λ ∈ C : ‖(λ− T )−1‖ >
1

ε

}

.

For further details about pseudospectrum, we can refer to [8, 15, 16, 17].
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The first purpose of this work is inspired by [2] when applying the notion of measure
of noncompactness to investigate the characterization of the essential pseudospectra on
a Banach space. The aim of this paper is to pursue the analysis started in [1, 2] and
to extend it to the essential approximation pseudospectra (resp. the essential defect
pseudospectra) of closed, densely defined linear operators in a Banach space (Theo-
rem 3.1). We also develop a refinement of the definition of the essential approximation
pseudospectra (resp. the essential defect pseudospectra) by means of T + D-bounded
perturbations (Theorem 3.2). We use this fruitful approach to study the invariance of
the essential approximation pseudospectra (resp. the essential defect pseudospectra) of
these operators, subject to various kinds of perturbation (Theorems 4.1 and 4.2).

The paper is structured in this way. Section 2 contains preliminary and auxiliary
properties that we will need in order to prove the main results of the other sections. The
main aim of Section 3 is to characterize the essential approximation pseudospectrum
(resp. the essential defect pseudospectrum) of closed, densely defined linear operators
on a Banach space by means of the measure of noncompactness. Finally, we will prove
the invariance of the essential approximation pseudospectrum (resp. the essential defect
pseudospectrum) and establish some results of perturbation on the context of closed,
densely defined linear operators on a Banach space.

2. Preliminaries

In order to recall the measure of noncompactness, we denote by MX the family of
all nonempty and bounded subsets of X, while NX denotes its subfamily consisting of
all relatively compact sets. Moreover, let us denote the convex hull of a set A ⊂ X by
conv(A). Let us recall the following definition.

Definition 2.1 ([7]). A mapping γ : MX −→ [0,∞[ is said to be a measure of noncom-
pactness in the Banach space X if it satisfies the following conditions:

(i) The family ker(γ) =
{

D ∈ MX : γ(D) = 0
}

is nonempty and ker(γ) ⊂ NX . The

family ker(γ) is called the kernel of the measure of noncompactness γ.

For A,B ⊂ MX :

(ii) If A ⊂ B, then γ(A) ≤ γ(B).

(iii) γ(A) = γ(A).

(iv) γ(conv(A)) = γ(A).

(v) γ(λA+ (1− λ)B) ≤ λγ(A) + (1− λ)γ(B), for all λ ∈ [0, 1].

(vi) If (An)n∈N is a sequence of sets from MX such that An+1 ⊂ An, An ⊂ An, for

(n = 1, 2, . . .) and lim γ(An) = 0, then A∞ =
⋂∞

n=1 An is nonempty and A∞ ∈ ker(γ).

A measure of noncompactness γ is said to be sublinear if, for all A,B ⊂ MX , it
satisfies the following two conditions:

(i) γ(λA) = |λ|γ(A) for all λ ∈ R (γ is said to be homogeneous).

(ii) γ(A+B) ≤ γ(A) + γ(B) (γ is said to be subadditive).

A measure of noncompactness γ is said to be with maximum property, if

max(γ(A), γ(B)) = γ(A ∪B).

A measure of noncompactness γ is said to be regular if it is sublinear, has the maximum
property and ker(γ) = NX .
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To take an instance of the regular measure of noncompactness in a Banach space X, we
may refer to the measure of Kuratowski defined, for all A ∈ MX by

γ(A) := inf
{

ε > 0 : A may be covered by a finite number of sets of diam ≤ ε
}

.

Let T ∈ L(X). We say that T is k-set-contraction if for every set D ∈ MX , we have

γ(T (D)) ≤ kγ(D).

We define γ(T ) by

γ(T ) = inf
{

k : T is k-set-contraction
}

.

In the following theorem, we give some results and properties of γ(A).

Theorem 2.1. (i) [5, Theorem 3.1] Let T ∈ L(X) and P,Q be two complex polynomials

satisfying Q divides P − 1.

