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COMPLEX MOMENT PROBLEM AND RECURSIVE RELATIONS

K. IDRISSI AND E. H. ZEROUALI

Abstract. We introduce a new methodology to solve the truncated complex mo-

ment problem. To this aim we investigate recursive doubly indexed sequences and
their characteristic polynomials. A characterization of recursive doubly indexed mo-

ment sequences is given. A simple application gives a computable solution to the
complex moment problem for cubic harmonic characteristic polynomials of the form

z3 + az + bz, where a and b are arbitrary real numbers. We also recapture a re-
cent result due to Curto-Yoo given for cubic column relations in M(3) of the form

Z3 = itZ + uZ with t, u real numbers satisfying some suitable inequalities. Fur-

thermore, we solve the truncated complex moment problem with column dependence
relations of the form Zk+1 =

∑

0≤n+m≤k

anmZ
n
Zm (anm ∈ C).

1. Introduction

Let γ = {γij}i,j≥0 be a doubly indexed sequence of complex numbers such that γij =
γji and γ00 > 0. The truncated complex moment problem (TCMP for short) associated
with {γij}0≤i,j≤r entails finding a positive Borel measure µ supported in the complex
plane C such that

(1) γij =

∫
zizjdµ (0 ≤ i, j ≤ r).

A sequence {γij}0≤i,j≤r satisfying (1) will be called a truncated moment sequence and µ
is said to be a representing measure for {γij}0≤i,j≤r. The full complex moment problem
(FCMP) prescribes moments of all orders (see, for instance, [3, 30]); more precisely, an
infinite doubly sequence {γij}i,j≥0, with i, j ∈ Z+, is a moment sequence provided that
there exists a Borel measure µ supported in the complex plane C such that,

(2) γij =

∫
zizjdµ for all i, j ∈ Z+.

J. Stochel [29] has shown that the truncated complex moment problem is more general
than the full complex moment problem, in the following sense: a full moment sequence
{γij}i,j∈Z+

admits a representing measure if and only if each truncation γ(r) ≡ {γij}i+j≤r

admits a representing measure.
The truncated complex moment problem serves as a prototype for several other mo-

ment problems to which it is closely related. Its application can be found in the invariant
subspace problem [1], subnormal operator theory [26, 28, 31], polynomial hyponormality
[12] and joint hyponormality [5, 6] and arise in pure and applied mathematics and in
the sciences in general. For example J.B. Lasserre developed, in [21, 22, 23], several
applications of the moment problem in concrete optimization theory; see also [24, 25].

Therefore, the truncated complex moment problem has interested many authors, such
as, for instance, [2, 7, 24, 25, 32]. Although interesting results were discovered, various
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basic situations are considered as open problems. For example, in the truncated complex
moment problem associated with γ ≡ {γij}0≤i+j≤r, only the cases r = 1, 2, 3, 4 (the
quadratic [19], the cubic [20] and the quartic [14] moment problem) have been (recently)
completely achieved. All the other cases are open: cintic, sixtic, . . .; as indicated in many
recent papers (see, for instance, [15, 16, 17, 33]).

In [7, 8, 9] Curto-Fialkow introduced an approach to study the existence and unique-
ness of solutions of the TCMP, γ(2n) := {γij}0≤i+j≤2n with γij = γji and γ00 > 0, based

on positivity and extensions of the moment matrix M(n) ≡ M(n)(γ(2n)), built as follows:

(3) M(n) =




M [0, 0] M [0, 1] . . . M [0, n]
M [1, 0] M [1, 1] . . . M [1, n]

...
...

. . .
...

M [n, 0] M [n, 1] . . . M [n, n]


 ,

where

M [i, j] =




γi,j γi+1,j−1 . . . γi+j,0

γi−1,j+1 γi,j . . . γi+j−1,1

...
...

. . .
...

γ0,i+j γ1,i+j−1 . . . γj,i


 .

The matrix M(n) detects the positivity of the Riesz functional

(4) Λγ(2n) : p(Z,Z) ≡
∑

0≤i+j≤2n

aijZ
i
Zj −→

∑

0≤i+j≤2n

aijγij

on the cone generated by the collection {pp : p ∈ Cn[Z,Z]}, where Cn[Z,Z] is the vector
space of polynomials in two variables with complex coefficients and total degree less than
or equal to n. In the sequel, we will write, dz(P ), dz̄(P ) and dP ≡ degP for the degree in
z, the degree in z̄ and the total degree of P , respectively. Considering the lexicographic
order

1, Z, Z, Z2, ZZ,Z
2
, . . . , Zn, Zn−1Z, . . . , ZZ

n−1
, Z

n

to denote rows and columns of the moment matrix M(n). It is immediate that the rows

Z
k
Zl, columns Z

i
Zj entry of the matrix M(n) is equal to Λγ(2n)(zi+lzj+k) = γi+l,j+k.

For reason of simplicity, we identify a polynomial p(z; z) ≡ ∑
aijz

izj with its coefficient
vector p = (aij) with respect to the basis of monomials of Cn[z; z] in degree-lexicographic
order. Clearly, M(n) acts on these coefficient vectors as follows:

< M(n)p, q >= Λγ(2n)(pq).

Similarly to (3), the infinite complex moment matrix is built as follows:

M(γ) ≡ M(∞) =




M [0, 0] M [0, 1] M [0, 2] · · ·
M [1, 0] M [1, 1] M [1, 2] · · ·
M [2, 0] M [2, 1] M [2, 2] · · ·

...
...

...
. . .


 .

A result of Curto-Fialkow [7] states that γ(2n) = {γij}0≤i+j≤2n has a representing
measure if and only if M(n) admits a positive finite rank moment matrix extension
M(γ) ≡ M(∞). In general, the existence of such extension is difficult to determine, but
a complete solution to TCMP based on moment matrix extensions is known for n ≤ 2
and for M(n) whenever the submatrix M(2) is singular (cf. [10], [14], [19]).

Therefore, the first open case of TCMP concerns n = 3 with M(2) positive definite.
The Curto-Yoo paper [13] concerns part of this problem. We note that if γ(2n) has a
representing measure, then M(n) is positive and rank M(n) ≤ card νγ(2n) , where νγ(2n) ,

the variety associated with γ(2n) as the intersection of the zero-sets of the polynomials
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p(z; z) such that M(n)p = 0. In Curto-Fialkow-Moller [11], TCMP is solved for the
”extremal” case when rank M(n) = card νγ(2n) . In this case, γ(2n) has a representing

measure if and only if M(n) ≥ 0 and γ(2n) is consistent (that is, if p ∈ C2n[z; z] and
p|ν

γ(2n)
≡ 0, then Λγ(2n)(p) = 0). The proof of this fact does not require results on

moment matrix extensions; it is based on elementary tools from vector space duality,
convex analysis, and interpolation by polynomials.

As noted above, the simplest unsolved case of TCMP concernsM(3)(γ(6)). Within this
problem, [13] identifies a subproblem which is ”extremal”, with rank M(3) = card νγ(6) =
7. Indeed, [13] focuses on the case when M(3) ≥ 0 and M(2) > 0, and there is a column
dependence relation p(Z;Z) = 0 (and automatically, p(Z;Z) = 0), where p is a harmonic
polynomial of the form p(z, z) = z3 − itz − uz, with real parameters t and u. The M(3)
problem remains open and is only partially solved. Lemma 2.3 in [13] states that if
0 <| u |< t < 2 | u |, then p has exactly 7 zeros in the complex plane. This later can be
disproved by the next two examples.

