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A GENTLE INTRODUCTION TO

JAMES’ WEAK COMPACTNESS THEOREM

AND BEYOND

WARREN B. MOORS

Abstract. The purpose of this paper is twofold: firstly, to provide an accessible

proof of James’ weak compactness theorem that is able to be taught in a first-year
graduate class in functional analysis and secondly, to explore some of the latest and
possible future extensions and applications of James’ theorem.

1. Introduction

The first part of this paper is devoted to providing a proof of James’ weak compactness
theorem that is able to be taught in a first-year graduate class in functional analysis.
Usually when one teaches a first course in functional analysis one teaches the basic finite
dimensional material, Hilbert space material, the open mapping theorem, the closed
graph theorem, the uniform boundedness theorem and the Hahn-Banach theorem, plus
applications. Then one might consider the spectral theory of compact normal operators,
or even, an introduction to C∗-algebras. However, what is often neglected is the study
of linear topology, which then makes it difficult to even start to contemplate how one
might prove James’ theorem on weak compactness. So, what we propose in the first part
of this paper is a way of presenting James’ theorem on weak compactness to an audience
unfamiliar with linear topology, or anything other than, the most basic facts concerning
normed linear spaces. Later, in the second half of Section 3, and thereafter, we present
some of the latest advances/extensions and applications of James’ theorem.

For the author, James’ theorem on weak compactness is one of the true delights of
functional analysis. Its proof is a beautiful synthesis of linear algebra and topology. The
one down-side of this theorem is that its proof has an unfortunate reputation of being
very difficult. We hope, among other things, to dispel this myth.

We shall start with a brief history of this problem. Back in 1933 (see, [32]) S. Mazur
conjectured that a Banach space (X, ‖ · ‖), over the real numbers, is reflexive if, and
only if, every continuous linear functional defined on X attains its maximum value on
the closed unit ball of X. In 1957 (see, [19]), R. James confirmed this conjecture for
separable Banach spaces, i.e., those spaces that contain a countable dense subset. Later,
in 1963 (see, [20]), R. James completely confirmed the conjecture for arbitrary Banach
spaces. One year after this, in [21], R. James extended this result to show that a closed
and bounded convex subset C of a Banach space X is weakly compact if, and only
if, every continuous linear functional defined on X attains its maximum value over C.
The fact that this result does not extend to non-complete normed linear spaces was
established in [22], again by James. Almost immediately, even in 1965 (see, [44]), there
was a search for a simpler proof of James’ weak compactness theorem. The proof in [44]
is indeed very clear and easy to read, and is in fact the basis of a lot of the work in
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this paper. However, [44] still contains a series of seven technical lemmas. In 1972,
R. James (see, [23]) provided a simpler proof of his own weak compactness theorem,
and in [48], S. Simons, using an inequality that now bears his name, proved the weak
compactness theorem for separable Banach spaces. Since these early results there have
been many attempts at providing a simple proof of James’ theorem. Most of these require
additional assumptions on the space. One approach which is quite appealing is that of
(I)-generation. This first appeared in [14] and then again in [13], but it has since been
shown (see, [26]) that this approach is essentially equivalent to the approach of S. Simons
from 1972. In addition to the already mentioned papers the interested reader may also
want to see the papers [5, 17, 27, 34, 37, 38], where several “simple” proofs of James’
theorem are given. The paper [5] also has some interesting applications and historical
facts.

We now return to the mathematics. In this paper all vector spaces and all normed
linear spaces will be over the field of real numbers. The key concept, which runs through-
out this paper, is the notion of a convex set. A subset C of a vector space (V,+, ·), over
the real numbers, is called convex if, for every pair of points x, y ∈ C and 0 < λ < 1, we
have λx + (1 − λ)y ∈ C. We encourage the reader to follow the role that this concept
plays throughout the rest of this paper.

The structure of the reminder of this paper is as follows: Section 2 contains the neces-
sary background material. In particular, it contains Subsections; 2.1 on Weak topologies,
2.2 on Linear topology, 2.3 on the Hahn-Banach Theorem, 2.4 on the Weak∗ topology.
Readers with a background in linear topology may wish to skip this section. Section 3
contains three proofs of James’ theorem given in three subsections; 3.1 on James’ theorem
for separable Banach spaces; 3.2 on James’ theorem for spaces with a weak∗ sequentially
compact dual ball, 3.3 the general version of James’ theorem. In Subsection 3.4 some
applications of James’ theorem are given. In Section 4 a generalisation of James’ theorem
is given. To achieve this, this section contains Subsection 4.1 which gives the necessary
background in convex analysis, then in Subsection 4.2 the necessary set-valued analysis
is given. In Subsection 4.3 the generalisation of James’ theorem is presented. Finally, in
Section 5, we give a variational principle that is based upon the generalised version of
James’ theorem. The paper ends with an index of notation and assumed knowledge and
a bibliography.

2. Preliminaries

In this section of the paper we will present the necessary background material that is
required in order to prove James’ theorem on weak compactness of closed and bounded
convex subsets of a given Banach space.

2.1. Weak topologies on sets. An important part of general topology concerns the
generation of topologies on a given set. In this subsection we will show how to construct
topologies that make a given function (set of functions) continuous.

Proposition 2.1. Let f : X → Y be a function between sets X and Y . If τY is a topology
on Y then τX := {f−1(U) : U ∈ τY } is a topology on X and f : (X, τX) → (Y, τY ) is
continuous. Furthermore, if τ is any topology on X such that f : (X, τ) → (X, τY )
is continuous then τX ⊆ τ . This is, τX is the weakest topology on X that makes f
continuous (when Y is endowed with the topology τY ).

Proof. First we will show that τX is a topology on X. Now, ∅ ∈ τX since ∅ = f−1(∅)
and ∅ ∈ τY . Similarly, X ∈ τX since X = f−1(Y ) and Y ∈ τY . Next, suppose that
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V1 ∈ τX and V2 ∈ τ2. Then, by the definition of τX , there exists U1 ∈ τY and U2 ∈ τY
such that V1 = f−1(U1) and V2 = f−1(U2). Therefore,

V1 ∩ V2 = f−1(U1) ∩ f−1(U2) = f−1(U1 ∩ U2).

Since τY is a topology on Y , U1 ∩ U2 ∈ τY . Hence, V1 ∩ V2 ∈ τX . Finally, to show that
τX is a topology on X, suppose that {Vα : α ∈ A} ⊆ τX . Then, by the definition of τX ,
there exist {Uα : α ∈ A} ⊆ τY such that Vα = f−1(Uα) for each α ∈ A. Therefore,

⋃
α∈AVα =

⋃
α∈Af

−1(Uα) = f−1
(⋃

α∈AUα

)
.

Since τY is a topology on Y ,
⋃

α∈A Uα ∈ τY . Hence,
⋃

α∈A Vα ∈ τX . Thus, τX is
a topology on X. To show that f : (X, τX) → (Y, τY ) is continuous we consider the
following. Let U ∈ τY . Then f−1(U) ∈ τX , by the definition of τX . Therefore, by the
definition of continuity, f : (X, τX) → (Y, τY ) is continuous. For our last step of the
proof, we will show that τX is the weakest topology on X that makes f continuous. To
this end, let τ be any topology on X such that f : (X, τ) → (Y, τY ) is continuous. Let
V ∈ τX . Then, by the definition of τX , there exists an U ∈ τY such that V = f−1(U).
Since we are assuming that f : (X, τ) → (Y, τY ) is continuous, V = f−1(U) ∈ τ . Thus,
τX ⊆ τ . This completes the proof. �

The topology τX in Proposition 2.1 is called the weak topology on X generated by f
and τY , or more briefly, when the context is clear, the weak topology on X.

When we have more than one function we still have the following result.

Proposition 2.2. Let X and Y be sets and let τY be a topology on Y . If F is a nonempty
family of functions from X into Y then

B :=
{⋂

1≤k≤nf
−1
k (Uk) : n ∈ N, Uk ∈ τY and fk ∈ F

}

is a base for a topology τX on X. Furthermore, the topology τX is the weakest topology
on X that make each f ∈ F continuous, when Y is endowed with the topology τY .

Proof. Firstly, it is easy to see that ∅ and X are members of B. Indeed, since F 6= ∅
we may take a function f ∈ F . Then ∅ = f−1(∅) and so ∅ ∈ B since ∅ ∈ τY .
Similarly, X = f−1(Y ) and so X ∈ B since Y ∈ τY . Next, let us observe that B is
closed under taking finite intersections. Suppose V1 ∈ B and V2 ∈ B. Then there exists
n1 ∈ N, f ′k ∈ F and U ′

k ∈ τY for each 1 ≤ k ≤ n1 such that V1 =
⋂

1≤k≤n1
(f ′k)

−1(U ′
k).

Similarly, there exists n2 ∈ N, f ′′k ∈ F and U ′′
k ∈ τY for each 1 ≤ k ≤ n2 such that

V2 =
⋂

1≤k≤n2
(f ′′k )

−1(U ′′
k ). Let n := n1 + n2 and for each 1 ≤ k ≤ n1 let Uk := U ′

k and

for each 1 ≤ k ≤ n2 let Un1+k := U ′′
k . For each 1 ≤ k ≤ n1 let fk := f ′k and for each

1 ≤ k ≤ n2 let fn1+k := f ′′k . Then,

V1 ∩ V2 =
⋂

1≤k≤n1
(f ′k)

−1(U ′
k) ∩

⋂
1≤k≤n2

(f ′′k )
−1(U ′′

k ) =
⋂

1≤k≤nf
−1
k (Uk) ∈ B.

We now define τX to be the set of all subsets of X that can be expressed as a union
of members of B. From above we see that ∅ and X are members of τX , and τX is
closed under taking finite intersections. For the details of this last claim consider the
following. Let V1 ∈ τX and V2 ∈ τX . Then there exist disjoint sets I1 and I2 such that
V1 =

⋃
i∈I1

Bi for some Bi ∈ B and V2 =
⋃

i∈I2
Bi for some Bi ∈ B. Let I := I1 × I2

then

V1 ∩ V2 = (
⋃

i∈I1
Bi) ∩ (

⋃
i∈I2

Bi) =
⋃

(i,j)∈IBi ∩Bj ∈ τX since Bi ∩Bj ∈ B.
So it remains to show that τX is closed under arbitrary unions. Suppose that {Ui :

i ∈ I} ⊆ τX . Then for each i ∈ I, there exist disjoint sets Ji such that Ui =
⋃

j∈Ji
Bj ,

where Bj ∈ B. Let J :=
⋃

i∈I Ji. Then
⋃

I∈I Ui =
⋃

j∈J Bj ∈ τX . We now show that
τX is the weakest topology on X the makes each function in F continuous. So suppose
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that τ is a topology on X that makes each function in F continuous. Then clearly B ⊆ τ
since f−1(U) ∈ τ for each f ∈ F and each U ∈ τY . Since τX is the smallest topology on
X that contains B we must have that τX ⊆ τ . �

The topology τX in Proposition 2.2 is call the weak topology on X generated by F
and τY , or more briefly, when the context is clear, the weak topology on X. For further
information on general topology see [10,28].

2.2. Linear topologies. Let (V,+, ·) be a vector space over the field of real numbers
and let τ be a topology on V . Then (V,+, ·, τ) is called a linear topological space or a
topological vector space if vector addition from V × V into V is continuous, when V × V
is considered with the product topology and scalar multiplication from R× V into V is
continuous, again when we consider R × V with the product topology and R with the
usual topology.

An important feature of linear topological spaces is that they are always regular. That
is, if (X,+, ·, τ) is linear topological space, C is a closed subset of X and x ∈ X \C then
there exist disjoint open sets U and V such that x ∈ U and C ⊆ V . To see this, suppose
that x = x + 0 ∈ X \ C; which is open. Therefore, from the continuity of addition,
there exist open neighbourhoods U of x and W of 0 such that U +W ⊆ X \ C, i.e,.
(U +W )∩C = ∅. Therefore, U ∩ (C+(−W )) = ∅. Let V := C+(−W ) =

⋃
c∈C c−W .

Then V is an open set containing the set C and U ∩ V = ∅. Thus, (X, τ) is a regular
topological space.

Let (V,+, ·, τ) be a linear topological space over R. We shall say that (V,+, ·, τ) is a
locally convex space if for each open set U in V , containing 0, there exists an open convex
set W such that 0 ∈ W ⊆ U , or, equivalently, (V, τ) has a local base consisting of open
convex sets.