(i1) If γ(P (T )) < 1, then Q(T ) ∈ Φ+(X).

(i2) If γ(P (T )) < 1
2 , then Q(T ) ∈ Φ(X).

(ii) [6] Let X be a Banach space and T ∈ L(X).

(ii1) γ(T ) = 0 if, and only if, T is compact.

(ii2) If T,B ∈ L(X), then γ(TB) ≤ γ(T )γ(B).

(ii3) If K ∈ K(X), then γ(T +K) = γ(T ).

(iii) [5, Corollary 2.3] Let T ∈ L(X). If γ(Tn) < 1 for some n > 0, then I − T ∈ Φ(X)

and i(I − T ) = 0.

Definition 2.2. Let X a Banach spaces and let K ∈ L(X).
(i) The operator K is called Fredholm perturbation if, T +K ∈ Φb(X) whenever,

T ∈ Φb(X). The set of Fredholm perturbations is denoted by Fb(X).

(ii) The operator K is called an upper semi-Fredholm perturbation if T +K ∈ Φb
+(X)

whenever, T ∈ Φb
+(X). The set of upper semi-Fredholm perturbations is denoted by

Fb
+(X).

(iii) The operator K is called a lower semi-Fredholm perturbation if T +K ∈ Φb
−(X)

whenever, T ∈ Φb
−(X). The set of lower semi-Fredholm perturbations is denoted by

Fb
−(X).

Definition 2.3. Let X a Banach spaces.
(i) An operator T ∈ C(X) is said to have a left Fredholm inverse if there are maps

Rl ∈ L(X) and K ∈ K(X) such that I +K extends RlT . The operator Rl is called

left Fredholm inverse of T .

(ii) An operator T ∈ C(X) is said to have a right Fredholm inverse if there is a map

Rr ∈ L(X) such that Rr(X) ∈ D(T ) and TRr − I ∈ K(X). The operator Rr is called

right Fredholm inverse of T .

Definition 2.4. Let T,B ∈ C(X).
(i) An operator B is called T -bounded if D(T ) ⊂ D(B) and there exists nonnegative

constant c such that

‖Bx‖ ≤ c(‖x‖+ ‖Tx‖).
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(ii) An operator B is called T -compact if D(T ) ⊂ D(B) and whenever a sequence (xk)

of elements of D(T ) satisfies

‖xk‖+ ‖Txk‖ ≤ c, k = 1, 2, . . . ,

then (Bxk) has a subsequence convergent in X.

(iii) An operator B is called T -pseudocompact if D(T ) ⊂ D(B) and whenever a sequence

(xk) of elements of D(T ) satisfies

‖xk‖+ ‖Txk‖+ ‖Bxk‖ ≤ c, k = 1, 2, . . . ,

then (Bxk) has a subsequence.

Our first result is the following.

Theorem 2.2. Let T ∈ C(X) and ε > 0. Then

(i) λ ∈ σap,ε(T ) if, and only if, there exists a bounded operator D ∈ L(X) such that

‖D‖ < ε and λ ∈ σap(T +D).

(ii) λ ∈ σδ,ε(T ) if, and only if, there exists a bounded operator D ∈ L(X) such that

‖D‖ < ε and λ ∈ σδ(T +D).

Proof. The proof of (i) and (ii) may be achieved in the same way as the proof of
[1, Theorem 3.3]. �

Remark 2.1. Let T ∈ C(X) and ε > 0. Then, from Theorem 2.2 we can derive,

σap,ε(T ) =
⋃

‖D‖<ε

σap(T +D) and σδ,ε(T ) =
⋃

‖D‖<ε

σδ(T +D).

We will give a characterization of the essential approximation pseudospectrum and
the essential defect pseudospectrum by means of semi-Fredholm operators.

Theorem 2.3. Let T ∈ C(X) and ε > 0. Then

(i) λ /∈ σeap,ε(T ) if, and only if, for all D ∈ L(X) such that ‖D‖ < ε, we have

λ− T −D ∈ Φ+(X) and i(λ− T −D) ≤ 0.