Example 1. The equality z3 = 2iz − 5
4z admits only 3 zeros, 0 and ±

√
13
2 ei

π
4 , although

t = 2 and u = − 5
4 verify the condition 0 < |u| < t < 2|u|.

Example 2. The equality z3 = −2iz + 5
4z admits 7 zeros, 0 ; ±

√
3
2 e−iπ

4 and (± 3
√
2

4 ±
i
√
2
4 )e−iπ

4 , although t = −2 and u = 5
4 does not verify the condition 0 < |u| < t < 2|u|.

This ”inattention” led to the next incorrect version of the main theorem in [13],

Theorem 1. [13, Theorem 1.5] Let M(3) ≥ 0, with M(2) > 0 and z3 − itz − uz = 0,
and let Λγ(6) be as in (4). For u, t ∈ R, assume that 0 < |u| < t < 2|u|. The following
statements are equivalent.

i) There exists a representing measure for M(3).
ii) {

Λγ(6)(qLC) = 0,

Λγ(6)(zqLC) = 0.

iii) {
Reγ12 − Imγ12 = u(Reγ01 − Imγ01),

γ22 = (t+ u)γ11 − 2uImγ02.

iv) qLC := i(z − iz)(zz − u) = 0,

Example 1 shows that for u < 0 the last theorem is not valid, because 6 ≤ rang M(3)
and card νγ(6) ≤ 3 (recall that, if γ(6) is a moment sequence then rang M(3) ≤ card
νγ(6)). Theorem 1 implies Corollary 4.3 in the same paper, which has inherited the same
mistakes.

From the previous discussion, it appears natural to give a new solution to the TCMP
for cubic column relations in M(3) of the forms Z3 = itZ+uZ and Z3 = aZ+bZ, where
a, b, t and u are real numbers. This is the main goal of Section 5, using our methodology
on recursive sequences.

We notice below that the recursiveness in the truncated moment problem is a natural
concept and is totally inherent. It is obvious that the truncated moment problem is
equivalent to the recursive full moment problem. Indeed, given a doubly indexed trun-
cated moment sequence ω ≡ {γij}0≤i,j≤n. A result of C. Bayer and J. Teichmann [2]
states that if a finite double sequence of complex numbers has a representing measure,
then it has a finitely atomic representing measure. It follows that ω admits a finite
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support representing measure µ, suppose that supp(µ) ⊂ ν = {λ1, λ2, . . . , λr} ⊂ C. Let

p ≡ zs+1 −
s∑

i+j=0

aijz
izj be a polynomial vanishing on ν, since

∫
znzmp(z, z)dµ = 0 for

all n,m ∈ Z+, then µ is a representing measure for the recursively generated sequence
γ ≡ {γij}i,j≥0 (ω ⊂ γ) defined by the next relations:

i) For all i, j ≥ 0,

(5) γji = γij .

ii) For all n,m ≥ 0,

(6) γn,m+s+1 =

s∑

i+j=0

aijγn+i,m+j .

We shall refer to the polynomial p(z, z) = zs+1 −
s∑

i+j=0

aijz
izj as a characteristic poly-

nomial associated with γ. The sequence γ can be associated with several characteristic
polynomials, see Section 2.

Thus every truncated complex moment sequence is a subsequence of a recursively
moment sequence. We deduce that solving the TCMP is actually equivalent to solve
the recursive full moment problem. The main goal in this paper is to investigate use
the recursive double sequences (verifying (5) and (6)) to get an approach, based on the
localization of zeros of the characteristic polynomials, for solving the TCMP.

This paper is organized as follows. We define in Section 2 recursive doubly indexed
sequences. We show that for such sequences the TCMP and FCMP are equivalent. We
devote Section 3 to the study of RDIS associated with analytic characteristic polynomial
and we show that the family of analytic characteristic polynomials is a principal ideal of
C[X]. Section 4 is devoted to give a characterization of recursive doubly indexed moment
sequences. In section 5, we apply our results to give an explicit solution for the TCMP
with cubic column relations in M(3) of the form Z3 = aZ + bZ (a, b ∈ R) and also to
regain the correct form of Theorem 1. In the last section, we involve the RDIS to give
a necessary and sufficient condition for the existence of a solution to the TCMP with
column dependence relations of the form Zk+1 =

∑
0≤n+m≤k

anmZ
n
Zm (anm ∈ C).

2. Recursive double indexed sequences

Let {alk}0≤l,k≤r be some fixed complex numbers and let γ ≡ {γij}i,j≥0 be a doubly
indexed sequence, with γ00 > 0, defined by the following relations:

i) For all i, j ≥ 0,

(7) γji = γij .

ii) For all i and n with 0 ≤ i and r ≤ n,

(8) γi,n+1 =
∑

0≤l+k≤r

alkγl+i,n+k−r.

Where ω ≡ {γij}0≤i≤j≤r are given initial conditions.
In the sequel we shall refer to such sequence as Recursive Double Indexed Sequence,

RDIS for short. The polynomial P (z, z) = zr+1− ∑
0≤l+k≤r

alkz
lzk is called a characteristic

polynomial associated with γ, given by (7) and (8). This last polynomial has a finite
roots set. More precisely P has at most (r + 1)2 roots ( see Proposition 4.4 in [14]).
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A RDIS can be defined in various ways using different characteristic polynomials as

is shown in the following example. Let γ = {γij}i,j≥0 with γij = (−1)i+j

2 + 1
2Re((1 −

2i)i(1 + 2i)j). Then γ may be defined by the following recursive relations,

• γn+2,m = −2γn,m+1 − γn,m, with γn,m = γm,n, for γ00 = 1, γ01 = γ10 =
0, γ11 = 3.

• γn+3,m = γn+2,m − 3γn+1,m − 5γn,m, with γn,m = γm,n, for γ00 = 1, γ01 = γ10 =
0, γ11 = 3, γ02 = γ20 = −1, γ21 = γ12 = 2, γ22 = 13.

Therefore, P1(z, z) = z2 + 2z + 1 and P2(z, z) = Q(z) = z3 − z2 + 3z + 5 are two
characteristic polynomials associated with γ.

Let Pγ be the set of characteristic polynomials associated with the sequence γ ≡
{γij}i,j≥0.

Remarks 2. i) The subset Pγ is an ideal of C[z, z].
ii) The characteristic polynomial P , together with the initial conditions and the re-

lations (7) and (8), are said to define the sequence γ.
iii) We notice that because of condition (7) , Equation (8) is equivalent to : For all

n and j with 0 ≤ j and r ≤ n,

(9) γn+1,j =
∑

0≤l+k≤r

alkγn−r+k,l+j .

The polynomial Q(z, z) = zr+1 − ∑
0≤l+k≤r

alkz
kzl is a characteristic polynomial

associated with {γi,j}i,j≥0 given by (9), where {γij}0≤j≤i≤r are given initial con-
ditions.

The following result is an immediate consequence of (8).

Lemma 3. Let γ ≡ {γij}i,j≥0 be a doubly indexed sequence and let p(z, z) ∈ C[z, z].
Then p(z, z) is a characteristic of γ if and only if M(γ)p = 0.