If (X, ‖ · ‖) is a normed linear space and ∅ 6= F ⊆ X∗ - the set of all continuous linear
functionals on X, then σ(X,F) denotes the weak topology on X generated by F . We
shall simply call σ(X,X∗) the weak topology on X and write (X,weak) for (X,σ(X,X∗)).

Sometimes it is convenient to work with a more concrete representation of the σ(X,F)-
topology. Fortunately such a representation exists and furthermore, the representation
is very similar to the way in which open sets are defined in metric spaces. Let (X, ‖ · ‖)
be a normed linear space, let x0 ∈ X, ε > 0 and let F be a nonempty finite subset of
X∗. Then

NX(x0, F, ε) :=
⋂

f∈F {x ∈ X : |f(x)− f(x0)| < ε}.
Note: sometimes it is also convenient to write NX(x0, f1, f2, . . . , fn, ε) when the finite
set F is enumerated as F := {f1, f2, . . . , fn}. When the context is clear we simply write,
N(x0, F, ε) or N(x0, f1, f2, . . . , fn, ε).

Given a nonempty subset F of X∗ we shall say that a subset U of X is F-open if
for every x0 ∈ U there exists a nonempty finite subset F of F and an ε > 0 such that
N(x0, F, ε) ⊆ U .

Proposition 2.3. If (X, ‖ · ‖) is a normed linear space and ∅ 6= F ⊆ X∗ then the set of
all F-open sets forms a topology on X. Furthermore, the set of all F-open sets coincides
with the σ(X,F)-topology on X.

Proof. First we will show that the set of all F-open sets forms a topology on X. It is
easy to see that vacuously, ∅ is F-open. To see that X is F-open, consider any element
x0 ∈ X. Now, let x∗ be any element in F . Then N(x0, {x∗}, 1) ⊆ X. Therefore, X is
F-open. Next, suppose that U and V are both F-open subsets of X. We will show that
U ∩ V is also F-open. To this end, let x0 ∈ U ∩ V . Then, since x0 ∈ U , there exists a
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finite subset FU of F and an εU > 0 such that N(x0, FU , εU ) ⊆ U . Similarly, there exists
a finite subset FV of F and an εV > 0 such that N(x0, FV , εV ) ⊆ V . Let F := FU ∪ FV

and ε := min{εU , εV }. Then,
x0 ∈ N(x0, F, ε) ⊆ N(x0, FU , εU ) ∩N(x0, FV , εV ) ⊆ U ∩ V.

So it remains to show that an arbitrary union of F-open sets is again F-open. Let
{Uα : α ∈ A} be a family of F-open sets. Let x0 be any element of

⋃
α∈A Uα. Then

there exists an α0 ∈ A such that x0 ∈ Uα0
. Since Uα0

is F-open there exists a finite
subset F of F and an ε > 0 such that N(x0, F, ε) ⊆ Uα0

. Now, Uα0
⊆ ⋃

α∈A Uα and
so N(x0, F, ε) ⊆

⋃
α∈A Uα. Therefore,

⋃
α∈A Uα is F-open. We will now show that the

two topologies coincide. Suppose that U is an F-open set. Then, for each x ∈ U , there
exists a finite subset Fx of F and an εx > 0 such that x ∈ N(x, Fx, εx) ⊆ U . Therefore,⋃

x∈U N(x, Fx, εx) = U . Thus, to show that U is σ(X,F)-open it is sufficient to show
that every set of the form: N(x, F, ε) is σ(X,F)-open, where x ∈ X, F is a finite subset
of F and ε > 0. So suppose that x0 ∈ X, F = {f1, f2, . . . , fn} ⊆ F and ε > 0. Let
Uk := (fk(x0)− ε, fk(x0) + ε) for each 1 ≤ k ≤ n. Then,

N(x, F, ε) =
⋂

f∈F {x ∈ X : |f(x)− f(x0)| < ε} =
⋂

1≤k≤nf
−1
k (Uk). (∗)

Therefore, by the definition of the σ(X,F)-topology, N(x, F, ε) is σ(X,F)-open. To
show that every σ(X,F)-open set is F-open it is sufficient to show that each member of
F is continuous with respect to the topology generated by the F-open sets. However,
this is obvious from the definition of the F-open sets. If you want to see the details, then
let f ∈ F , x0 ∈ X and ε > 0. Then

f(N(x0, {f}, ε)) ⊆ (f(x0)− ε, f(x0) + ε).

This completes the proof. �

Remark 2.4. It follows from Proposition 2.3 and equation (∗) that for each x ∈ X,
finite set ∅ 6= F ⊆ F and ε > 0, the set N(x, F, ε) is σ(X,F)-open in X.

By using Proposition 2.3 and Remark 2.4, one can easily deduce the following result.

Proposition 2.5. Let Y be a subspace of a normed linear space (X, ‖ · ‖) and let ∅ 6=
F ⊆ X∗. Then a subset U of Y is open in the relative σ(X,F)-topology on Y if, and
only if, for each y ∈ U there exists a finite subset F of F and an ε > 0 such that
NX(y, F, ε) ∩ Y ⊆ U .

Proposition 2.6. If (X, ‖ · ‖) is a normed linear space and F ⊆ X∗, then (X,σ(X,F))
is a locally convex topological space.

Proof. Let us first show that (X,σ(X,F)) is a linear topology. Let S : X ×X → X be
defined by, S(x, y) := x+y. We need to show that S is continuous. To this end, letW be
a σ(X,F)-open subset of X and let (x, y) ∈ S−1(W ), i.e., S(x, y) ∈ W . By Proposition
2.3 there exists a finite subset F of F and an ε > 0 such that N(S(x, y), F, ε) ⊆ W .
We claim that S(N(x, F, ε/2) × N(y, F, ε/2)) ⊆ N(S(x, y), F, ε) ⊆ W . To see this,
let (x′, y′) ∈ N(x, F, ε) × N(y, F, ε) and let f ∈ F . Then, |f(x′) − f(x)| < ε/2 and
|f(y′)− f(y)| < ε/2, and so

|f(S(x′, y′))− f(S(x, y))| = |f(x′ + y′)− f(x+ y)|
= |f(x′ − x) + f(y′ − y)|
≤ |f(x′ − x)|+ |f(y′ − y)|
= |f(x′)− f(x)|+ |f(y′)− f(y)| < ε/2 + ε/2 = ε.

Therefore, S(x′, y′) ∈ N(S(x, y), F, ε); which proves the claim. Now since both
N(x, F, ε/2) and N(y, F, ε/2) are σ(X,F)-open we see that S−1(W ) is open in X ×X,
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with the product topology and so S is continuous. Let M : R ×X → X be defined by,
M(r, x) := rx. We need to show that M is continuous. To this end, let W be a σ(X,F)-
open subset of X and let (r, x) ∈M−1(W ), i.e., M(r, x) ∈ W . By Proposition 2.3 there
exists a finite subset F of F and an 1 > ε > 0 such that N(M(r, x), F, ε) ⊆W . Set

ε1 :=
ε

2(|f(x)|+ 1)
and ε2 :=

ε

2(|r|+ 1)
.

We claim that M((r − ε1, r + ε1) ×N(x, F, ε2)) ⊆ N(M(r, x), F, ε) ⊆ W . To see this is
true, let (r′, x′) ∈ (r − ε1, r + ε1) × N(x, F, ε2) and let f ∈ F . Then, |r′ − r| < ε1 and
|f(x′)− f(x)| < ε2, and so

|f(M(r′, x′))− f(M(r, x))| = |f(r′x′)− f(rx)|
= |f(r′x′)− f(r′x)− [f(rx)− f(r′x)]|
≤ |f(r′x′)− f(r′x)|+ |f(rx)− f(r′x)|
= |r′||f(x′)− f(x)|+ |r − r′||f(x)|
≤ (|r|+ 1)ε2 + ε1|f(x)| < ε since |r′|≤ |r|+ ε1< |r|+ 1.

Therefore,M(r′, x′) ∈ N(M(r, x), F, ε); which proves the claim. Now since (r−ε1, r+ε1)
is open in R and N(x, F, ε2) is σ(X,F)-open we see that M−1(W ) is open in R × X,
with the product topology and so M is continuous. This shows that (X,σ(X,F)) is a
linear topological space. To see that (X,σ(X,F)) is locally convex we merely appeal to
Proposition 2.3 and the fact that for each finite subset F of F and ε > 0, N(0, F, ε) is a
convex open neighbourhood of 0. �

The beauty of linear topology lies in the interplay between linear algebra and topology.
This is highlighted in Proposition 2.8, which is based upon the following result from linear
algebra.

Lemma 2.7 ( [9, page 421]). Let V be a vector space over R and suppose that (fi)
n
i=1 are

linear functionals on V . If g is a linear functional on V such that
⋂n

i=1 ker(fi) ⊆ ker(g),
then g ∈ span{f1, . . . , fn}.
Proof. Define T : V → Rn by

T (x) := (f1(x), . . . , fn(x)) for all x ∈ V.

Observe that T is clearly linear and that ker(T ) =
⋂n

i=1 ker(fi). We may assume that
(fi)

n
i=1 is a minimal (in terms of cardinality) family of functions such that

⋂n
i=1 ker(fi) ⊆

ker(g), and from this we claim that T is also surjective.
Fix 1 ≤ k ≤ n. Then, by the minimality assumption on n, we have that

⋂{ker(fi) : 1 ≤
i ≤ n, i 6= k} 6⊆ ker(g), and so in particular

⋂{ker(fi) : 1 ≤ i ≤ n, i 6= k} 6⊆ ⋂n
i=1 ker(fi).

Now we may choose

xk ∈ ⋂{ker(fi) : 1 ≤ i ≤ n, i 6= k} \⋂n
i=1 ker(fi).

Then, after scaling xk if necessary, we have that fk(xk) = 1 and fi(xk) = 0 for i 6= k.
Therefore, T (xk) = ek, where ek is the kth standard basis vector of Rn. Then, since
1 ≤ k ≤ n was arbitrary, we have that Rn = span{e1, . . . , en} ⊆ T (V ) and so T is
surjective as claimed.

Now define g∗ : Rn → R by

g∗(x) := g(z) for any z ∈ T−1(x).

Then g∗ is well-defined. Indeed, let x ∈ Rn. Since T is onto, we have that T−1(x) 6= ∅.
So, suppose z1, z2 ∈ T−1(x). Then T (z1) = x = T (z2) and so z1 − z2 ∈ ker(T ) ⊆ ker(g).
Thus g(z1) = g(z2) as required. Moreover, a routine calculation shows that g∗ is linear, so
g∗ ∈ (Rn)∗. Since (Rn)∗ = span{e∗1, . . . , e∗n}, there exist (ci)ni=1 such that g∗ =

∑n
i=1 cie

∗
i ,

where here e∗i (ej) = δij , the ij-Kroeneker delta.
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Finally, note that x ∈ T−1(T (x)) and so g∗(T (x)) = g(x) for all x ∈ V . Therefore,

g = g∗ ◦ T = (
∑n

i=1 cie
∗
i ) ◦ T =

∑n
i=1 ci (e

∗
i ◦ T ) =

∑n
i=1 cifi

since e∗i ◦ T = fi for all 1 ≤ i ≤ n, and thus g ∈ span{f1, . . . , fn}. �

Proposition 2.8 ( [9, page 422]). If (X, ‖ · ‖) is a normed linear space, F ⊆ X∗ and
x∗ ∈ X∗ then the following are equivalent:

(i) x∗ is σ(X,F)-continuous;
(ii) x∗ is bounded on a σ(X,F) neighbourhood of 0;
(iii) x∗ ∈ span(F).