(ii) λ /∈ σeδ,ε(T ) if, and only if, for all D ∈ L(X) such that ‖D‖ < ε, we have

λ− T −D ∈ Φ−(X) and i(λ− T −D) ≥ 0.

Proof. A similar reasoning as before [1, Theorem 4.1]. �

3. Characterization of σeap,ε(T ) and σeδ,ε(T )

We will give a fine description of the essential approximation pseudospectrum and the
essential defect pseudospectrum of a closed, densely defined linear operator by means of
the measure of noncompactness. If T ∈ C(X), we define the sets

Mε
n(X) =

{

M ∈ L(X) : γ
(

[λ− T −M −D)−1M ]n
)

< 1 for all D ∈ L(X)

: ‖D‖ < ε and λ ∈ ρ(T +M +D)
}

.

and

T ε
n (X) =

{

M ∈ L(X) : γ
(

[M∗(λ− T −M −D)∗−1]n
)

< 1 for all D ∈ L(X)

: ‖D‖ < ε and λ ∈ ρ(T ∗ +M∗ +D∗)
}

.
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Theorem 3.1. Let T ∈ C(X) and ε > 0. Then

(i) σeap,ε(T ) =
⋂

M∈Mε
n
(X)

σap,ε(T +M).

(ii) σeδ,ε(T ) =
⋂

M∈T ε
n
(X)

σδ,ε(T +M).

Proof. (i) We will prove this theorem by the similar ways in [2, Theorem 2.1]. Let

M ∈ K(X), then γ(M) = 0. Hence, γ
(

[λ − T −M −D)−1M ]n
)

< 1 for all D ∈ L(X)

such that ‖D‖ < ε and λ ∈ ρ(T +M +D). Therefore, K(X) ⊂ Mε
n(X). Consequently,

⋂

M∈Mε
n
(X)

σap,ε(T +M) ⊂
⋂

M∈K(X)

σap,ε(T +M) = σeap,ε(T ).

Conversely, we suppose that λ /∈
⋂

M∈Mε
n
(X)

σap,ε(T+M). Then, there exists M ∈ Mε
n(X)

such that for every ‖D‖ < ε and λ ∈ ρ(T +M +D), we have

γ
(

[(λ− T −M −D)−1M ]n
)

< 1 and λ /∈ σap,ε(T +M).

Then, we apply Theorem 2.1-(i) for P (z) = zn and Q(z) = 1− z, we infer that

Q(T ) = I − (λ− T −M −D)−1M ∈ Φ+(X).

Thereby, we can write

(λ− T −D) = (λ− T −M −D)((I + λ− T −M −D)−1M).

Now, let t ∈ [0, 1], then

γ
(

(t(λ− T −M −D)−1M)n
)

< 1

and also I − t(λ− T −M −D)−1M ∈ Φ+(X). It follows from [14, Theorem 7.25] that

i
(

I − (λ− T −M −D)−1M
)

= 0.

According to [1, Theorem 3.3], we have for all D ∈ L(X) such that ‖D‖ < ε and

λ /∈ σap(T +D +M).

We conclude that for all D ∈ L(X) such that ‖D‖ < ε

λ− T −D ∈ Φ+(X) and i(λ− T −D) = i(λ− T −D −M) ≤ 0.

By using Theorem 2.3, we obtain λ /∈ σeap,ε(T ).

(ii) It follows directly from (i), if we replace T by the adjoint operator T ∗. �

Remark 3.1. Let T ∈ C(X) and ε > 0.

(i) Let I(X)
(

resp. V(X)
)

be a subset of L(X). If K(X) ⊂ I(X) ⊂ Mε
n(X)

(

resp.

K(X) ⊂ V(X) ⊂ T ε
n (X)

)

, then

σeap,ε(T ) =
⋂

M∈I(X)

σap,ε(T +M)
(

resp. σeδ,ε(T ) =
⋂

M∈V(X)

σδ,ε(T +M)
)

.