We use a structural properties of moment matrices to get the following interesting
result.

Lemma 4. Under the notations above, for every f, g, h ∈ R[x1, . . . , xd], we have

(10) fTM(γ)(gh) = (fg)TM(γ)h.

Proof. Let f, g, h ∈ R[x1, . . . , xd] be polynomials. We write f =
∑
i

fix
i, g =

∑
j

gjx
j and

h =
∑
k

hkx
k. As the entry of the moment matrix corresponding to the column xi and

the line xj is γi+j, we obtain

fTM(γ)(gh) = (
∑

i

fix
i)TM(γ)(

∑

j,k

gjhkx
j+k) =

∑

i,j,k

figjhkγi+j+k = (fg)TM(γ)h.

The lemma is proved. �

It follows that

Proposition 5. Let γ ≡ {γij}i,j≥0 be a doubly indexed sequence and let M(γ) such that
its associated moment matrix M(γ) is semidefinite positive. Then, for any polynomial
p ∈ C[z, z] and any integer n ≥ 1,

(11) M(γ)pn = 0 =⇒ M(γ)p = 0.
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Proof. f M(γ)p2 = 0, then 0 = M(γ)p2 = 1TM(γ)p2 = pTM(γ)p, from (10); since
M(γ) ≥ 0, we obtain M(γ)p = 0 and hence (11) holds for n = 2. By induction, (11)
remains valid for any power of 2. Now , if M(γ)pn = 0 we choose r in such a way that
r + k is a power of 2 to ensure that

M(γ)pn+r = (pr)⊥M(γ)pn = 0.

Which gives M(γ)p = 0. �

In the next, we involve the celebrated Hilbert’s Nullstellensatz to obtain a very useful
result. Let Ip ≡ (p) be the ideal of C[z, z] generated by p. The set V (Ip) := {z ∈ C |
f(z) = 0 for every z ∈ Ip} is the (complex) variety associated with Ip. I(V (Ip)) :=

{f(z) ∈ C[z, z] | f(x) = 0 for every z ∈ V (Ip)} and
√
Ip := {f ∈ C[z, z] | fk ∈

Ip for some integerk ≥ 1}, are again ideals in C[z, z], that obviously contain the ideal Ip.
The Hilbert’s Nullstellensatz states that

I(V (Ip)) =
√
Ip.

Now let us consider a polynomial q ∈ C[z, z] satisfying that
Z(p) := {z ∈ C such that p(z, z) = 0} ⊆ Z(q). We have q ∈ I(V (Ip)) hence q ∈

√
Ip,

that is, there exists some integer k ≥ 1 such that qk ∈ Ip. Thus, by Remark 2-i) and
Lemma 3, M(γ)qk = 0. This implies, by Proposition 5, that M(γ)q = 0 and therefore,
from Lemma 3, q is a characteristic polynomial of γ.

Proposition 6. Let γ ≡ {γij}i,j≥0 be a RDIS, associated with the characteristic polyno-
mial p(z, z). Then every polynomial vanishing at all points of Z(p) := {z ∈ C such that
p(z, z) = 0} is a characteristic polynomial of γ.

In the following proposition, we show that for a given RDIS the TCMP and the FCMP
are equivalent.

Proposition 7. Let γ ≡ {γij}i,j≥0 be a RDIS whose initial conditions and characteristic

polynomial are {γij}0≤i≤j≤r and P (z, z) = zr+1 − ∑
0≤l+k≤r

alkz
lzk, respectively. The

following are equivalent.

i) There exists a positive Borel measure µ, solution of the FCMP for γ ≡ {γij}i,j≥0.
ii) There exists a positive Borel measure µ, solution of the TCMP for

ω ≡ {γij}0≤i≤j≤r with

supp(µ) ⊂ Z(P ) := {z ∈ C such that P (z, z) = 0}.
Proof. i) ⇒ ii) It suffices to prove that supp(µ) ⊂ Z(P ).
Write γij =

∫
zizjdµ, for i, j ≥ 0. Since, for every i ≥ 0 and r ≤ n, we have

γi,n+1 −
∑

0≤l+k≤r

alkγl+i,n+k−r = 0,

we get ∫
zizn+1 −

∑

0≤l+k≤r

alkz
l+izn+k−rdµ = 0.

Hence ∫
zizn−rP (z, z) dµ = 0 for every i ≥ 0 and r ≤ n.

Taking an adequate combination, we manage to obtain
∫

P (z, z)P (z, z) dµ =

∫
| P (z, z) |2 dµ = 0.

It follows that P.µ = 0, and thus supp(µ) ⊂ Z(P ).
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ii) ⇒ i) Suppose that γij =
∫
zizjdµ, for all integers i, j such that 0 ≤ j ≤ i ≤ r, and

that supp(µ) ⊂ Z(P ). Since γij = γji, we also have γij =
∫
zizjdµ, for every i, j such

that 0 ≤ i, j ≤ r. Now

γi,r+1 =
∑

0≤l+k≤r

alkγl+i,k =

∫
zi(

∑

0≤l+k≤r

alkz
lzk) dµ,

and since supp(µ) ⊂ Z(zr+1 − ∑
0≤l+k≤r

alkz
lzk), we get γi,r+1 =

∫
zizr+1dµ.

By induction we obtain γij =
∫
zizjdµ (for all i, j ≥ 0) and consequently, µ is a solution

of the FCMP for {γij}i,j≥0. �

3. Recursive sequences of Fibonacci type

In this section, we focus ourself on a particular case of RDIS, which will play a crucial
role in the sequel.

We shall refer to a RDIS with analytic characteristic polynomial as Recursive Se-
quences of Fibonacci Type (RSFT for short). In other words, a sequence γ ≡ {γij}i,j≥0,
with γ00 > 0, is said to be RSFT, associated with the characteristic polynomial P (x) =
xr − a0x

r−1 − . . .− ar−2x− ar−1, if it verifies the following relations:

i) For all i, j ≥ 0,

(12) γji = γij .

ii) For all i and n such that 0 ≤ i ≤ r − 1 ≤ n,

(13) γi,n+1 = a0γi,n + a1γi,n−1 + · · ·+ ar−1γi,n−r+1.

We denote by Aγ the family of analytic characteristic, monic, polynomial associated
with γ.

Remarks 8. • Aγ ⊆ Pγ .
• A sequence γ ≡ {γij}i,j≥0 is a RSFT if and only if Aγ 6= ∅.

Proposition 9. Let γ ≡ {γij}i,j≥0 be a RSFT, satisfying the relations (12) and (13).
Then Aγ is a principal ideal of C[X].

Proof. It’s obvious that Aγ is an ideal of C[X]. It suffices to show that there exists a
unique analytic characteristic polynomial, Pγ ∈ Aγ , with minimal degree and that every
characteristic polynomial is a multiple of Pγ . Since, for every j ≥ 0, the polynomial

P (x) = xr − a0x
r−1 − . . . − ar−2x − ar−1 =

n∏
k=1

(x − λi)
di is a characteristic polyno-

mial associated with the singly indexed Fibonacci sequences γj = {γij}i≥0, then (by
[4, Proposition 3.1]) there exists a unique characteristic polynomial of minimal degree

Pγj
=

n∏
i=0

(x − λi)
αij , that divides P (x), associated with γj . Since 0 ≤ αij ≤ di, for

every j ≥ 0, then Pγ =
∧
j≥0

Pγj
=

n∏
i=0

(x − λi)
αi , where αi = maxj≥0 αij , is the smallest

common multiple of Pγj
divides P and provides a positive answer to the proposition. �

Let γ ≡ {γij}i,j≥0 be a RSFT, we call Pγ the minimal polynomial associated with γ.
Below, we associate with every RSFT its minimal polynomial.