Proof. (i) =⇒ (ii). Suppose that x∗ ∈ X∗ is σ(X,F)-continuous on X. Then, in partic-
ular, x∗ is continuous at 0 ∈ X. Therefore, there exists a σ(X,F)-open neighbourhood
N of 0 such that |x∗(x)| = |x∗(x) − x∗(0)| < 1 for all x ∈ N . Hence x∗ is bounded on
N . (ii) =⇒ (iii). Suppose that x∗ is bounded on a σ(X,F)-open neighbourhood N of 0.
Then there exists a finite subset G of F and an 0 < ε such that N(0, G, ε) ⊆ N . Let S :=⋂

y∗∈G ker(y∗). Then S is a subspace of X and furthermore, S ⊆ N(0, G, ε) ⊆ N . Hence,

x∗|S is bounded on S. Thus, x∗|S ≡ 0 and so
⋂

y∗∈G ker(y∗) = S ⊆ ker(x∗). The result

now follows from Lemma 2.7. (iii) =⇒ (i). Suppose that x∗ =
∑n

k=1 λky
∗
k, where λk ∈ R

and y∗k ∈ F for all 1 ≤ k ≤ n. Define f : Rn → R by, f(x1, x2, . . . , xn) :=
∑n

k=1 λkxk
and F : X → Rn by, F (x) := (y∗1(x), y

∗
2(x), . . . , y

∗
n(x)). Then f is a continuous function

on Rn and F is a σ(X,F)-continuous function on X. Therefore, x∗ = f ◦ F , is also a
σ(X,F)-continuous function on X. �

Remark 2.9. It follows from Proposition 2.8 that for any normed linear space (X, ‖ · ‖)
and any F ⊆ X∗, σ(X,F) = σ(X, span(F)). To see this, first note the general fact that
if F ⊆ F ′ then σ(X,F) ⊆ σ(X,F ′) (i.e., to make more functions continuous you need
more open sets) and then the equivalence of (i) and (iii) above.

Proposition 2.10. If T : X → Y is a continuous linear operator acting between normed
linear spaces (X‖ · ‖X) and (Y, ‖ · ‖Y ) then T : (X,weak) → (Y,weak) is also continuous.

Proof. LetW be a weak open subset of Y . We will show that T−1(W ) is open in the weak
topology onX. To this end, let x0 ∈ T−1(W ). Then T (x0) ∈W and so by Proposition 2.3
there exist {y∗1 , y∗2 , . . . , y∗n} ⊆ Y ∗ and ε > 0 such that NY (T (x0), {y∗1 , y∗2 , . . . , y∗n}, ε) ⊆W .
For each 1 ≤ k ≤ n let x∗k := y∗k ◦ T . Then {x∗1, x∗2, . . . , x∗n} ⊆ X∗. We claim that
T (NX(x0, {x∗1, x∗2, . . . , x∗n}, ε)) ⊆ NY (T (x0), {y∗1 , y∗2 , . . . , y∗n}, ε) ⊆ W . To see this, let
y ∈ T (NX(x0, {x∗1, x∗2, . . . , x∗n}, ε)). Then there exists a x ∈ NX(x0, {x∗1, x∗2, . . . , x∗n}, ε)
such that y = T (x). Fix 1 ≤ k ≤ n. Then,

|y∗k(y)− y∗k(T (x0))| = |y∗k(T (x))− y∗k(T (x0))|
= |x∗k(x)− x∗k(x0)| < ε since x ∈ NX(x0, {x∗1, x∗2, . . . , x∗n}, ε).

Therefore, y ∈ NY (T (x0), {y∗1 , y∗2 , . . . , y∗n}, ε) ⊆ W . This completes the proof of the
claim. Hence

x0 ∈ NX(x0, {x∗1, x∗2, . . . , x∗n}, ε) ⊆ T−1(W ).

Thus, by Proposition 2.3, T−1(W ) is open in the weak topology on X. �

2.3. Hahn-Banach Theorem. A real-valued function p defined on a vector space V is
called sublinear if for every x, y ∈ V and 0 ≤ λ < ∞, p(λx) = λp(x) and p(x + y) ≤
p(x) + p(y).

Although it is easy, using linear algebra, to construct linear functionals on a vector
space, it is not so easy to construct continuous linear functions on a linear topological
space. The key to constructing continuous linear functionals on locally convex spaces is
given next.



42 WARREN B. MOORS

Theorem 2.11 (Hahn-Banach Theorem [9, page 62]). Let Y be a subspace of a vector
space V (over R) and let p : V → R be a sublinear functional on V . If f is a linear
functional on Y and f(y) ≤ p(y) for all y ∈ Y then there exists a linear functional
F : V → R such that F |Y = f and F (x) ≤ p(x) for all x ∈ V .

Proof. Let P be the collection of all ordered pairs (M ′, f ′), where M ′ is a subspace of V
containing Y and f ′ :M ′ → R is a linear functional defined onM ′ such that f ′|Y = f and
satisfies f ′(x) ≤ p(x) for all x ∈ M ′. P is nonempty because (Y, f) ∈ P. We partially
order P by, (M ′, f ′) ≤ (M ′′, f ′′) if M ′ ⊆ M ′′ and f ′′|M ′ = f ′. If {(Mα, fα) : α ∈ A} is
a nonempty totally ordered sub-family of P, then set M ′ :=

⋃{Mα : α ∈ A} and define
the linear functional f ′ :M ′ → R by, f ′(x) := fα(x) if x ∈Mα. Then (M ′, f ′) ∈ P and
(Mα, fα) ≤ (M ′, f ′) for all α ∈ A. Therefore, by Zorn’s lemma, P has a maximal element
(M,F ). We must show thatM = V . So suppose, in order to obtain a contradiction, that
M 6= V and pick x0 ∈ V \M and put M∗ := span{M,x0}. We will define F ∗ :M∗ → R
so that (M∗, F ∗) ∈ P and (M,F ) < (M∗, F ∗); which will be our desired contradiction.
For each α ∈ R we define Fα on M∗ by, Fα(m+ λx0) := f(m) + λα. It is easy to check
that Fα is well defined and linear on M∗. Moreover, Fα|M = f . So it remains to show
that Fα(x) ≤ p(x) for all x ∈ M∗. To achieve this, we need to select the right value of
α ∈ R.

Selection of α: For any m1,m2 ∈M and 0 < λ1 <∞ and 0 < λ2 <∞ we have

f(λ−1
1 m1 + λ−1

2 m2) ≤ p(λ−1
1 m1 + λ−1

2 m2) ≤ p(λ−1
1 m1 − x0) + p(λ−1

2 m2 + x0).

Therefore,

f(λ−1
1 m1)− p(λ−1

1 m1 − x0) ≤ p(λ−1
2 m2 + x0)− f(λ−1

2 m2)

for all m1,m2 ∈ M and 0 < λ1 < ∞, 0 < λ2 < ∞. Hold m2 and λ2 fixed and take the
supremum over m1 ∈ M and 0 < λ1 < ∞. Then for each m2 ∈ M and 0 < λ2 < ∞ we
have that

sup
m∈M

0<λ<∞

(
f(λ−1m)− p(λ−1m− x0)

)
≤ p(λ−1

2 m2 + x0)− f(λ−1
2 m2).

Now we take the infimum over m2 ∈M and 0 < λ2 <∞. Then,

a := sup
m∈M

0<λ<∞

(
f(λ−1m)− p(λ−1m− x0)

)
≤ inf

m∈M

0<λ<∞

(
p(λ−1m+ x0)− f(λ−1m)

)
=: b.

Choose α∗ ∈ [a, b]. Then from the left-hand side of the equation we get that

f(m) + (−λ)α∗ ≤ p(m+ (−λ)x0) for all m ∈M and 0 < λ <∞.

From the right-hand side of the equation we get that

f(m) + λα∗ ≤ p(m+ λx0) for all m ∈M and 0 < λ <∞.

From these two equations we see that

F ∗(x) := Fα∗(x) ≤ p(x) for all x ∈M∗.

That is, (M,F ) < (M∗, F ∗) ∈ P. �

We now give some applications of this famous theorem.

Corollary 2.12. Let Y be a subspace of a normed linear space (X, ‖ · ‖) (over R). If
f ∈ Y ∗ then there exists an F ∈ X∗ such that F |Y = f and ‖F‖ = ‖f‖.
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Proof. Consider the sublinear functional p : X → R defined by, p(x) := ‖f‖‖x‖. Then
f(y) ≤ p(y) for all y ∈ Y . By the Hahn-Banach Theorem, (Theorem 2.11) there exists
a linear functional F : X → R such that F |Y = f and F (x) ≤ p(x) for all x ∈ X.
Therefore, −F (x) = F (−x) ≤ p(−x) = p(x) for all x ∈ X too. Thus, |F (x)| ≤ p(x)
for all x ∈ X. This in turn implies that ‖F‖ ≤ ‖f‖. On the other hand, since F is an
extension of f , we must also have that ‖f‖ ≤ ‖F‖. �

Corollary 2.13. Let (X, ‖ · ‖) be a normed linear space. For every x ∈ X \ {0} there
exists an f ∈ SX∗ such that f(x) = ‖x‖.
Proof. Let Y := span{x} and define f ∈ Y ∗ by, f(λx) := λ‖x‖. Clearly, ‖f‖ = 1 and
f(x) = ‖x‖. By Corollary 2.12 there exists an F ∈ X∗ such that ‖F‖ = ‖f‖ = 1 and
F |Y = f . Therefore, in particular we have that F (x) = f(x) = ‖x‖. �

Proposition 2.14. Let Y be a subspace of a normed linear space (X, ‖ · ‖). Then the
topology σ(Y, Y ∗) on Y coincides with the relative σ(X,X∗) topology on Y .

Proof. Let us first show that every relatively σ(X,X∗)-open set in Y is σ(Y, Y ∗) open.
To this end, let U be a relatively σ(X,X∗)-open set in Y . Let y ∈ U . By Propo-
sition 2.5, there exists a finite set {x∗1, x∗2, . . . , x∗n} ⊆ X∗ and an ε > 0 such that
NX(y, {x∗1, x∗2, . . . , x∗n}, ε) ∩ Y ⊆ U . For each 1 ≤ k ≤ n let y∗k := x∗k|Y . Then

NY (y, {y∗1 , y∗2 , . . . , y∗n}, ε) = NX(y, {x∗1, x∗2, . . . , x∗n}, ε) ∩ Y ⊆ U.

Thus, by Proposition 2.3, U is σ(Y, Y ∗)-open. Now, suppose that U is a σ(Y, Y ∗)-open
subset of Y . Then, by Proposition 2.3, there exists a finite set {y∗1 , y∗2 , . . . , y∗n} ⊆ Y ∗ and
an ε > 0 such that NY (y, {y∗1 , y∗2 , . . . , y∗n}, ε) ⊆ U . By Corollary 2.12, for each 1 ≤ k ≤ n,
there exists an x∗k ∈ X∗ such that x∗k|Y = x∗k. Then

NX(y, {x∗1, x∗2, . . . , x∗n}, ε) ∩ Y = NY (y, {y∗1 , y∗2 , . . . , y∗n}, ε) ⊆ U.

Therefore, by Proposition 2.5, U is open in the relative σ(X,X∗)-topology on Y . �

Next we will show how to use the Hahn-Banach Theorem to obtain some geometric
properties of locally convex spaces.

Let S be a nonempty subset of a vector space V . We shall say that a point x ∈ S is
a core point of S if for every v ∈ V there exists a 0 < δ < ∞ such that x + λv ∈ S for
all 0 ≤ λ < δ. The set of all core points of S is called the core of S and is denoted by
Cor(S).

Let C be a convex set in a vector space V with 0 ∈ Cor(C). Then the functional
µC : V → R defined by

µC(x) := inf{λ > 0 : x ∈ λC}
is called the Minkowski functional generated by the set C.

Theorem 2.15. Let C be a convex subset of a vector space V with 0 in the core of C.
Then µC : V → R is a sublinear functional. Moreover,

{x ∈ V : µC(x) < 1} ⊆ C ⊆ {x ∈ V : µC(x) ≤ 1}.
Proof. Given α > 0 and λ > 0, clearly x ∈ λC if, and only if, αx ∈ λαC. Therefore,
µC(αx) = αµC(x) and thus µC is positively homogeneous. We claim that µC is subaddi-
tive; that is, µC(x + y) ≤ µC(x) + µC(y). Fix any s > µC(x) and t > µC(y). We have
that there is some s0 < s such that x ∈ s0C. Note that s0C ⊆ sC. Indeed, 0 ∈ sC and
if c ∈ C, then by the convexity of sC

s0c =
s0
s
(sc) +

(
1− s0

s

)
0 ∈ sC.
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We see that x ∈ sC and similarly y ∈ tC. Then x + y ∈ sC + tC and thus by the
convexity of C

x+ y ∈ (s+ t)

(
s

s+ t
C +

t

s+ t
C

)
⊆ (t+ s)C.

Therefore, µC(x+ y) ≤ s+ t and so by the choice of s and t we have that µC(x+ y) ≤
µC(x) + µC(y).