(ii) If for all J, J2 ∈ I(X)
(

resp. V(X)
)

, we have J ± J2 ∈ I(X)
(

resp. V(X)
)

, then

for all J ∈ I(X), we have
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σeap,ε(T + J) = σeap,ε(T )
(

resp. σeδ,ε(T + J) = σeδ,ε(T )
)

.

In the next theorem, we will give a fine characterization of σeap,ε(.) and σeδ,ε(.) by
means of T +D-bounded perturbations. For this end we define the sets

Hε(X) =
{

K ∈ C(X) : K is T +D-bounded and K(µ− T −D)−1 ∈ Fb
+(X)

for all D ∈ L(X) : ‖D‖ < ε for some µ ∈ ρ(T +D)
}

and

Qε(X) =
{

K ∈ C(X) : K is T +D-bounded and ((µ− T −D)−1K̂)∗ ∈ Fb
+(X

∗
T )

for all D ∈ L(X) : ‖D‖ < ε, for some µ ∈ ρ(T +D)
}

.

Theorem 3.2. Let T ∈ C(X) and ε > 0. Then

(i) σeap,ε(T ) =
⋂

K∈Hε(X)

σap,ε(T +K).

(ii) σeδ,ε(T ) =
⋂

K∈Qε(X)

σδ,ε(T +K).

Proof. (i) Since K(X) ⊂ Hε(X), then
⋂

K∈Hε(X)

σap,ε(T +K) ⊂ σeap,ε(T ). To prove the

inverse inclusions of (i), let λ /∈
⋂

K∈Hε(X)

σap,ε(T +K), then there exists K ∈ Hε(X) such

that λ /∈ σap,ε(T +K). Therefore

λ− T −D −K ∈ Φ+(X).

Since Y := R(λ − T − D − K) is a closed subspace of X, then Y is a Banach space

with the same norm, hence (λ− T̂ − D̂− K̂)−1 ∈ L(Y,XT ). Let µ ∈ ρ(T +D) such that
K(µ− T −D)−1 ∈ Fb

+(X). Then, we can write

K̂(λ− T̂ − D̂ − K̂)−1 = K(µ− T̂ − D̂)−1(J + (µ− λ+ K̂)(λ− T̂ − D̂ − K̂)−1),

where J denotes the embedding operator which maps every x ∈ Y onto the same element
inX. Since µ−λ+K̂ ∈ L(XT , X) andK(µ−T̂−D̂)−1 ∈ Fb

+(X), it follows from [12, p. 70]
that

(3.1) K̂(λ− T̂ − D̂ − K̂)−1 ∈ Fb
+(Y,X).

Now, we can write λ− T̂ − D̂ in the form

λ− T̂ − D̂ = (J + K̂(λ− T̂ − D̂ − K̂)−1)(λ− T̂ − D̂ − K̂).

We see that J is injective (i.e., N (J ) = 0) and R(J ) = Y . Hence

J ∈ Φb
+(Y,X) and i(J ) ≤ 0.

By using Eq. (3.1) and [9, Lemma 2.1], we obtain

J + K̂(λ− T̂ − D̂ − K̂)−1 ∈ Φb
+(Y,X) and i(J + K̂(λ− T̂ − D̂ − K̂)−1) ≤ 0.

It follows from [13, Theorems 5 and 12] that

λ− T̂ − D̂ ∈ Φb
+(XT , X) and i(λ− T̂ − D̂) ≤ 0.

From Eq.(1.1) we deduce that

λ− T −D ∈ Φb
+(X) and i(λ− T −D) ≤ 0.
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Consequently, λ /∈ σeap,ε(T ).

(ii) Let K ∈ K(X), then K̂ ∈ K(XT , X). Since, (µ − T − D)−1 ∈ L(X,XT ) and K̂ ∈
K(XT , X), we have

((µ− T −D)−1K̂)∗ ∈ K(X∗
T ).

Because K(X∗
T ) ⊂ Fb

+(X
∗
T ), then K(X) ⊂ Qε(X). Therefore,

(3.2)
⋂

K∈Qε(X)

σδ,ε(T +K) ⊂ σeδ,ε(T ).