Corollary 10. Let γ ≡ {γij}i,j≥0 be a RSFT, associated with the minimal analytic
characteristic polynomial Pγ ∈ C[z]. If M(γ) ≥ 0, then Pγ has distinct roots.
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Proof. Setting Pγ(z) =
r∏

i=1

(z − λi)
ni for the characteristic polynomial of (γ), we get

M(γ)
r∏

i=1

(z − λi)
ni = 0 (by Lemma 3). It follows that M(γ)

r∏
i=1

(z − λi)
m = 0, where

m =
r

max
i=1

ni, and then from Proposition 5, we have M(γ)
r∏

i=1

(z − λi) = 0. Therefore,

again by Lemma 3, the polynomial
r∏

i=1

(z − λi) is a characteristic polynomial of γ and

divides Pγ . Since Pγ is minimal, then Pγ =
r∏

i=1

(z − λi). �

We next solve the complex moment problem for a RSFT. Consider the following
quadratic forms

C[z, z] →C

ϕγ :
∑

0≤i+j≤n

aijZ
i
Zj →

∑

0≤i+j,h+k≤n

aijahkγi+k,j+h

and

ϕγ
n ≡ ϕγ

|Cn[Z,Z]
.

Let M(γ) and M(n)(γ) be the matrices associated with ϕγ and ϕγ
n, respectively. We

denote M(n)(γ) ∈ Mm(C), where m = m(n) = (n+1)(n+2)
2 . Let also {eij}0≤i+j≤n be the

canonical basis of Cm, that is, eij is the vector with 1 in the Z
i
Zj entry and 0 all other

positions.
The next proposition establishes a link between the positivity of ϕγ and that of ϕγ

n.

Proposition 11. Let γ be a RSFT such that degPγ = r and let n ≥ 2r − 2. Then ϕγ
n

is positive semi-definite if and only if ϕγ is positive semi-definite. Moreover rank ϕγ
n =

rank ϕγ .

Proof. We only need to show the direct implication. To this aim, we construct a matrix
W ∈ Mm,n+2(C) such that the successive rows are defined by

Z
i
Z2r−1−i =

r−1∑

j=0

aje(i,2r−2−i−j), for all 0 ≤ i ≤ r − 1,

and

Z
i
Z2r−1−i =

r−1∑

j=0

aje(i−j−1,2r−1−i), for all r ≤ i ≤ 2r − 1.

Clearly M(n + 1)(γ) has the form

(
M(n)(γ) B

B∗ C

)
, with B = M(n)(γ)W and C =

B∗W . Since M(n)(γ) ≥ 0 then, by the Smul’jan’s theorem (see [27]), M(n + 1)(γ) ≥ 0
and rank M(n)(γ) = rank M(n + 1)(γ). By induction we obtain M(γ) ≡ M(∞) ≥ 0
and thus ϕγ is positive semi-definite, as desired. �

We are able now to give a necessary and sufficient condition for a RSFT to be a
moment sequence.

Theorem 12. Let γ ≡ {γij}i,j≥0 be a RSFT, and Pγ of degree r be its minimal analytic
characteristic polynomial. Then γ admits a representing measure µ if and only if ϕγ

2r−2

is positive semi-definite. Moreover

supp(µ) = Z(Pγ).
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Proof. If γ admits a representing measure µ; then, for any p ∈ C[z, z], pTM(γ)p =∫
| p |2 dµ ≥ 0. Thus it follows that ϕγ is positive semidefinite, and hence ϕγ

2r−2

is positive semi-definite. Conversely, if M(2r − 2)(γ) ≥ 0, then using Proposition 11,

we get M(γ) ≡ M(∞) is a positive semidefinite. Now let Pγ(z) =
r∏

i=1

(z − λi) and

let Lλj
=

∏
1 ≤ i ≤ r

i 6= j

z−λi

λj−λi
∈ C[z, z] (i = 1 · · · , r) be the interpolation polynomials at the

points of Z(Pγ). Since the polynomials Q(z, z) = zn − ∑r

i=1 λ
n
i Lλi

and H(z, z) =

zm−∑r

j=1 λ
m

j Lλj
vanish at all points of Z(Pγ), we derive from Lemma 6 that, Q(z, z) and

H(z, z) are characteristic polynomials of γ. Hence Lemma 3 ensures that M(γ)Q(z, z) =
M(γ)H(z, z) = 0, thus γmn (m,n ∈ Z+) can be expressed as follows:

γmn = (zm)TM(γ)zn

= 1TM(γ)(znzm) by applying (10)

= 1TM(γ)(

r∑

i=1

λn
i Lλi

zm) from Remark 2-i) and Lemma 3

= 1TM(γ)(

r∑

i=1

λn
i Lλi

r∑

j=1

λ
m

j Lλj
)

= 1TM(γ)(

r∑

i,j=1

λn
i λ

m

j Lλi
Lλj

)

=

r∑

i,j=1

λn
i λ

m

j 1TM(γ)(Lλi
Lλj

).

If i 6= j, then Lλi
Lλj

vanishing at all points of Z(Pγ), hence (in this case and from

Lemma 6 ) Lλi
Lλj

is a characteristic polynomial of γ, that is, M(γ)(Lλi
Lλj

) = 0. Thus

γmn =

r∑

i=1

λ
m

i λn
i 1

TM(γ)(Lλi
Lλi

) =

r∑

i=1

λn
i λ

m

i LT
λi
M(γ)Lλi

.

Since M(γ) ≥ 0, we get ci = LT
λi
M(γ)Lλi

≥ 0 for i = 0, . . . , r. Therefore the measure

µ =
∑r

i=1 ciδλi
gives a positive answer to the problem (1) associated with γ.

It remains to show that supp(µ) = Z(Pγ), that is, ci 6= 0 for all i = 0, . . . , r. Indeed, if
ci = 0 for some i ∈ {1, . . . , r}, then LT

λi
M(γ)Lλi

= 0. SinceM(γ) ≥ 0, thenM(γ)Lλi
= 0

and from Lemma 3, Lλi
is an analytic characteristic polynomial of γ, and this is a

contradiction, because the degree of the polynomial Lλi
is less strictly than the degree

of the minimal polynomial Pγ . �

4. Solving the complex moment problem for RDIS

Let γ = {γij}i,j≥0 be a double indexed recursive moment sequence, associated with

the characteristic polynomial P (z, z) = zr− ∑
0≤l+k≤r−1

alkz
lzk. Proposition 7 ensures the

existence of a representing measure µ associated with γ such that supp(µ) ⊆ Z(P ) :=

{λ0, . . . , λn}. It follows that Q(z) =
n∏

i=1

(z−zi) = zn−a1z
n−1−· · ·−an is a characteristic

polynomial associated with γ, and since for every i ≥ 0 and n ≥ r, we have

γi,n − a1γi,n−1 − a2γi,n−2 − · · · − arγi,n−r =

∫
zizn−rQ(z) dµ = 0.