If µC(x) < 1 then x ∈ λC for some 0 < λ < 1 and so (1/λ)x ∈ C. Since 0 ∈ C and C
is convex,

x = λ
(x
λ

)
+ (1− λ) 0 ∈ C.

If x ∈ C then µC(x) ≤ 1 by the definition of the Minkowski functional. �

Remark 2.16. If the set C in Theorem 2.15 is a closed and convex subset of a topological
vector space (V, τ), with 0 ∈ Cor(C) and x0 6∈ C then it is an easy exercise to show that
1 < µC(x0).

We now give the geometric version of the Hahn-Banach Theorem.

Theorem 2.17 (Separation Theorem [9, page 418]). Suppose that (X, τ) is a locally
convex space over R and C is a nonempty closed convex subset of X. If x0 6∈ C then
there exists a continuous linear functional x∗ on X such that

sup{x∗(c) : c ∈ C} < x∗(x0).

Proof. We may assume, without loss of generality, that 0 ∈ C; because otherwise we
would consider C − x and x0 − x for some x ∈ C. Since vector addition is continuous
and x0 + 0 6∈ C there exist convex open neighbourhoods U of x0 and V of 0 such that
(U + V ) ∩ C = ∅. Thus, U ∩ [C + (−V )] = ∅. Now, −V is also a convex open
neighbourhood of 0 and so C + (−V ) is a convex open set containing the set C and

disjoint from U . Let D := C + (−V ), then D is a closed and convex set with 0 ∈ int(D)
and x0 6∈ D. Let µD be the Minkowski functional for D. Since D is closed and x0 6∈ D
we have µD(x0) > 1 (see Remark 2.16). Define a linear functional on span{x0} by,
f(λx0) := λµD(x0). Then on span{x0} we have that f(λx0) ≤ µD(λx0). Indeed, for
0 ≤ λ it is clear from the definition of f ; whereas for λ < 0 we have f(λx0) = λµD(x0) < 0
while µD(λx0) ≥ 0. By using the Hahn-Banach Theorem we may extend f onto X so
that f(x) ≤ µD(x) for all x ∈ X. If x ∈ D then µD(x) ≤ 1 and thus, f(x) ≤ µD(x) ≤ 1.
Since D contains a neighbourhood of the origin we have that f is a bounded on a
neighbourhood of 0 and so by Proposition 2.8, f ∈ X∗. Since f(x0) = µD(x0) > 1 we
get that sup{f(x) : x ∈ C} ≤ sup{f(x) : x ∈ D} ≤ 1 < f(x0). �

An immediate consequence of the Separation Theorem is the following result, which
is sometimes known as Mazur’s Theorem.

Proposition 2.18 ([9, page 422]). Let C be a closed convex subset of a normed linear
space (X, ‖ · ‖). Then C is also closed with respect to the weak topology on X.

Proof. If C is empty or the whole space, then C is weakly closed, so let us suppose other-
wise. Let x0 ∈ X \C. Since C is closed and convex, we have, by the Separation Theorem
(Theorem 2.17), the existence of an fx0

∈ X∗ such that fx0
(x0) > supx∈C fx0

(x). Thus,
x0 ∈ f−1

x0

(
(supx∈C fx0

(x),∞)
)
, which, being the inverse image of an open set, is weakly

open. It is then straightforward to check thatX\C =
⋃

x0∈X\C f
−1
x0

(
(supx∈C fx0

(x),∞)
)
.

Hence, X \ C, being the union of weakly open sets, is weakly open. Thus, C is weakly
closed. �
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2.4. Weak∗ topology. Let (X, ‖ · ‖) be a normed linear space. For each x ∈ X we
define, x̂ ∈ X∗∗ := (X∗)∗ by, x̂(x∗) := x∗(x) for all x∗ ∈ X∗. To show that x̂ is really in
X∗∗ we must first check that it is linear and then check that it is continuous. So suppose
that x∗ and y∗ are in X∗, then

x̂(x∗ + y∗) = (x∗ + y∗)(x) = x∗(x) + y∗(x) = x̂(x∗) + x̂(y∗).

Also, for any λ ∈ R and x∗ ∈ X∗ we have that

x̂(λx∗) = (λx∗)(x) = λx∗(x) = λx̂(x∗).

Now, |x̂(x∗)| = |(x∗)(x)| ≤ ‖x∗‖ · ‖x‖. Therefore, ‖x̂‖ ≤ ‖x‖ and so x̂ ∈ X∗∗.

Proposition 2.19. Let (X, ‖ · ‖) be a normed linear space. Then the mapping x 7→ x̂ is
a linear isometry from X into X∗∗.

Proof. The mapping x 7→ x̂ from X into X∗∗ is linear, since for all x∗ ∈ X∗

̂(x+ y)(x∗) = x∗(x+ y) = x∗(x) + x∗(y) = x̂(x∗) + ŷ(x∗).

Therefore, x̂+ y = x̂+ ŷ. Also, for any λ ∈ R and x∗ ∈ X∗,

(̂λx)(x∗) = x∗(λx) = λx∗(x) = λx̂(x∗).

Therefore, (̂λx) = λx̂. Next we show that x 7→ x̂ is an isometry. For each x ∈ X, we
have by Corollary 2.13, a linear function x∗ ∈ SX∗ such that x∗(x) = ‖x‖. Therefore,

‖x̂‖ ≥ |x̂(x∗)|
‖x∗‖ = |x̂(x∗)| = |x∗(x)| = ‖x‖. �

If (X, ‖ · ‖) is a Banach space then X̂ is a closed subspace of X∗∗ where X̂ is defined

as {x̂ : x ∈ X}. We call X̂ the natural embedding of X into X∗∗ and we call x 7→ x̂ from
X into X∗∗ the natural embedding mapping.

An important topology for our concerns is the weak∗ topology. Suppose that (X, ‖ · ‖)
is a normed linear space. Then we call the topology σ(X∗, X̂) on X∗, the weak∗ topology

on X∗ and we write (X∗,weak∗) for (X∗, σ(X∗, X̂)). It follows from Proposition 2.8 that

F ∈ X∗∗ is weak∗ continuous if, and only if, F ∈ X̂.

Let (X, ‖ · ‖) be a normed linear space and let A ⊆ X. We define the (upper) polar of
A to be the subset A◦ of X∗ defined by

A◦ := {x∗ ∈ X∗ : x∗(a) ≤ 1 for all a ∈ A}.
Proposition 2.20. Let (X, ‖ · ‖) be a normed linear space and let A ⊆ X. Then A◦ is
convex, weak*-closed, and contains 0.

Proof. The fact that 0 ∈ A◦ is trivial. To see that A◦ is weak*-closed and convex, note
that A◦ =

⋂
a∈A â

−1(−∞, 1] is the intersection of weak*-closed and convex sets, and so
is itself, weak*-closed and convex. �

There are many useful properties of polars that can be easily verified. For example,
(i) if A ⊆ B then B◦ ⊆ A◦, (ii) (BX)◦ = BX∗ , (iii) for any r > 0, (rA)◦ = r−1A◦. By
combining these we see that if 0 ∈ int(A) then A◦ is bounded and if A is bounded then
0 ∈ int(A◦).

There is also a dual version of (upper) polars. Let (X, ‖ · ‖) be a normed linear space
and let A ⊆ X∗. We define the (lower) polar of A to be the subset A◦ of X defined by

A◦ := {x ∈ X : a∗(x) ≤ 1 for all a∗ ∈ A}.
There are many interesting relationships between these polars. For example, for any
∅ 6= A ⊆ X, (A◦)◦ = co(A ∪ {0}) and for any ∅ 6= B ⊆ X∗, (B◦)

◦ = cow
∗

(B ∪ {0}).
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Perhaps the most famous theorem concerning polars is the following theorem.

Theorem 2.21 (Bipolar Theorem). Let C be a closed, convex subset of a normed linear

space (X, ‖ · ‖) with 0 ∈ C. Then C◦◦ := (C◦)◦ = Ĉ
w∗

.

Proof. It follows directly from the definition of (C◦)◦ that Ĉ ⊆ C◦◦. Moreover, by

Proposition 2.20 we know that C◦◦ is weak∗-closed and so Ĉ
w∗

⊆ C◦◦. Now suppose, in

order to obtain a contradiction, that Ĉ
w∗

( C◦◦. Then there exists an F0 ∈ C◦◦ \ Ĉ
w∗

.
By Theorem 2.17, applied in (X∗∗,weak∗), there exists an x∗ ∈ X∗ such that

0 ≤ sup{F (x∗) : F ∈ Ĉ
w∗

} = sup{x̂∗(F ) : F ∈ Ĉ
w∗

} < x̂∗(F0) = F0(x
∗). (†)

If necessary, we may replace x∗ by λx∗, (for some 0 < λ and relabelling), so that

sup{x∗(c) : c ∈ C} = sup{ĉ(x∗) : ĉ ∈ Ĉ} ≤ sup{F (x∗) : F ∈ Ĉ
w∗

} = 1.

Therefore, x∗ ∈ C◦ and so F0(x
∗) ≤ 1, since F0 ∈ C◦◦. However, this contradicts the

inequality

1 = sup{F (x∗) : F ∈ Ĉ
w∗

} = sup{x̂∗(F ) : F ∈ Ĉ
w∗

} < F0(x
∗), by (†).

This completes the proof. �

An important application of the Bipolar Theorem is given next.

Corollary 2.22 (Goldstine’s Theorem [9, page 424]). Let (X, ‖ · ‖) be a normed linear
space then B

X̂
is weak∗ dense in BX∗∗ .

Proof. We apply twice, the general fact (observed before) that if BY is the closed unit
ball of a normed linear space Y then BY ∗ = (BY )

◦ to obtain

BX∗∗ = (BX∗)◦ = ((BX)◦)◦ = (BX)◦◦

and then apply the Bipolar Theorem. �

Perhaps the main reason for the interest in the weak∗ topology is contained in the
next theorem. It says that, although it is too much to ask that the dual ball be compact
with respect to the norm topology (unless the space is finite dimensional), it is possible
that it is compact with respect to a weaker topology.

Theorem 2.23 (Banach-Alaoglu Theorem [1]). Let (X, ‖ · ‖) be a normed linear space.
Then (BX∗ ,weak∗) is compact.

Proof. For each x ∈ X, let Ix := [−‖x‖, ‖x‖] and let Y :=
∏

x∈X Ix be endowed with
the product topology. By Tychonoff’s Theorem, Y is compact. It follows from the
definition of the product topology and Proposition 2.3 that π : BX∗ → Y , defined by,
π(x∗)(x) := x∗(x) for all x ∈ X, is a homeomorphic embedding of BX∗ into Y . So to
show that (BX∗ ,weak∗) is compact it is sufficient to show that π(BX∗) is a closed subset

of Y , that is, it is sufficient to show that π(BX∗) ⊆ π(BX∗). To this end, let g ∈ π(BX∗).
We will show that g is “linear”. Let x, y ∈ X and ε > 0. Then there exists x∗ ∈ BX∗ such
that |g(x)−π(x∗)(x)| < ε/3, |g(y)−π(x∗)(y)| < ε/3 and |g(x+y)−π(x∗)(x+y)| < ε/3.
Then, since x∗ is linear,∣∣g(x+ y)− [g(x) + g(y)]

∣∣
=

∣∣[g(x+ y)− π(x∗)(x+ y)] + π(x∗)(x+ y)− [g(x) + g(y)]
∣∣

=
∣∣[g(x+ y)− π(x∗)(x+ y)] + [π(x∗)(x)− g(x)] + [π(x∗)(y)− g(y)

∣∣
≤ |g(x+ y)− π(x∗)(x+ y)|+ |π(x∗)(x)− g(x)|+ |π(x∗)(y)− g(y)|
≤ ε/3 + ε/3 + ε/3 = ε.
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Since ε > 0 was arbitrary, g(x+ y) = g(x) + g(y). Next, let x ∈ X, λ ∈ R and ε > 0.
Then there exists x∗ ∈ BX∗ such that |g(λx)−π(x∗)(λx)| < ε/2 and |g(x)−π(x∗)(x)| <
ε/2(|λ|+ 1). Then, since x∗ is linear,

|g(λx)− λg(x)| =
∣∣[g(λx)− π(x∗)(λx)] + [π(x∗)(λx)− λg(x)]

∣∣
=

∣∣[g(λx)− π(x∗)(λx)] + [λπ(x∗)(x)− λg(x)]
∣∣

≤ |g(λx)− π(x∗)(λx)|+ |[λπ(x∗)(x)− λg(x)]|
≤ ε/2 + |λ||π(x∗)(x)− g(x)| < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, g(λx) = λg(x). Thus, if we define y∗ : X → R by, y∗(x) := g(x)
for all x ∈ X, then y∗ ∈ BX∗ and g = π(y∗) ⊆ π(BX∗). �

Proposition 2.24. Let (X, ‖ · ‖) be a normed linear space. Then the relative weak

topology and the relative weak∗ topology coincide on the subspace X̂ of X∗∗.