Now, it remains to prove the inverse inclusion of (3.2). Let λ /∈
⋂

K∈Qε(X)

σδ,ε(T + K),

then there exists K ∈ Qε(X) such that λ /∈ σδ,ε(T +K) which means that λ−T −D−K
is surjective. Thus,

λ− T −D −K ∈ Φ−(X) and β(λ− T −D −K) = 0.

Hence, λ− T̂ − D̂ − K̂ ∈ Φb
−(XT , X), we deduce that

λ− T̂ ∗ − D̂∗ − K̂∗ ∈ Φb
+(X

∗, X∗
T ) and α(λ− T̂ ∗ − D̂∗ − K̂∗) = 0.

Now, reasoning in the same way as in the proof of (i), we obtain that

λ− T̂ − D̂ ∈ Φb
−(XT , X) and i(λ− T̂ − D̂) ≥ 0.

Then, from Eq. (1.1), we infer that

λ− T −D ∈ Φb
+(X) and i(λ− T −D) ≤ 0.

Hence, λ /∈ σeδ,ε(T ). �

4. Stability of σeap,ε(T ) and σeδ,ε(T )

In this section, we will establish some findings of stability of the essential approxi-
mation pseudospectrum (resp. essential defect pseudospectrum). Before beginning, we
denote by Pγ,n(.) the set defined by

Pγ,n(X) =
{

T ∈ L(X) : γ(Tn) < 1 for some n > 0
}

.

Theorem 4.1. Let T,B ∈ C(X) and ε > 0. Then the following statements hold:

(i) Assume that λ−T−D ∈ Φ+(X). There exists a left Fredholm inverse Tλ,ε of λ−T−D

such that BTλ,ε ∈ Pγ,n(X), then σeap,ε(T +B) ⊆ σeap,ε(T ).

(ii) Assume that λ−T−D ∈ Φ−(X). There exists a left Fredholm inverse Tλ,ε of λ−T−D

such that BTλ,ε ∈ Pγ,n(X), then σeδ,ε(T +B) ⊆ σeδ,ε(T ).

Proof. (i) Let λ /∈ σeap,ε(T ), then for all D ∈ L(X) such that ‖D‖ < ε we have

λ− T −D ∈ Φ+(X) and i(λ− T −D) ≤ 0.

Let Tλ,ε be the left Fredholm inverse of λ − T − D, then there exists K ∈ K(X) such
that

(4.1) Tλ,ε(λ− T −D) = I −K on X.

We infer from Eq. (4.1) that the operator λ− T −B −D can be written in the form

λ− T −B −D = λ− T −D − (BTλ,ε(λ− T −D) +BK)

= (I −BTλ,ε)(λ− T −D)−BK.(4.2)

Since BTλ,ε ∈ Pγ,n(X) and applying Theorem 2.1-(iii) we obtain that
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I −BTλ,ε ∈ Φ(X) and i(I −BTλ,ε) = 0.

Consequently, I −BTλ,ε ∈ Φ+(X). By using [13, Theorem 5], we have

(I −BTλ,ε)(λ− T −D) ∈ Φ+(X), and

i((I −BTλ,ε)(λ− T −D)) = i(I −BTλ,ε) + i(λ− T −D)

= i(λ− T −D) ≤ 0.

It follows from Eq. (4.2) and [9, Lemma 2.1] that

λ− T −B −D ∈ Φ+(X) and i(λ− T −B −D) ≤ 0.

Then λ /∈ σeap,ε(T +B). Thus, σeap,ε(T +B) ⊆ σeap,ε(T ).

(ii) Let λ /∈ σeδ,ε(T ). Then, for all D ∈ L(X) such that ‖D‖ < ε we have

λ− T −D ∈ Φ−(X) and i(λ− T −D) ≥ 0.