We conclude that a double indexed recursive moment sequence is a RSFT.
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In order to obtain necessary and sufficient condition for a RDIS to be moment se-
quence, we need to find the smallest n which verifies the following equivalence:

M(n) ≥ 0 ⇐⇒ M(γ) ≡ M(∞) ≥ 0.

Since γ admits a characteristic polynomial of the form zr − Pr−1(z, z) (with degPr−1 ≤
r − 1) the best known result in this direction is the one given by Curto-Fialkow [9,
Theorem 3.1] which guarantees the equivalence for every n satisfying the inequality r ≤
[n2 ] + 1. In the next theorem we involve the characteristic polynomials P (z, z) and Q(z)
(associated with γ) to refine this result.

Theorem 13. Let γ ≡ {γij}i,j≥0 be a RDIS associated with the characteristic polynomi-

als P (z, z) = zr− ∑
0≤l+k≤r−1

alkz
lzk and Q(z) =

n∏
i=1

(z−λi), where Z(P ) = {λ1, . . . , λn},
then:

i) There exists a characteristic polynomial, h(z, z) ∈ C[z, z], associated with γ such
that Q(z) = h(z, z)+f1(z, z)P (z, z)+f2(z, z)P (z, z), where f1, f2 ∈ C[z, z], with
dz(h) < r and dz(h) < r.

ii) Let Ah be the set of monomials zizj in h such that i + j = dh, and denote
c1 := max{k | zlzk ∈ Ah} and c′1 := max{l | zlzk ∈ Ah}. We also define c2 :=

max{k | zlzk ∈ Ah \ {zdh−c1zc1}} and c′2 := max{l | zlzk ∈ Ah \ {zc′1zdh−c′−1}},
if card Ah ≥ 2. We put for convenience c2 = c′2 = −∞, in the case where
card(Ah) = 1. We finally denote c = sup(c1, c

′
1), αc1 = inf(r − c1, c1 − c2) and

αc′1
= inf(r − c′1, c

′
1 − c′2). Then

M(∞) ≥ 0 ⇐⇒ M(2r − 2− αc) ≥ 0.

Proof. i) It obvious to show that there exists h(z, z) such that

Q(z) = h(z, z) + f1(z, z)P (z, z) + f2(z, z)P (z, z)

for some f1, f2 ∈ C[z, z], with dz(h) < r and dz(h) < r. Since P, P and Q are charac-
teristic polynomials then h(z, z) is also a characteristic polynomial associated with (γ).

ii) Since the two conditions are symmetric, we only need to prove the case c1 ≥ c′1.
Recall first that for m ≥ 0, Mm(C) denotes the algebra of m × m complex matrices
and for n ≥ 0, let m ≡ m(n) := (n + 1)(n + 2)/2 and M(n)(γ) ∈ Mm(C), as in the
introduction. We define a basis {eij}0≤i+j≤n of Cm as follows: eij is the vector with 1

in the Z
i
Zj entry and 0 all other positions.

The main idea is to write, from the characteristic polynomials associated with γ,
monomials of order 2r − 1 − αc + e − 1 (e ∈ N) as linear combination of monomials of
order strictly less than 2r − 1− αc + e modulo P, P , h and h, that is,

ziz2r−1−αc+e−i = H(i,2r−1−αc+e−i)(z, z) mod {P, P , h, h},

with 0 ≤ i ≤ 2r − 1− αc + e and degH(i,2r−1−αc+e−i)(z, z) ≤ 2r − 2− αc.
We construct for every e ∈ Z+ a matrix We ∈ Mm(2r−2−αc+e),2r−1−αc+e(C) such

that the coefficients of the column Z
i
Z2r−1−αc+e−i , 0 ≤ i ≤ 2r − 1 − αc + e, are

that of the polynomial H(i,2r−1−αc+e−i) (considering the lexicographic order cited in the
introduction).

Since P, P , h and h are characteristic polynomials associated with γ, the above dis-
cussion leads, in view of Lemma 3, to the following equality:

M(2r − 1− αc + e)(γ) =

(
M(2r − 2− αc + e)(γ) B

B∗ C

)
,
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such that B = M(2r − 2 − αc + e)(γ)We and C = B∗We, for all e ∈ N. According to
Smul’jan’s theorem we have

M(2r − 2− αc + e)(γ) ≥ 0 ⇐⇒ M(2r − 1− αc + e)(γ) ≥ 0,

and hence it follows by induction that

M(2r − 2− αc)(γ) ≥ 0 ⇐⇒ M(∞)(γ) ≥ 0.

We distinguish 3 cases,

• r ≤ i ≤ 2r − 1− αc + e. Since zr = P +
∑

0≤l+k≤r−1

alkz
kzl, we obtain

ziz2r−1−αc+e−i = zi−rz2r−1−αc+e−iP +
∑

0≤l+k≤r−1

alkz
k+i−rzl+2r−1−αc+e−i.

Hence

Z
i
Z2r−1−αc+e−i =

∑

0≤l+k≤r−1

alke(k+i−r,l+2r−1−αc+e−i).

• 0 ≤ i ≤ r − 1− αc. As z
r = P +

∑
0≤l+k≤r−1

alkz
lzk, we get

ziz2r−1−αc+e−i = zizr−1−αc+e−iP +
∑

0≤l+k≤r−1

alkz
l+izk+r−1−αc+e−i,

and thus,

Z
i
Z2r−1−αc+e−i =

∑

0≤l+k≤r−1

alke(l+i,k+r−1−αc+e−i).

• r − αc ≤ i ≤ r − 1. This third case requires more work. We will distinguish two
subcases.

a) Card A = 1. (In this case we have αc = r − c1). Let

h(z, z) = zdh−c1zc1 −
∑

0≤l+k≤dh−1

alkz
lzk,

we have

zdh−c1zc1 = h(z, z) +
∑

0≤l+k≤dh−1

alkz
lzk

and since dh ≤ c1 + c′1 ≤ 2c1, we get

zr+c1+e−1−izi = zr+2c1+e−1−i−dhzi−c1(zdh−c1zc1),
= zr+2c1+e−1−i−dhzi−c1h(z, z)

+
∑

0≤l+k≤dh−1

alkz
l+r+2c1+e−1−i−dhzk+i−c1 .

Hence,

Z
r+c1+e−1−i

Zi =
∑

0≤l+k≤dh−1

alke(l+r+2c1+e−1−i−dh,k+i−c1),

and it follows that,

Z
2r−1−αc+e−i

Zi =
∑

0≤l+k≤dh−1

alke(l+3r−2αc+e−1−i−dh,k+i−r+αc).

b) Card A ≥ 2. Let

zdh−c1zc1 = h(z, z) +
∑

l+k=dh

αlkz
lzk +

∑

0≤l+k≤dh−1

alkz
lzk,
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we deduce that,

zc2−c1+rzc1 = (zr−dh+c2)(zdh−c1zc1)
= zr−dh+c2h+

∑
l+k=dh

αlkz
l+r−dh+c2zk

+
∑

0≤l+k≤dh−1

alkz
l+r−dh+c2zk.