Proof. It follows immediately from the definitions that each relatively weak∗ open subset

of X̂ is open in the relative weak topology on X̂. So we need only consider the converse

statement. Suppose that U is a relatively weak open subset of X̂. Let x̂ be any element
of U . Then by, Proposition 2.5 there exists a finite subset {F1,F2, . . . ,Fn} of X∗∗∗ and

an ε > 0 such that N(x̂,F1,F2, . . . ,FN , ε)∩X̂ ⊆ U . For each 1 ≤ k ≤ n let fk : X → R
be defined by, fk(x) := Fk(x̂). Then fk ∈ X∗, in fact ‖fk‖ ≤ ‖Fk‖ for each 1 ≤ k ≤ n.
We claim that

N(x̂, f̂1, f̂2, . . . , f̂n, ε) ∩ X̂ ⊆ N(x̂,F1,F2, . . . ,FN , ε) ∩ X̂ ⊆ U.

To see this, let F ∈ N(x̂, f̂1, f̂2, . . . , f̂n, ε) ∩ X̂. Then F = ŷ for some y ∈ X and

ŷ ∈ N(x̂, f̂1, f̂2, . . . , f̂n, ε) ∩ X̂. Fix 1 ≤ k ≤ n. Then

|Fk(F )− Fk(x̂)| = |Fk(ŷ)− Fk(x̂)|
= |fk(y)− fk(x)| = |f̂k(ŷ)− f̂k(x̂)| = |f̂k(F )− f̂k(x̂)| < ε.

Therefore, F ∈ N(x̂,F1,F2, . . . ,FN , ε) ∩ X̂; which completes the proof of the claim.
The result now follows from Proposition 2.5. �

In what follows we will often use (without saying) the fact that if (Z, τ) is a topological
space and A ⊆ Y ⊆ Z, then A is compact in Z if, and only if, A is compact in Y , with
respect to the relative topology on Y .

Remark 2.25. Together, Theorem 2.23 and Proposition 2.24 are essential for our future
endeavours, as they provide a method for showing that a closed and bounded convex subset
C of a normed linear space (X, ‖·‖) is weakly compact. Namely, to show that C is weakly

compact it is sufficient (and necessary) to show that Ĉ
w∗

⊆ X̂. The reason for this is

as follows: Ĉ
w∗

is a weak∗ compact subset of (X∗∗,weak∗), by Theorem 2.23, and hence

compact with respect to the relative weak∗ topology on X̂. Therefore, by Proposition 2.24,

Ĉ
w∗

is compact with respect to the relative weak topology on X̂. Further, by Proposition

2.14, Ĉ
w∗

is compact with respect to the σ(X̂, (X̂)∗)-topology on X̂ (i.e., the weak topology

on X̂). Let j : X → X̂ be the linear isometry defined by, j(x) := x̂ for all x ∈ X. Then

j−1 : X̂ → X is also a linear isometry. Thus, by Proposition 2.10, C ⊆ j−1(Ĉ
w∗

) is
weakly compact. Since C is closed and convex it is closed in the weak topology on X (see,
Proposition 2.18). Hence C is compact with respect to the weak topology on X.

As an example of this approach, we will give our first characterisation of reflexivity in
terms of the weak compactness of the unit ball.
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Theorem 2.26 ([9, page 425]). Let (X, ‖ · ‖) be a normed linear space. Then X is

reflexive (i.e., X∗∗ = X̂) if, and only if, BX is compact with respect to the weak topology
on X.

Proof. Suppose that BX is compact with respect to the weak topology on X. Then, by
Proposition 2.10, B

X̂
is compact with respect to the weak topology on X∗∗ as: (i) the

mapping, x 7→ x̂, is a bounded linear operator from X into X∗∗ and (ii) the general fact
that the continuous image of a compact set is compact. Now, since the weak∗ topology
on X∗∗ is weaker (and certainly no stronger) than the weak topology on X∗∗, B

X̂
is

compact with respect to the weak∗ topology on X∗∗. Furthermore, since the weak∗

topology is Hausdorff, B
X̂

is closed with respect to the weak∗ topology on X∗∗. Thus,
by Goldstine’s Theorem, (Theorem 2.22)

B
X̂

= B
X̂

w∗

= BX∗∗ .

So, X∗∗ =
⋃

n∈N
nBX∗∗ =

⋃
n∈N

nB
X̂

= X̂.

Conversely, suppose that X∗∗ = X̂. Then BX∗∗ = B
X̂

and so by Theorem 2.23,

(B
X̂
,weak∗) is compact. Since B

X̂
⊆ X̂ we have by Proposition 2.24 that (B

X̂
,weak)

is compact. Finally, since x 7→ x̂ is a linear isometry from X onto X∗∗ (since we are

assuming that X∗∗ = X̂), its inverse is a continuous linear operator (in fact an isometry
as well) and so by Proposition 2.10, (BX ,weak) is compact too, as the continuous image
of a compact set is compact. �

3. James’ Theorem on weak compactness

In this section we will provide three proofs of James’ Theorem on weak compactness,
listing them in order of increasing generality. First we provide a proof that is valid in all
separable Banach spaces, then we give a proof that is valid in any Banach space whose
dual ball is weak∗ sequentially compact, and then finally, we will present a proof that
holds in all Banach spaces. It is our hope that this incremental approach to the full
James’ Theorem will make the final proof more accessible and less intimidating to the
reader.

3.1. James’ Theorem on weak compactness: the separable case. Convexity is
the key to all our proofs of James’ Theorem.

Let A be a nonempty convex subset of a vector space V and let ϕ : A → R be a
function. We say that ϕ is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

for all x, y ∈ A and all 0 ≤ λ ≤ 1.

Lemma 3.1 ([37]). Let 0 < β, 0 < β′ and suppose that ϕ : [0, β + β′] → R is a convex
function. Then

ϕ(β)− ϕ(0)

β
≤ ϕ(β + β′)− ϕ(β)

β′
.

Proof. The inequality given in the statement of the lemma follows by rearranging the
inequality

ϕ(β) ≤ β

β + β′
ϕ(β + β′) +

β′

β + β′
ϕ(0).

�

Our first application of convexity is given next. It plays an important role in all three
proofs of James’ theorem.
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Lemma 3.2 ([37]). Let V be a vector space (over R) and let ϕ : A → R be a convex
function defined on a convex set A with 0 ∈ A. If (An : n ∈ N) is a decreasing sequence
of nonempty convex subsets of V , (βn : n ∈ N) is a sequence of strictly positive numbers
such that (

∑∞
i=1 βi)A1 ⊆ A and

β1r + ϕ(0) < inf
a∈A1

ϕ(β1a) for some 0 < r <∞,

then there exists a sequence (an : n ∈ N) in V such that, for all n ∈ N

(i) an ∈ An and

(ii) ϕ(
∑n

i=1 βiai) + βn+1r < ϕ(
∑n+1

i=1 βiai).

Proof. We proceed in two parts. Firstly we prove that if βnr+ϕ(u)< infa∈An
ϕ(u+βna)

for some n ∈ N and some u ∈ (
∑n−1

i=0 βi)A1, where β0 := 0, then there exists an an ∈ An,
such that

βn+1r + ϕ(u+ βnan) < inf
a∈An

ϕ(u+ βnan + βn+1a).

To see this, suppose that u ∈ (
∑n−1

i=0 βi)A1 and that βnr + ϕ(u) < infa∈An
ϕ(u + βna).

Then there exists an ε > 0 such that

r + 2ε <
infa∈An

ϕ(u+ βna)− ϕ(u)

βn
. (∗)

So, choose an ∈ An such that ϕ(u + βnan) < infa∈An
ϕ(u + βna) + βn+1ε. Let a ∈ An.

Then
v := (βnan + βn+1a)/(βn + βn+1) ∈ An (since An is convex) and so,

r + 2ε <
ϕ(u+ βnv)− ϕ(u+ 0v)

βn
(by (∗) and the fact that v ∈ An)

≤ ϕ(u+ (βn + βn+1)v)− ϕ(u+ βnv)

βn+1
. (by Lemma 3.1.)

Rearranging gives

βn+1(r + ε) + [ϕ(u+ βnv) + βn+1ε] < ϕ(u+ βnan + βn+1a),

for all a ∈ An. Since ϕ(u+ βnan) < [ϕ(u+ βnv)+ βn+1ε], the desired inequality follows.

From this, we may inductively construct a sequence (an : n ∈ N) with the requisite
properties (i) and (ii). For the first step, we set u := 0 and then, by hypothesis, we have
that

β1r + ϕ(0) < inf
a∈A1

ϕ(β1a) = inf
a∈A1

ϕ(0 + β1a).

So, by the first result, there exists an a1 ∈ A1, such that β2r+ϕ(β1a1) < inf
a∈A1

ϕ(β1a1 +

β2a).

For the nth step, set u :=
∑n−1

i=1 βiai. Since An ⊆ An−1, and by the way an−1 was
constructed, we have that

βnr + ϕ(u) < inf
a∈An−1

ϕ(u+ βna) ≤ inf
a∈An

ϕ(u+ βna).

So, by the first result again, there exists an ∈ An, such that

βn+1r + ϕ (
∑n

i=1 βiai) < inf
a∈An

ϕ (
∑n

i=1 βiai + βn+1a) ,

which completes the induction. The sequence (an : n ∈ N) has the properties claimed
above. �

For the proof of James’ theorem we will only require the following special case of this
lemma.
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Lemma 3.3. Let V be a vector space (over R) and let ϕ : V → R be a sublinear function.
If (An : n ∈ N) is a decreasing sequence of nonempty convex subsets of V , (βn : n ∈ N)
is a sequence of strictly positive numbers such that

∑∞
i=1 βi <∞ and

r < inf
a∈A1

ϕ(a) for some 0 < r <∞,

then there exists a sequence (an : n ∈ N) in V such that, for all n ∈ N:

(i) an ∈ An and

(ii) ϕ(
∑n

i=1 βiai) + βn+1r < ϕ(
∑n+1

i=1 βiai).

In order to formulate our first version of James’ theorem on weak compactness we
need to introduce the following notions.

Let K be a weak∗ compact convex subset of the dual of a Banach space (X, ‖ · ‖).
A subset B of K is called a boundary of K if for every x̂ ∈ X̂ there exists a b∗ ∈ B
such that x̂(b∗) = sup{x̂(y∗) : y∗ ∈ K}. We shall say B, (I)-generates K, if for every
countable cover (Cn : n ∈ N) of B by weak∗ compact convex subsets of K, the convex
hull of

⋃
n∈N

Cn is norm dense in K. The following proof is found in [37].

Theorem 3.4 ([13,14]). Let K be a weak∗ compact convex subset of the dual of a Banach
space (X, ‖ · ‖) and let B be a boundary of K. Then B, (I)-generates K.

Proof. After possibly translating K, we may assume that 0 ∈ B. Let {Cn : n ∈ N}
be weak* compact, convex subsets of K such that B ⊆ ⋃

n∈N
Cn and suppose, for a

contradiction, that co[
⋃

n∈N
Cn] is not norm dense in K. Then there must exist an 0 < ε

and y∗ ∈ K such that
y∗ ∈ K\(co[

⋃
n∈N

Cn] + εBX∗)

Since, for each n ∈ N, co[
⋃n

j=1 Cj ] is weak* compact and convex, there exist (x̂n : n ∈ N)
in S

X̂
such that

max{x̂n(x∗) : x∗ ∈ co[
⋃n

j=1 Cj ]}+ ε

= max{x̂n(x∗) : x∗ ∈ co[
⋃n

j=1 Cj ] + εBX∗} < x̂n(y
∗) (∗)

for all n ∈ N. Now, (x̂n(y
∗) : n ∈ N) is a bounded sequence of real numbers and thus,

has a convergent subsequence (x̂nk
(y∗) : k ∈ N). Let s := lim

k→∞
x̂nk

(y∗). Then, ε ≤ s

as 0 ∈ CN for some N ∈ N and ε = 0 + ε < x̂n(y
∗) for all N ≤ n, by the inequality

(∗). After relabelling the sequence (x̂n : n ∈ N) if necessary, we may assume that
limn→∞ x̂n(y

∗) = s and |x̂n(y∗)− s| < ε/3 for all n ∈ N. Importantly, we note that this
relabelling does not disturb the inequality in (∗).