Since Tλ,ε is the right Fredholm inverse of λ− T −D, then there exists K ∈ K(X) such
that

(λ− T −D)Tλ,ε = I −K on X.(4.3)

It follows from Eq. (4.3) that the operator λ− T −B −D can be written in the form

λ− T −B −D = λ− T −D − ((λ− T −D)Tλ,εB +KB)

= (λ− T −D)(I − Tλ,εB)−KB.(4.4)

(ii) As a similar proof to (i), it suffices to replace Φ+(.), σeap,ε(.), Eq. (4.2) and
[9, Lemma 2.1(ii)] by Φ−(.), σeδ,ε(.), Eq. (4.4) and [9, Lemma 2.1-(iii)] respectively.
Hence, we deduce that

σeδ,ε(T +B) ⊆ σeδ,ε(T ). �

Remark 4.1. Let T ∈ C(X) and ε > 0. Then,

⋂

B∈Pγ,n(X)

σap,ε(T +M) ⊆ σeap,ε(T ) and
⋂

B∈Pγ,n(X)

σδ,ε(T +M) ⊆ σeδ,ε(T ).

Finally, we close this section by the stability of the essential approximation pseu-
dospectrum (resp. essential defect pseudospectrum) by means of a pseudocompact per-
turbation.

Theorem 4.2. Let T,B ∈ C(X), ε > 0 and λ ∈ ρ(T + D) ∩ ρ(T + B + D). If for all

bounded operators D such that ‖D‖ < ε and B is (T +D)-pseudo-compact, then

(i) σeap,ε(T +B) = σeap,ε(T ).

(ii) σeδ,ε(T +B) = σeδ,ε(T ).

Proof. (i) For all λ ∈ C, we can write

(4.5) (µ−T−B−D)−(µ−T−D)(λ−T−D)−1(λ−T−B−D) = (µ−λ)(λ−T−D)−1)B.

Now, we have ρ(T +D) and ρ(T +B+D) are not empty, then T +D and T +B+D are
closed. Therefore, T +B+D is T +D-bounded and (λ−T −D)−1)B is T +D-compact.
It follows from that (T +B +D)-compact. First, let µ /∈ σeap,ε(T +B), then

µ− T −B −D ∈ Φ+(X) and i(µ− T −B −D) ≤ 0.

By using Eq. (4.5), we obtain that

(µ− T −D)(λ− T −D)−1(λ− T −B −D) ∈ Φ+(X) and
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i((µ− T −D)(λ− T −D)−1(λ− T −B −D)) ≤ 0.

Since λ ∈ ρ(T +B +D) and by using Theorem 2.3, we deduce that

(λ− T −B −D) ∈ Φ+(X) and i(λ− T −B −D) ≤ 0.

Applying [14, Theorem 5.32], we conclude that

(µ− T −D)(λ− T −D)−1 ∈ Φ+(X) and i((µ− T −D)(λ− T −D)−1) ≤ 0.

From this and the identity (µ − T − D) = (µ − T − D)(λ − T − D)(λ − T − D)−1 we
obtain

µ− T −D ∈ Φ+(X) and i(µ− T −D) ≤ 0.

This implies that µ /∈ σeap,ε(T ). Therefore σeap,ε(T ) ⊆ σeap,ε(T +B).

Next, if µ /∈ σeap,ε(T ), then

µ− T −D ∈ Φ+(X) and i(µ− T −D) ≤ 0. .

Since λ ∈ ρ(T +B +D) and the use of Theorem 2.3 we infer that

(λ− T −B −D) ∈ Φ+(X) and i(λ− T −B −D) ≤ 0.

We deduce that

(µ− T −D)(λ− T −D)−1(λ− T −B −D) ∈ Φ+(X) and

i((µ− T −D)(λ− T −D)−1(λ− T −B −D)) ≤ 0.

By referring to Eq. (4.5), we have

(λ− T −B −D) ∈ Φ+(X) and i(λ− T −B −D) ≤ 0.

Then, µ /∈ σeap,ε(T +B).

(ii) A similar reasoning allows us to deduce that σeδ,ε(T +B) = σeδ,ε(T ). �
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