Since in the above equality, all monomials in the sum
∑

l+k=dh

αlkz
r+l−dh+c2zk

satisfy dz(z
l+r−dh+c2zk) ≥ r (since k ≤ c2 and l+ k = dh, then l− dh + c2 ≥ 0),

we get
∑

l+k=dh

αlkz
l+r−dh+c2zk = P

∑

l+k=dh

zl−dh+c2zk −
∑

0≤l′+k′≤r+c2−1

al′k′zl
′

zk
′

,

where {al′k′}0≤l′+k′≤r+c2−1 are complex numbers. Thus, there exists αl′′k′′ ∈ C

such that

(14) zc2−c1+rzc1 =
∑

0≤l′′+k′′≤r+c2−1

αl′′k′′zl
′′

zk
′′

mod(P , h).

Here again we discuss two situations,
*) If r − c1 ≤ c1 − c2 (that is, αc = r − c1).
Then 0 ≤ c1−r+c1−c2 ≤ i−r+c1−c2 and 0 ≤ c2−c1+r (since c2 ≤ c1 ≤ i ≤ r),
hence (14) yields

zizr+c1+e−1−i = (zi−c2+c1−rzr+e−1−i)(zc2−c1+rzc1)

=
∑

0≤l′′+k′′≤r+c2−1

αl′′k′′zl
′′+i−c2+c1−rzk

′′+r+e−1−imod(P , h).

Then

Z
i
Zr+c1+e−1−i =

∑

0≤l′′+k′′≤r+c2−1

αl′′k′′e(l′′+i−c2+c1−r,k′′+r+e−1−i),

that is,

Z
i
Z2r−1−αc+e−i =

∑

0≤l′′+k′′≤r+c2−1

αl′′k′′e(l′′+i−c2+c1−r,k′′+r+e−1−i).

**) If r − c1 > c1 − c2 (that is, αc = c1 − c2).
By (14), we get

z2r−c1+c2+e−1−izi = (zr+e−1−izi−c1)(zr−c1+c2zc1)

=
∑

0≤l′′+k′′≤r+c2−1

αl′′k′′zl
′′+r+e−1−izk

′′+i−c1mod(P , h),

and then

ziz2r−1−αc+e−i =
∑

0≤l′′+k′′≤r+c2−1

αl′′k′′zk
′′+i−c1zl

′′+r+e−1−imod(P, h).

This finally gives

Z
i
Z2r−1−αc+e−i =

∑

0≤l′′+k′′≤r+c2−1

αl′′k′′e(k′′+i−c1,l′′+r+e−1−i),

as required.

�
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Corollary 14. Let γ ≡ {γij}i,j≥0 be a RDIS associated with the characteristic polyno-

mial P (z, z) = zr − ∑
0≤l+k≤r−1

alkz
lzk, then

M(∞)(γ) ≥ 0 ⇐⇒ M(2r − 2)(γ) ≥ 0.

Proof. It suffices to rewrite the first and second cases, in the above theorem’s proof, with
αc = 0. �

In the next theorem and in the sequel, we set ξ ≡ ξγ = 2r − 2− αc.

Theorem 15. Let γ ≡ {γij}i,j≥0 be a RDIS associated with the characteristic polynomial

P (z, z) = zr − ∑
0≤l+k≤r−1

alkz
lzk and let Z(P ) = {λ1, λ2, . . . , λn}. The following are

equivalent:

• γ is a moment sequence;
• Q(z) = Πn

i=1(z − λi) ∈ Pγ and M(ξ) ≥ 0.

Proof. Suppose that γ admits a representing measure µ.
Then, from Proposition 7, supp(µ) ⊂ Z(P ) = {λ1, λ2, . . . , λn}. Setting Q(z) =

Πn
i=1(z − λi) = zn − α1z

n−1 − · · · − αn, we have

γim =

∫
zizmdµ where 0 ≤ i and n ≤ m

=

∫
zi(α1z

m−1 + α2z
m−2 + · · ·+ αnz

m−n)dµ

= α1γi,m−1 + α2γi,m−2 + · · ·+ αnγi,m−n.

Hence Q(z) is a characteristic polynomial associated with γ. The condition M(ξ) ≥ 0 is
obvious. Conversely, since M(γ)(ξ) ≥ 0 then, from Theorem 13, M(γ)(∞) ≥ 0 and thus,
from Theorem 12, the sequence γ owns a representing measure. �

Corollary 16. Let γ ≡ {γij}i,j≥0 be a RDIS associated with the characteristic poly-

nomial P (z, z) = zr − ∑
0≤l+k≤r−1

alkz
lzk, then γ is a moment sequence if and only if

M(2r − 2)(γ) ≥ 0.

Proof. We only need to show the converse implication. As noted in the introduction
the polynomial P (z, z) has finite number of roots, say Z(P ) := {λ1, λ2, . . . , λn}. Since
M(2r− 2)(γ) ≥ 0, Corollary 14 yields M(∞)(γ) ≥ 0. Let Q(z) = Πn

i=1(z−λi), applying
Proposition 6, we obtain Q(z, z) ∈ Pγ . Therefore, Theorem 15 implies that γ is a moment
sequence. �

5. The case of cubic moment problem

5.1. The TCMP with cubic relation of the form z3 + az + bz = 0. Whenever we
have the zeros of a characteristic polynomial associated with a RDIS, Theorem 15 allows
us to give a concrete, computable, necessary and sufficient conditions for the existence of
a representing measure associated with this sequence. In this section we apply the above
mentioned theorem to solve the complex moment problem for a RDIS, associated with
a harmonic characteristic polynomial of the form z3 + az + bz, where a, b ∈ R. First, we
start by giving the number of zeros of the harmonic polynomial P (z, z) = z3 + az + bz.
We solve the equation z3 + az + bz = 0, for completeness. Writing z = x + iy, we get
(x+iy)3+a(x+iy)+b(x−iy) = 0, and then x3−3xy2+(a+b)x−i(y3−(3x2+a+d)y) = 0.
It follows that {

x(x2 − 3y2 + a+ b) = 0,

y(y2 − (3x2 + a− b)) = 0.
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• If y = 0, then x = 0 or x2 = −a− b.
• If x = 0, then y = 0 or y2 = a− b.
• If xy 6= 0, then x2 = −a+2b

4 and y2 = a+2b
4 .

We deduce from the above cases that z3 + az+ bz has at most 7 roots and it has exactly
7 roots if and only if b < |a| < 2b.

Let λ1, λ2, . . . , λ7 be the roots of the polynomial P (z, z) = z3 + az + bz, with b <
−a < 2b. Direct computations lead to the expression

Q(z) = Π7
i=1(z − λi)

= z7 + (2a+ b)z5 + (a2 + b2 + ab)z3 + (b3 + ab2)z

= (z4 + (a+ b)z2 − bzz + b2)P (z, z)− b2(zz2 − z2z − bz + bz)

= (z4 + (a+ b)z2 − bzz + b2)P (z, z)− b2h(z, z).

Now we are able to solve the moment problem of this section, in the case
b < −a < 2b. Recall again that, 1, Z, Z, . . . , Zn, . . . , Z

n
denote the successive columns of

M(ω)(n).