We define An := co{x̂k : n ≤ k} for all n ∈ N and note that: (i) (An : n ∈ N) is a

decreasing sequence of nonempty convex subsets of X̂ and (ii) if N < n and b∗ ∈ CN

then
g(b∗) < [g(y∗)− ε] for all g ∈ An (∗∗)

since, {x̂k : n ≤ k} ⊆ {x̂ ∈ X̂ : x̂(b∗ − y∗) < −ε}; which is convex. Next, we define

p : X̂ → R by

p(x̂) := sup
x∗∈K

x̂(x∗) for all x̂ ∈ X̂.

Then p defines a sublinear functional on X̂. Moreover, for all g ∈ A1, we have (s−ε/3) <
g(y∗) since {x̂n : n ∈ N} ⊆ {x̂ ∈ X̂ : (s − ε/3) < x̂(y∗)}; which is convex. Therefore,
(s− ε/3) < p(g) for all g ∈ A1, since y

∗ ∈ K.

Let (βn :n∈N) be any sequence of positive numbers such that lim
n→∞

(∑∞
i=n+1βi

)
/βn=0.

Now,
(s− ε/2) < (s− ε/3) ≤ inf

g∈A1

p(g).
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Therefore, by Lemma 3.3, there exists a sequence (gn : n ∈ N) in X̂ such that gn ∈ An

and

p(
∑n

i=1βigi) + βn+1(s− ε/2) < p(
∑n+1

i=1 βigi) for all n ∈ N. (∗∗∗)
Note also, that since limn→∞ x̂n(y

∗) = s, limn→∞ gn(y
∗) = s. As ‖gn‖ ≤ 1 for all n ∈ N,

we have that
∑∞

i=1 ‖βigi‖ ≤ ∑∞
i=1 βi <∞. Since X is a Banach space, this implies that

g :=
∑∞

i=1 βigi ∈ X̂. Because p is continuous, this implies that (p(
∑n

i=1 βigi) : n ∈ N) is a
convergent and hence a bounded sequence in R. Moreover, by the inequality (∗∗∗), we have
that (p(

∑n
i=1 βigi) : n ∈ N) is an increasing sequence. Therefore, by the Convergence

Theorem, (p(
∑n

i=1 βigi) : n ∈ N) converges to its supremum. That is,

sup
n∈N

p(
∑n

i=1βigi) = lim
n→∞

p(
∑n

i=1βigi) = p( lim
n→∞

∑n
i=1βigi) = p(g). (∗∗∗∗)

Since g ∈ X̂ and B is a boundary for K, there must exist a b∗ ∈ B such that

g(b∗) = sup{g(x∗) : x∗ ∈ K} = p(g).

Let n ∈ N, then

βn(s− ε/2) < p(
∑n

i=1 βigi)− p
(∑n−1

i=1 βigi

)
by (∗∗∗)

≤ p(g)− p
(∑n−1

i=1 βigi

)
by (∗∗∗∗)

= g(b∗)− p
(∑n−1

i=1 βigi

)

≤ g(b∗)− (
∑n−1

i=1 βigi)(b
∗) =

∑∞
i=nβigi(b

∗).

Since B ⊆ ⋃
n∈N

Cn, b
∗ ∈ CN for some N ∈ N. Thus, if N < n, then

(s− ε/2) <
1

βn

(∑∞
i=n+1βigi(b

∗)
)
+ gn(b

∗)

<
1

βn

(∑∞
i=n+1βigi(b

∗)
)
+ [gn(y

∗)− ε] by (∗∗),

since gn ∈ An. By taking the limit, as n tends to infinity, we get that (s− ε/2) ≤ (s− ε);
which is impossible. Therefore, B, (I)-generates K. �

Remark 3.5. If βn :=
1

n!
for all n∈N or, βn :=

1

2n2
for all n∈N, then lim

n→∞

∑∞
i=n+1βi

βn
=0.

Theorem 3.6 (James’ Theorem: version 1, [19]). Let C be a closed and bounded convex
subset of a Banach space (X, ‖·‖). If C is separable and every continuous linear functional
on X attains its supremum over C, then C is weakly compact.

Proof. Let K := Ĉ
w∗

. To show that C is weakly compact it is sufficient to show K ⊆ X̂,
(see Remark 2.25). In fact, since X is a Banach space and x 7→ x̂ is a linear isometry, we

have that X̂ is a Banach subspace of X∗∗ and so a closed subspace of X∗∗. Therefore, it

is sufficient to show that for every 0 < ε, K ⊆ X̂ + 2εBX∗∗ . To this end, fix 0 < ε and
let {xn : n ∈ N} be a dense subset of C. For each n ∈ N, let Kε

n := K ∩ [x̂n + εBX∗∗ ].

Then (Kε
n : n ∈ N) is a cover of Ĉ by weak∗ closed convex subsets of K. Since Ĉ is a

boundary of K, we have that K ⊆ co bigcupn∈NK
ε
n ⊆ X̂ + 2εBX∗∗ ; which completes the

proof. �

By working a bit harder, we could extend this approach to proving James’ theorem,
via (I)-generation, to spaces whose dual ball is weak∗ sequentially compact. Indeed, this
is done in the paper [34]. However, in this paper we will take another tack. We will
prove James’ theorem, in the case when the dual ball is weak∗ sequentially compact, in
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a way that naturally extends to the general case, albeit requiring several extra technical
steps regarding the extraction of subsequences with “small” sets of cluster points.

One of the strengths of Theorem 3.6 is that it essentially only relies upon a separation
argument (Theorem 2.17) and Lemma 3.3. In this way we see that this proof is very
elementary.

3.2. James’ Theorem on weak compactness: the weak∗ sequentially compact
case. We shall start this subsection with two simple preliminary results.

Proposition 3.7 ([11, Corollary 49]). Let (X, ‖ · ‖) be a normed linear space. Then
every finite-dimensional subspace of X∗ is weak∗-closed.

Proof. Suppose that Y := span{x∗1, . . . , x∗n} is a finite-dimensional subspace of X∗ and
let x∗0 /∈ Y . Then, by Lemma 2.7, we have that

⋂n
i=1 ker(x

∗
i ) 6⊆ ker(x∗0). So, let

x ∈ ⋂n
i=1 ker(x

∗
i )\ ker(x∗0).

Then, taking −x if need be, we may assume that x∗0(x) > 0, while x∗i (x) = 0 for all
1 ≤ i ≤ n. Observe that Y = span{x∗1, . . . , x∗n} ⊆ ker(x̂), since ker(x̂) is a subspace and
x∗i ∈ ker(x̂) for all 1 ≤ i ≤ n. So y∗(x) = 0 for all y∗ ∈ Y . Thus,

{x∗ ∈ X∗ : x∗(x) > 0} = x̂−1(0,∞)

is a weak∗-open neighbourhood of x∗0, which is disjoint from Y . Since x∗0 was arbitrary,
we have that Y is weak∗-closed. �

Lemma 3.8. Let (X, ‖·‖) be a normed linear space, let Y be a finite-dimensional subspace
of X∗ and let ε > 0. If x∗ ∈ X∗ and dist(x∗, Y ) > ε, then there exists an x ∈ SX such
that x∗(x) > ε and y∗(x) = 0 for all y∗ ∈ Y .

Proof. Let Y be a finite-dimensional subspace of X∗ such that dist(x∗, Y ) > ε > 0. Then
we have that x∗ /∈ Y + εBX∗ . Since Y is weak∗-closed (Proposition 3.7) and convex,
and BX∗ is weak∗-compact (Theorem 2.23) and convex, we have that Y + εBX∗ is also
weak∗-closed and convex. Therefore, by Theorem 2.17, there exists an x ∈ SX such that

x∗(x) > sup{y∗(x) : y∗ ∈ Y + εBX∗} = sup{y∗(x) : y∗ ∈ Y }+ ε ≥ ε.

Finally observe that for this x, we have that x̂(Y ) is bounded above, and since Y is a
subspace, the only way this is possible is if x̂(y∗) = y∗(x) = 0 for all y∗ ∈ Y . �

Theorem 3.9 (James’ Theorem: version 2). Let C be a closed and bounded convex
subset of a Banach space (X, ‖ · ‖). If (BX∗ ,weak∗) is sequentially compact and every
x∗ ∈ X∗ attains its supremum over C, then C is weakly compact.

Proof. To show that C is weakly compact, it is sufficient to show that K := Ĉ
w∗

⊆ X̂
(see, Remark 2.25). Suppose, for a contradiction, that this is not the case. Then, there

exists an F ∈ K\X̂. Since X is a Banach space, X̂ is a closed subspace of X∗∗, and

so there must exist an 0 < ε < dist(F, X̂). Let (βn : n ∈ N) be a sequence of strictly
positive numbers such that limn→∞

1
βn

∑∞
i=n+1 βi = 0.

Part I: Let f0 := 0. We inductively create sequences (fn : n ∈ N) in SX∗ and

(x̂n : n ∈ N) in Ĉ, such that the statements

(An) |(F − x̂n)(fj)| < ε/2 for all 0 ≤ j < n,
(Bn) F (fn) > ε and x̂j(fn) = 0 for all 1 ≤ j ≤ n
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are true for all n ∈ N. For the first step, choose any x̂1 ∈ Ĉ. Then it is clear that
|(F − x̂1)(f0)| = 0 < ε/2. Now note that

dist(F, span{x̂1}) ≥ dist(F, X̂) > ε.

So, by Lemma 3.8, there exists f1 ∈ SX∗ such that F (f1) > ε and x̂1(f1) = 0. So the
statements (A1) and (B1) hold.

Now fix k ∈ N. Suppose that we have created {x̂1, . . . , x̂k} and {f1, . . . , fk} such that
the statements (Ak) and (Bk) hold true. Then consider the set

W :=
⋂k

j=0{G ∈ X∗∗ : |(F −G)(fj)| < ε/2}.

Since W is a weak∗-open neighbourhood of F and F ∈ Ĉ
w∗

, we can choose x̂k+1 ∈ Ĉ
such that x̂k+1 ∈W i.e., such that the statement (Ak+1) holds. Next, observe that

dist(F, span{x̂1, . . . , x̂k+1}) ≥ dist(F, X̂) > ε.

So, by Lemma 3.8, there exists fk+1 ∈ SX∗ such that F (fk+1) > ε and x̂j(fk+1) = 0
for all 1 ≤ j ≤ k + 1. Therefore the statement (Bk+1) also holds. This completes the
induction.

Part II: Now let (nk : k ∈ N) be a strictly increasing sequence of natural numbers.
Then for all k ∈ N, define f ′k := fnk

and x′k := xnk
. Also define f ′0 := 0. Then the

sequences (x̂′n : n ∈ N) and (f ′n : n ∈ N) still satisfy (An) and (Bn) for all n ∈ N.
Therefore, passing to a subsequence does not disturb the statements (An) and (Bn).

Now, as (BX∗ ,weak∗) is sequentially compact, and (fn : n ∈ N) is a sequence in BX∗ ,
we have that (fn : n ∈ N) has a weak∗-convergent subsequence. So, by passing to
subsequences and relabelling if necessary, we may assume that (fn : n ∈ N) is weak∗-
convergent to some f∞ ∈ BX∗ . By the above, we know that the statements (An) and
(Bn) remain true for all n ∈ N.

Part III: Let k ∈ N. For any n ≥ k, we have that x̂k(fn) = 0 by the statement
(Bn). Therefore, it follows that x̂k(f∞) = 0. Since k was arbitrary, this is true for all
k ∈ N.

On the other hand, let k ∈ N and let n > k. Then, by the statement (An), we have that
|(F − x̂n)(fk)| < ε/2. Moreover, from (Bk), we know that F (fk) > ε. Combining these,
we get that

x̂n(fk) = F (fk) + (x̂n − F )(fk) > ε/2

for all n > k. Therefore x̂n(fk − f∞) > ε/2, for all n > k.