Theorem 17. Let ω ≡ {γij}0≤i+j≤6, with γij = γji and γ00 > 0, be a truncated complex
sequence, let M(ω)(3) be its associated moment matrix and let Λω be as in (4). If
M(ω)(3) ≥ 0 and has cubic column relation of the form Z3 = −aZ − bZ, with a, b ∈ R

and b < −a < 2b. Then the following statements are equivalent:

i) There exists a representing measure for ω.
ii) There exists a representing measure for the RDIS γ ≡ {γij}i,j≥0, whose initial

conditions and characteristic polynomial are {γij}0≤i≤j≤2 and P (z, z) = z3 +
az + bz, respectively .

iii) {
Λω(h) = 0,

Λω(zh) = 0.

iv) {
Imγ12 = bImγ01,

γ22 + 2bReγ20 + (a− b)γ11 = 0.

v) h(z, z) = zz2 − z2z − bz + bz ∈ Pγ , where γ is the RDIS defined in ii).

vi) ZZ2 − Z
2
Z − bZ + bZ = 0.

Proof. It is straightforward to see that iii) ⇔ iv), ii) ⇒ i) and v) ⇒ vi) ⇒ iii). Thus, it
is enough to show i) ⇒ ii), iii) ⇒ v) and v) ⇔ ii).

i) =⇒ ii). Suppose that ω admits a representing measure µ. Because the cubic column
in M(ω)(3) verifies Z3 = −aZ − bZ, we get the following relations:

∫
z3P (z, z) dµ =

∫
z3(z3 + az + bz) dµ = γ3,3 + aγ3,1 + bγ4,0 = 0,

∫
zP (z, z) dµ =

∫
z(z3 + az + bz) dµ = γ0,4 + aγ0,2 + bγ1,1 = 0,

∫
zP (z, z) dµ =

∫
z(z3 + az + bz) dµ = γ1,3 + aγ1,1 + bγ2,0 = 0,

thus
∫

| P |2 dµ =
∫
(z3 + az + bz)P dµ = 0 hence supp(µ) ⊆ Z(P ). It follows, from

Proposition 7, that µ is a representing measure for γ.
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iii) ⇒ v). It suffices to show that Λγ(z
izjh(z, z)) = 0, for all i, j ≥ 0.

Remark that, whenever z3 = −az − bz, we have

z2h =(b− a)h,

zzh =(a− b)h,

h =− h.

Then
Λγ(z

2h) = (b− a)Λω(h) = 0,
Λγ(zzh) = (a− b)Λω(h) = 0,

Λγ(h) = −Λω(h) = 0,

Λγ(zh) = Λω(zh) = −Λω(zh) = 0,

Λγ(zz
2h) = (b− a)Λω(zh) = −(b− a)Λω(zh) = 0.

Since γ is a RDIS associated with the characteristic polynomial z3+az+ bz, then, for
every i, j ∈ Z+, we have

Λγ(z
izjh(z, z)) =

∑

0≤l,k≤2

alkΛω(z
lzkh(z, z)) = 0,

where {alk}0≤l,k≤2 are real numbers.
v) ⇒ ii). We know that Q(z) = (z4 + (a + b)z2 − bzz + b2)P (z, z) − b2h(z, z). Since

P (z, z) and h(z, z) are characteristic polynomials, Q(z) is also a characteristic polynomial
associated with γ. As M(ξ)(γ) ≡ M(3) ≥ 0 (observe that ξ = 2 × 3 − 2 + 1 = 3) and
Q(z) ∈ Pγ , then Theorem 15 yields that γ admits a representing measure.

ii) ⇒ v). We have

h(z, z) =
1

b2
(z4 + (a+ b)z2 − bzz + b2)P (z, z)− 1

b2
Q(z),

since (by Theorem 15) Q(z) is a characteristic polynomial of γ, as well as the polynomial
P (z, z), then h(z, z) is a characteristic polynomial associated with γ
(by Remark 2-i) ). �

Let us now suppose that b < a < 2b, then

Q(z) = Π7
i=1(z − λi)

= z7 + (2a− b)z5 + (a2 + b2 − ab)z3 + (ab2 − b3)z

= (z4 + (a− b)z2 − bzz + b2)P (z, z) + b2(z + z)(zz − b).

Let h(z, z) = (z + z)(zz − b), we have

z2h(z, z) = (zz + z2 − b)P (z, z)− bP (z, z)− (a+ b)h(z, z),

zzh(z, z) = (z2 − b)P (z, z) + (z2 − b)P (z, z)− (a+ b)h(z, z),

h = h.

If Λω(h) = Λω(zh) = 0, we get

Λγ(h) =Λω(h) = 0,

Λγ(zh) =Λγ(zh) = Λω(zh) = 0,

Λγ(zzh) =− (a+ b)Λω(h) = 0,

Λγ(z
2h) =− (a+ b)Λω(h) = 0,

Λγ(zz
2h) =− (a+ b)Λω(zh) = 0,

Λγ(z
2zh) =− (a+ b)Λω(zh) = 0.



30 K. IDRISSI AND E. H. ZEROUALI

The above equalities and cubic relation allow us to prove that Λγ(z
izjh) = 0, for all

i, j ∈ Z+; that is, h(z, z) ∈ Pγ . From this observation and similarly to the above
theorem’s proof, we are able to state the following theorem.

Theorem 18. Let ω ≡ {γij}0≤i+j≤6, with γij = γji and γ00 > 0, be a given truncated
complex sequence, let M(ω)(3) be its associated moment matrix and let Λω be as in (4).
If M(ω)(3) ≥ 0 and has cubic column relation of the form Z3 = −aZ−bZ , with a, b ∈ R

and b < a < 2b. Then the following statements are equivalent:

i) There exists a representing measure for ω.
ii) There exists a representing measure for the RDIS γ ≡ {γij}i,j≥0, whose initial

conditions and characteristic polynomial are {γij}0≤i≤j≤2 and P (z, z) = z3 +
az + bz, respectively.

iii) {
Λω(h) = 0,

Λω(zh) = 0.

iv) {
Reγ12 = bReγ01,

γ22 = 2bReγ20 + (a+ b)γ11.

v) h(z, z) = (z + z)(zz − b) ∈ Pγ , where γ is the RDIS defined in ii).

vi) (Z + Z)(ZZ − b) = 0.

By the same technique we treat the other cases, we find the following results.

b > 0 N Zeros h(z, z) Necessary and sufficient conditions

2b ≤ a 3
±i

√
a− b

0
z + z

M(2) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

Λγ(z
2
h) = 0

M(2) ≥ 0

Imγ01 = 0

γ11 + γ02 = 0

γ12 = aγ01 + bγ10

b < a < 2b 7

±i
√
a− b;

±
√
−a+ 2b

2

±i

√
a+ 2b

2
;

0.

(z + z)(zz − u)

M(3) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

M(3) ≥ 0

Reγ12 = bReγ01

γ22 = 2bReγ20 + (a+ b)γ11

−b ≤ a ≤ b 1 0
γ00 > 0 and γij = 0

for all 0 ≤ i ≤ j ≤ 2

b < −a < 2b 7

±
√
−a− b;

±
√
−a+ 2b

2

±i

√
a+ 2b

2
;

0.