Part IV: For each n ∈ N, define Cn := co{fk : k ≥ n} − f∞ and note that (Cn : n ∈ N)
is a decreasing sequence of nonempty, convex subsets of X∗. Define p : X∗ → R to
be p(x∗) = sup{x∗(c) : c ∈ C} for all x∗ ∈ X∗. Then p is a sublinear function and
inff∈C1

p(f) > ε/4.

To confirm this second assertion consider the following. Let f ∈ C1. Then f =∑k
i=1 λifni

− f∞ where 0 ≤ λi for all 1 ≤ i ≤ k and
∑k

i=1 λi = 1. Let m >
max{n1, . . . , nk}. Then

p(f) ≥ f(xm) = x̂m

(∑k
i=1λifni

− f∞

)
=

∑k
i=1λix̂m(fni

− f∞) > ε/2.
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Therefore, since f ∈ C1 was arbitrary, we have that inff∈C1
p(f) > ε/4 as claimed. So,

by Lemma 3.3, there exists a sequence (gn : n ∈ N) such that for all n ∈ N:

(i) gn ∈ co{fk : k ≥ n} and

(ii) p(
∑n

i=1 βi(gi − f∞)) + βn+1ε/4 < p(
∑n+1

i=1 βi(gi − f∞)). (∗)

Part V: Now, since (X∗,weak∗) is a locally convex space (gn : n ∈ N) also converges
to g∞ := f∞. Indeed, if W is any convex weak∗ open neighbourhood of f∞ then there
exists an N ∈ N such that fn ∈W for all n ≥ N . Therefore, co{fi : i ≥ N} ⊆W . Since
gk ∈ co{fi : i ≥ N} for all k ≥ N , we have that gk ∈ W for all k ≥ N . This shows that
(gk : k ∈ N) converges to g∞ = f∞. Set g :=

∑∞
i=1 βi(gi − f∞). Since ‖gi − f∞‖ ≤ 2 for

all i ∈ N, we have that

∞∑

i=1

‖βi(gi − f∞)‖ =

∞∑

i=1

βi‖gi − f∞‖ ≤ 2

∞∑

i=1

βi <∞.

Therefore, g ∈ X∗ since X∗ is a Banach space. As p is continuous, it is clear that
(p(

∑n
i=1 βi(gi − f∞)) : n ∈ N) is a convergent and hence a bounded sequence in R.

Moreover, the statement (∗) gives that this is also an increasing sequence. Therefore,
by the Monotone Convergence Theorem, (p(

∑n
i=1 βi(gi − f∞)) : n ∈ N) converges to its

supremum. That is,

sup
n∈N

p(
∑n

i=1βi(gi − f∞))= lim
n→∞

p(
∑n

i=1βi(gi − f∞))=p( lim
n→∞

∑n
i=1βi(gi − f∞))=p(g).

Part VI: Since g ∈ X∗, there exists a c ∈ C such that ĉ(g) = g(c) = sup{g(x) : x ∈
C} = p(g). Then, for any n > 1,

βnε/4 < p(
∑n

i=1βi(gi − f∞))− p(
∑n−1

i=1 βi(gi − f∞)) by (∗)
≤ p(g)− p(

∑n−1
i=1 βi(gi − f∞)) since p(g) = sup{p(∑n

i=1βi(gi − f∞)) : n ∈ N}
= ĉ(g)− p(

∑n−1
i=1 βi(gi − f∞))

≤ ĉ(g)− ĉ(
∑n−1

i=1 βi(gi − f∞)) = ĉ(
∑∞

i=nβi(gi − f∞))

= βnĉ(gn − f∞) +
∑∞

i=n+1βiĉ(gi − f∞).

Rearranging gives that

ε/4 < ĉ(gn − f∞) +
1

βn

∑∞
i=n+1βiĉ(gi − f∞) ≤ ĉ(gn − f∞) +

2‖ĉ‖
βn

∑∞
i=n+1βi.

Taking the limit, as n tends to infinity, we get that

ε/4 ≤ lim
n→∞

gn(c)− f∞(c) + 2‖ĉ‖
(

lim
n→∞

1

βn

∑∞
i=n+1βi

)
= lim

n→∞
gn(c)− f∞(c),

which contradicts the fact that f∞(c) = lim
n→∞

gn(c). Therefore, K ⊆ X̂ and so C is

weakly compact. �

The power of this result stems from the fact that the class of all Banach spaces whose
dual ball is weak∗ sequentially compact is very large. Indeed, in addition to all the
separable Banach spaces (whose dual ball is weak∗ metrisable, [9, page 426]), it contains
all Asplund spaces, [31] (i.e., spaces in which every separable subspace has a separable
dual space) and all spaces that admit an equivalent smooth norm, [18] (which includes
all WCG spaces, [8]). In fact, it contains all Gateaux differentiability spaces, [31].



A GENTLE INTRODUCTION TO JAMES’ WEAK COMPACTNESS THEOREM AND BEYOND 55

3.3. James’ Theorem on weak compactness: the general case. The short-coming
of the previous subsection is that the dual ball of a Banach space need not be weak∗

sequentially compact. For example, the dual ball of (C(βN), ‖ · ‖∞) is not weak∗ se-
quentially compact, as it contains a copy of βN - the Stone-Cech compactification of the
natural numbers, endowed with the discrete topology, and this space is known to have
no nontrivial (i.e., not eventually constant) convergent sequences, [10].

So the method of passing to a subsequence which is weak∗ convergent must be aban-
doned. However we can, by passing to a suitable subsequence, insist that

K :=
⋂

n∈N
{fk : k ≥ n}w

∗

is “small” in the sense that for countably many weak∗ lower
semicontinuous real-valued functions (pn : n ∈ N), the sets pn(K) are singletons. In this
way, the set K of all weak∗ cluster points of the sequence (fn : n ∈ N) “acts” like a
singleton set in Part V and Part VI of the proof of Theorem 3.9.

So next we will show how to extract “nice” subsequences from a given sequence. The
approach we adopt is very general and will provide much more than needed, but these
technical results may possibly be of some independent interest.

We shall start with the precise definition of lower semicontinuity. Let (X, τ) be a
topological space. We say a function f : X → R ∪ {∞} is lower semicontinuous if for
every α ∈ R, {x ∈ X : f(x) ≤ α} is a closed set.

Since we will be working extensively with subsequences we will introduce some concise
notation for a subsequence of a given sequence. Let x̃ : N → X denote the sequence
(xn : n ∈ N) and let J be an infinite subset of N. Then J can be uniquely enumerated as,
J = {nk : k ∈ N} with nk < nk+1 for all k ∈ N. Then x̃|J will denote the subsequence
(xnk

: k ∈ N) of x̃ = (xn : n ∈ N). We will also be working with the set of all cluster
points of a given sequence and so it is worth our while to introduce some notation for
the set of all cluster points. Let (X, τ) be a linear topological space and let x̃ : N → X
be the sequence (xn : n ∈ N). We define

clτ (x̃) :=
⋂∞

n=1{xk : k ≥ n}τ .
That is, clτ (x̃) is the set of all τ -cluster points of x̃. Further, we define Kτ (x̃) :=
coτ (clτ (x̃)). When there is no ambiguity concerning the topology, we will simply write
cl(x̃) and K(x̃).

Lemma 3.10. If ϕ : A → R is a convex lower-semicontinuous function defined on a
nonempty closed and convex subset A of a Hausdorff locally convex space (X,+, ·, τ),
then for every sequence x̃ := (xn : n ∈ N) in A, either there exists a subsequence without
any cluster points, or else, there exists a subsequence x̃|J such that ϕ is bounded on
K(x̃|J ).
Proof. Let x̃ := (xn : n ∈ N) be a sequence in A and suppose that every subsequence of
x̃ has a cluster point. We shall construct a subsequence x̃|J that that ϕ is bounded on
K(x̃|J ), but first, we shall construct an infinite subset J ′ of N such that ϕ is bounded
below on K(x̃|J ′).

Let x ∈ cl(x̃). Then x /∈ ϕ−1(−∞, ϕ(x) − 1], which is closed and convex. Therefore,
there exists a closed and convex neighbourhood, N of x such thatN∩ϕ−1(−∞, ϕ(x)−1] =
∅ i.e., ϕ(N) ⊆ (ϕ(x)− 1,∞). Since x is a cluster point of x̃, we may choose an infinite
set J ′ ⊆ N such that xj ∈ N for all j ∈ J ′. Then, because N is closed and convex,
K(x̃|J ′) ⊆ N and so ϕ(K(x̃|J ′)) ⊆ ϕ(N) ⊆ (ϕ(x)− 1,∞). Hence ϕ(K(x̃|J ′)) is bounded
below.

We now claim that J ′ possesses an infinite subset J such that ϕ(K(x̃|J )) is bounded
above. Indeed, suppose in order to obtain a contradiction, that this is not the case.
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Then we inductively proceed as follows. First, there must be x ∈ cl(x̃|J ′) with ϕ(x) > 1,
otherwise ϕ(K(x̃|J ′)) ⊆ (−∞, 1] and we would be done. So, we may choose a closed,
convex neighbourhood, N of x such that N ∩ ϕ−1(−∞, 1] = ∅. Then, since x is a
cluster point of x̃|J ′ , we can choose an infinite subset J1 ⊆ J ′ such that xj ∈ N for all
j ∈ J1. Because N is closed and convex, we have that K(x̃|J1

) ⊆ N and so K(x̃|J1
) ∩

ϕ−1(−∞, 1] = ∅.

In general, suppose that we have chosen infinite subsets Jn ⊆ · · · ⊆ J1 ⊆ J ′ such that
for all 1 ≤ i ≤ n: K(x̃|Ji

) ∩ ϕ−1(−∞, i] = ∅.

For the (n + 1)th step, we suppose that cl(x̃|Jn
)) 6⊆ ϕ−1(−∞, n + 1], otherwise

ϕ(K(x̃|Jn
)) ⊆ (−∞, n+ 1] is bounded above and we are done. Therefore, we can choose

x ∈ cl(x̃|Jn
) such that ϕ(x) > n + 1, and a closed, convex neighbourhood, N of x such

that N ∩ ϕ−1(−∞, n + 1] = ∅. Then, since x is a cluster point of x̃|Jn
, we can choose

an infinite subset Jn+1 ⊆ Jn such that xj ∈ N for all j ∈ Jn+1. Because N is closed
and convex, we have that K(x̃|Jn+1

) ⊆ N and so K(x̃|Jn+1
)∩ϕ−1(−∞, n+1] = ∅. This

completes the induction.

Lastly, we apply the so-called diagonalisation argument. Define J
′′

:= {nk : k ∈ N} ⊆
N such that nk < nk+1 and nk ∈ Jk for all k ∈ N.

Consider the subsequence of x̃ given by x̃|J ′′ = (xnk
: k ∈ N). Then, since Jn+1 ⊆ Jn

for all n ∈ N, we have that nk ∈ Jm for all k ≥ m. Let m ∈ N. Then

K(x̃|J ′′ ) = K({xnk
: k ≥ m}) ⊆ K(x̃|Jm

) ⊆ X \ ϕ−1(−∞,m],

and so K(x̃|J ′′ ) ∩ ϕ−1(−∞,m] = ∅. Since m was arbitrary, this holds for all m ∈ N
and so we have that ϕ(K(x̃|J ′′ )) = ∅, which contradicts our original assumption. Thus,
there exists a subsequence x̃|J of x̃ such that ϕ(K(x̃|J )) is bounded. �

We can further refine Lemma 3.10 as follows.

Lemma 3.11. If ϕ : A → R is a convex lower-semicontinuous function defined on a
nonempty closed and convex subset A of a Hausdorff locally convex space (X,+, ·, τ),
then for every sequence x̃ := (xn : n ∈ N) in A, either there exists a subsequence without
any cluster points, or else, there exists a subsequence x̃|J such that ϕ is constant on
K(x̃|J ).

Proof. Let x̃ := (xn : n ∈ N) be a sequence in A and suppose that every subsequence of x̃
has a cluster point. Then, by Lemma 3.10, and by passing to a subsequence if necessary,
we may assume that ϕ is bounded on K(x̃). Let α1, β1 ∈ R denote inf ϕ(K(x̃)) and
supϕ(K(x̃)) respectively and let J0 := N. Of course if α1 = β1, then ϕ(K(x̃)) is a
singleton and we are done. If not, we inductively construct a decreasing sequence of
infinite subsets (Jn : n ∈ N) of N such that diam(ϕ(K(x̃|Jn

)) ≤ (β1 − α1)/2
n for all

n ∈ N.