(z − z)(zz − u)

M(3) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

M(3) ≥ 0

Imγ12 = bImγ01

γ22 + 2bReγ20 = (b− a)γ11

a ≤ −2b 3
±
√
−a− b

0
z − z

M(2) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

Λγ(z
2
h) = 0

M(2) ≥ 0

γ01 = γ10

γ02 = γ11

aγ01 + bγ10 + γ12 = 0

Table 1. b positive
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b < 0 N Zeros h(z, z) Necessary and sufficient conditions

−b ≤ a 3
±i

√
a− b

0
z + z

M(2) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

Λγ(z
2h) = 0

M(2) ≥ 0

Imγ01 = 0

γ11 + γ02 = 0

γ12 = aγ01 + bγ10

|a| < −b 5

±i
√
a− b

±
√
−a− b

0

z2z + az + bz

M(3) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

Λγ(zh) = 0

M(3) ≥ 0

γ21 + aγ01 + bγ10 = 0

γ20 = γ02

γ22 + aγ01 + bγ10 = 0

a ≤ b 3
±
√
−a− b

0
z − z

M(2) ≥ 0

Λγ(h) = 0

Λγ(zh) = 0

Λγ(z
2h) = 0

M(2) ≥ 0

γ01 = γ10

γ02 = γ11

aγ01 + bγ10 + γ12 = 0

Table 2. b negative

5.2. The TCMP with cubic relation in M(3) of the form Z3 = itZ+uZ. We end
this section by considering another class of cubic column relations in truncated moment
problems.

Set w = e−iπ
4 z, the form w3 = itw + uw became z3 + tz + uz = 0.

We take t = a and u = b, then w3 = itw + uw owns exactly 7 roots if and only
if u < |t| < 2u, see Table (1). Hence if u ≤ 0 then rank M(3) < 7 (more precisely
rank M(3) ≤ 5); as noted in the introduction this case is not interesting.

In view of Theorems 17 and 18 we deduce the solution of the TCMP for cubic column
relations in M(3) of the form Z3 = itZ + uZ, where u < |t| < 2u.

If 0 < u < t < 2u, then

h(z, z) = 0,

(z + z)(zz − u) = 0,

(e
π
4 iw + e−

π
4 iw)(ww − u) = 0,

i(w − iw)(ww − u) = 0.

If 0 < u < −t < 2u, then

h(z, z) = 0,

(z − z)(zz − u) = 0,

(e
π
4 iw − e−

π
4 iw)(ww − u) = 0,

i(w + iw)(ww − u) = 0.

Now we are able to state the main theorem in [13].

Theorem 19. Let ω ≡ {γij}0≤i+j≤6, with γij = γji and γ00 > 0, be a truncated complex
sequence, let M(ω)(3) be its associated moment matrix and let Λω(h) be as in (4). If
M(ω)(3) ≥ 0 and has cubic column relation of the form Z3 = itZ − uZ , with t, u ∈ R

and u < t < 2u. Then the following statements are equivalent:

i) There exists a representing measure for ω.
ii) There exists a representing measure for the RDIS γ ≡ {γij}i,j≥0, whose initial

conditions and characteristic polynomial are {γij}0≤i≤j≤2 and P (z, z) = z3 −
itz − uz, respectively .



32 K. IDRISSI AND E. H. ZEROUALI

iii) {
Λω(h) = 0,

Λω(zh) = 0.

iv) {
Reγ12 − Imγ12 = u(Reγ01 − Imγ01),

γ22 = (t+ u)γ11 − 2uImγ02.

v) h(z, z) = i(z − iz)(zz − u) ∈ Pγ , where γ is the RDIS defined in ii).

vi) Z2Z − iZZ
2 − uZ + iuZ = 0.

Theorem 20. Let ω ≡ {γij}0≤i+j≤6, with γij = γji and γ00 > 0, be a truncated complex
sequence, let M(ω)(3) be its associated moment matrix and let Λω be as in Λω. If
M(ω)(3) ≥ 0 and has cubic column relation of the form Z3 = itZ − uZ , with t, u ∈ R

and u < −t < 2u. Then the following statements are equivalent:

i) There exists a representing measure for ω.
ii) There exists a representing measure for the RDIS γ ≡ {γij}i,j≥0, whose initial

conditions and characteristic polynomial are {γij}0≤i≤j≤2 and P (z, z) = z3 −
itz − uz, respectively .

iii) {
Λω(h) = 0,

Λω(zh) = 0.

iv) {
Reγ12 + Imγ12 = u(Reγ01 + Imγ01),

γ22 = (u− t)γ11 + 2uImγ02.

v) h(z, z) = i(z + iz)(zz − u) ∈ Pγ , where γ is the RDIS defined in ii).

vi) Z2Z + iZZ
2 − uZ − iuZ = 0.

6. Solving the TCMP with column dependence relations of the form
Zk+1 =

∑
0≤n+m≤k

anmZ
n
Zm (anm ∈ C)

In this section, we involve the RDIS to solve the TCMP associated with the truncated
sequence γ ≡ {γij}0≤i+j≤2k+2, with γij = γji and M(k + 1)(γ) has a column relation of
the form

(15) Zk+1 =
∑

0≤n+m≤k

anmZ
n
Zm (anm ∈ C, for all n,m ∈ Z+ and n+m ≤ k).

According to (15), we have γi+k+1,j =
∑

0≤n+m≤k

anmγn+i,m+j , for all i, j ∈ Z+ such

that i+j ≤ k+1. Hence γ is a subsequence of the RDIS γ̃, defined by the initial conditions
{γij}0≤i≤j≤k and by the characteristic polynomial p(z, z) = zk+1 − ∑

0≤n+m≤k

anmznzm.

We give now the main result of this section.

Theorem 21. Let M(k + 1)(γ) has a column dependence relations of the form Zk+1 =∑
0≤n+m≤k

anmZ
n
Zm and let γ̃ be a RDIS defined as above. Then M(k + 1)(γ) admits a

representing measure if and only if M(2k)(γ̃) is positive semidefinite.

Proof. Suppose that γ ≡ {γij}0≤i+j≤2k+2 is a moment sequence, then there exists a
positive Borel measure µ verifies the relation

γij =

∫
zizj dµ (i+ j ≤ 2k + 2).
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Set p(z, z) = zk+1 − ∑
0≤n+m≤k

anmznzm. Since M(k + 1)(γ) has a column dependence

relations of the form p(Z,Z) = 0, then
∫

zizjp(z, z) dµ = γi+k+1,j −
∑

0≤n+m≤k

anmγi+n,j+m = 0,

for every i, j ∈ Z+ such that i+ j ≤ k + 1. Hence
∫

| p(z, z) |2 dµ =

∫
p(z, z)p(z, z) dµ

=

∫
zk+1p(z, z) dµ−

∑

0≤n+m≤k

anm

∫
znzmp(z, z) dµ

= 0,

thus suppµ ⊂ Z(p). It follows, from Proposition (7), that γ̃ is a moment sequence, and
obviously M(2k)(γ̃) is positive semidefinite. Conversely, if M(2k)(γ̃) ≥ 0, then Corollary
(16) yields that γ̃ has a representing measure, and thus γ ≡ {γij}0≤i+j≤2k+2 is a moment
sequence. �

On account of Theorem (21) we can formulate the following corollary, which proved a
complete solution to the truncated moment problems with cubic column relations.

Corollary 22. Let γ ≡ {γij}0≤i+j≤6 (with γij = γji) be a complex numbers, let M(3)(γ)

admits a cubic column relations of the form Z3 =
∑

0≤i+j≤2

aijZ
i
Zj and let γ̃ be the

RDIS defined by the initial condition {γij}0≤i,j≤2 and by the characteristic polynomial
z3 − ∑

0≤i+j≤2

aijz
izj. Then γ admits a representing measure if and only if M(4)(γ̃) ≥ 0.
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