We begin as follows. Set δ1 := (α1+β1)/2. Since ϕ is convex and lower-semicontinuous,
we have that ϕ−1(−∞, δ1] is a closed, convex set. Then, we can pick x ∈ cl(x̃) such that
δ1 < ϕ(x) ≤ β1. Indeed, if not, then ϕ(cl(x̃)) ⊆ (−∞, δ1] and so ϕ(K(x̃)) ⊆ (−∞, δ1]
also. However, this contradicts the fact that β1 = supϕ(K(x̃)).

Therefore x /∈ ϕ−1(−∞, δ1], and so there exists a closed, convex neighbourhood, N
of x such that N ∩ ϕ−1(−∞, δ1] = ∅. As x ∈ cl(x̃), there is an infinite set J1 ⊆ N
such that xj ∈ N for all j ∈ J1. In particular, K(x̃|J1

) ⊆ N , since N is closed and
convex, and so inf ϕ(K(x̃|J1

)) ≥ δ1. Also, because x̃|J1
is a subsequence of x̃, we have

that supϕ(K(x̃|J1
)) ≤ β1. Therefore, diam(ϕ(K(x̃|J1

)) ≤ β1 − δ1 = (β1 − α1)/2.
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Suppose now that we have created the infinite subsets Jn ⊆ Jn−1 ⊆ · · · ⊆ J0 such
that

diam(ϕ(K(x̃|Ji
)) ≤ (β1 − α1)/2

i for all 1 ≤ i ≤ n.

Set αn := inf ϕ(K(x̃|Jn
)), βn := supϕ(K(x̃|Jn

)) and δn := (αn + βn)/2. Then,

diam(ϕ(K(x̃|Jn
)) = βn − αn ≤ (β1 − α1)/2

n,

by construction. If αn = βn then let Jn+1 := Jn and we are done. Otherwise, we can
choose (as above) x ∈ cl(x̃|Jn

) such that x /∈ ϕ−1(−∞, δn], because if not, ϕ(K(x̃|Jn
)) ⊆

(−∞, δn], which contradicts the fact that βn = supϕ(K(x̃|Jn
)). Therefore, there exists a

closed, convex neighbourhood, N of x such thatN∩ϕ−1(−∞, δn] = ∅. Since x ∈ cl(x̃|Jn
),

there is an infinite set Jn+1 ⊆ Jn such that xj ∈ N for all j ∈ Jn+1. In particular, since
N is closed and convex, K(x̃|Jn+1

) ⊆ N and so inf ϕ(K(x̃|Jn+1
)) ≥ δn. Therefore,

diam(ϕ(K(x̃|Jn+1
)) ≤ βn − δn = (βn − αn)/2 ≤ (β1 − α1)/2

n+1.

Thus, by induction, we have created a decreasing sequence of infinite subsets (Jn : n ∈ N)
of N such that

diam(ϕ(K(x̃|Jn
)) ≤ (β1 − α1)/2

n for all n ∈ N.

Lastly, define J := {nk : k ∈ N} such that nk < nk+1 and nk ∈ Jk for all k ∈ N.
Consider the subsequence of x̃ given by x̃|J = (xnk

: k ∈ N). Then, since Jn+1 ⊆ Jn for
all n ∈ N, we have that nk ∈ Jm for all k ≥ m. Let m ∈ N. Then,

K(x̃|J ) = K({xnk
: k ≥ m}) ⊆ K(x̃|Jm

),

which gives that diam(ϕ(K(x̃|J))) ≤ diam(ϕ(K(x̃|Jm
))) ≤ (β1 − α1)/2

m. Since m ∈ N
was arbitrary, we conclude that ϕ(K(x̃|J )) is a singleton as required. �

For our next result we need to recall the definition of the topology of pointwise con-
vergence. If X is a nonempty set and A is a nonempty subset of X then we may put a
topology on the vector space RX of all real-valued functions defined on X endowed with
pointwise addition and pointwise scalar multiplication. We will call the weak topology
on RX generated by {δa : a ∈ A} the topology of pointwise convergence on A, where for
each a ∈ A, δa : RX → R is defined by, δa(f) := f(a). We shall denote the topology of
pointwise convergence on A by τp(A).

Corollary 3.12. For each n ∈ N, let ϕn : A → R be a convex lower-semicontinuous
function defined on a nonempty closed and convex subset A of a Hausdorff locally convex
space (X,+, ·, τ), then for every sequence x̃ := (xn : n ∈ N) in A, either there exists a
subsequence without any cluster points, or else, there exists a subsequence x̃|J such that

ϕ is a constant on K(x̃|J ), for each ϕ ∈ {ϕn : n ∈ N}τp(A)
.

Proof. Let x̃ := (xn : n ∈ N) be a sequence in A and suppose that every subsequence of
x̃ has a cluster point. Let J0 := N. We inductively construct a decreasing sequence of
infinite subsets (Jn : n ∈ N) of N such that ϕn is a constant on K(x̃|Jn

), for each n ∈ N.

We begin as follows. Since ϕ1 is convex and lower-semicontinuous, there exists, by
Lemma 3.11, an infinite subset J1 of N such that ϕ1 is constant on K(x̃|J1

).

Now, suppose that we have created infinite subsets Jn ⊆ Jn−1 ⊆ · · · ⊆ J1 ⊆ N such
that ϕi is constant on K(x̃|Ji

) for all 1 ≤ i ≤ n.

Then, for the (n+ 1)th step choose, using Lemma 3.11, an infinite subset Jn+1 of Jn
such that ϕn+1 is constant on K(x̃|Jn+1

).
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Now, define J := {nk : k ∈ N} ⊆ N such that nk < nk+1 and nk ∈ Jk for all k ∈ N.
Consider the subsequence of x̃ given by x̃|J = (xnk

: k ∈ N). Then, since Jn+1 ⊆ Jn for
all n ∈ N, we have that nk ∈ Jm for all m ≤ k. Let m ∈ N. Then,

∅ 6= K(x̃|J ) = K({xnk
: k ≥ m}) ⊆ K(x̃|Jm

),

and so 1 ≤
∣∣ϕm(K(x̃|J ))

∣∣ ≤
∣∣ϕm(K(x̃|Jm

))
∣∣ ≤ 1. Since m was arbitrary, this gives that

ϕm is constant on K(x̃|J), for all m ∈ N.

Now, let ϕ ∈ {ϕn : n ∈ N}τp(A)
and let x, y ∈ K(x̃|J ). Suppose, for a contradiction,

that ϕ(x) > ϕ(y). Then

N :=
{
F ∈ RX : F (x) > (1/2)[ϕ(x) + ϕ(y)]

}
∩
{
F ∈ RX : F (y) < (1/2)[ϕ(x) + ϕ(y)]

}

is a τp(A)-neighbourhood of ϕ. Since ϕ ∈ {ϕn : n ∈ N}τp(A)
there must exist k ∈ N such

that ϕk ∈ N . However, this is impossible as ϕk(x) = ϕk(y) for all k ∈ N, and so ϕ is
constant on K(x̃|J). �

By applying Corollary 3.12 we obtain the following technical result that is needed (i.e.,
provides the required subsequence) in the proof of the general version of James’ weak
compactness theorem.

Corollary 3.13. Let ϕ : X → R be a τ -continuous convex function defined on a locally
convex space (X,+, ·, τ). If τ ′ is a Hausdorff locally convex topology on X such that (i)
τ ′ ⊆ τ and (ii) ϕ is τ ′-lower semicontinuous then, for every sequence x̃ := (xn : n ∈ N)
in X, either there exists a subsequence without any τ ′-cluster points, or else, there exists
a subsequence x̃|J of x̃ such that ϕ is constant on, y − aKτ ′(x̃|J) for all y ∈ span{xn :
n ∈ N} and all a ∈ R.

Proof. Let x̃ := (xn : n ∈ N) be a sequence in X and suppose that every subsequence
of x̃ has a τ ′-cluster point. Observe that Y := span{xn : n ∈ N} is τ -separable, so let
{yn : n ∈ N} be a countable, τ -dense subset of Y . Moreover, let {qn : n ∈ N} be an
enumeration of Q\{0}. Now for all m,n ∈ N, define ϕm

n : X → R by

ϕm
n (x) = ϕ(yn − qmx) for all x ∈ X.

Since x 7→ (yn − qmx) is a τ ′-continuous affine function and ϕ is convex and τ ′-lower
semicontinuous, we have that ϕm

n is τ ′-lower-semicontinuous and convex for all m,n ∈ N.
Then, by Corollary 3.12, [applied in (X,+, ·, τ ′)] there exists a subsequence, x̃|J , of x̃
such that ψ is constant on Kτ ′(x̃|J), for each ψ in the τp(X)-closure of {ϕm

n : m,n ∈ N}.

Now observe that, for all a ∈ R and all y ∈ Y , the function ϕa
y : X → R given by

ϕa
y(x) := ϕ(y − ax) is in the τp(X)-closure of {ϕm

n : m,n ∈ N}. To see this, fix y ∈ Y
and a ∈ R. Let F := {x1, x2, . . . , xk} be a finite subset of X and let ε > 0. For each
1 ≤ i ≤ k choose a τ -neighbourhood Ui of y and an open interval Vi of a such that
|ϕ(y′ − q′xi) − ϕ(y − axi)| < ε for all y′ ∈ Ui and all q′ ∈ Vi. Note that this is possible
because ϕ is τ -continuous and the mapping (y′, q′) 7→ (y′ − q′xi) is τ -continuous. Let
U :=

⋂
1≤i≤k Ui and V :=

⋂
1≤i≤k Vi then (y, a) ∈ U × V . Since {yn : n ∈ N} is τ -dense

in Y there exists an n ∈ N such that yn ∈ U and since {qm : m ∈ N} is dense in R there
exists an m ∈ N such that qm ∈ V . Therefore,

|ϕm
n (xi)− ϕa

y(xi)| = |ϕ(yn − qmxi)− ϕ(y − axi)| < ε for all 1 ≤ i ≤ k.

This shows that, ϕa
y is in the τp(X)-closure of {ϕm

n : m,n ∈ N}. Therefore, ϕa
y(Kτ ′(x̃|J )) =

ϕ(y − aKτ ′(x̃|J )) is a singleton for all y ∈ span{xn : n ∈ N} and all a ∈ R, as
required. �
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The last result we need before we can prove the full version of James’ theorem concerns
the convergence of the subsequences that we constructed in Part IV of the proof of
Theorem 3.9.

Proposition 3.14. Let (X, τ) be a locally convex space and let x̃ := (xn : n ∈ N) be a
sequence in a τ -compact convex subset K of X. If ỹ := (yn : n ∈ N) is any sequence such
that yk ∈ co{xn : n ≥ k} for all k ∈ N, then cl(ỹ) ⊆ K(x̃).

Proof. It is sufficient to show that for any open convex neighbourhood, W of 0, cl(ỹ) ⊆
K(x̃) +W . To this end, let W be an open convex neighbourhood of 0. Then note that
for k sufficiently large,

{xn : n ≥ k} ⊆ cl(x̃) +W.

Indeed if this is not the case, then we could construct a subsequence (xnk
: k ∈ N) of

(xn : n ∈ N) such that xnk
/∈ cl(x̃) +W for all k ∈ N, However, since X \ [cl(x̃) +W ]

is a closed set containing {xnk
: k ∈ N} we have that {xnk

: k ∈ N} ∩ [cl(x̃) +W ] = ∅,

but this is impossible since {xnk
: k ∈ N} ∩ cl(x̃) 6= ∅. Thus, we have a contradiction.

Therefore, if y ∈ cl(ỹ), then for k sufficiently large, we have that

y ∈ {yn : n ≥ k} ⊆ co{xn : n ≥ k} ⊆ K(x̃) +W since, K(x̃) +W is closed and convex.

Hence, cl(ỹ) ⊆ K(x̃) +W as required. �

Theorem 3.15 (James’ Theorem: version 3, [21]). Let C be a closed and bounded convex
subset of a Banach space (X, ‖ · ‖). If every x∗ ∈ X∗ attains its supremum over C, then
C is weakly compact.

Proof. To show that C is weakly compact, it suffices to show that K := Ĉ
w∗

⊆ X̂
(see Remark 2.26). Suppose, for a contradiction, that this is not the case. Then there

exists F ∈ K\X̂. Since X̂ is a closed subspace of X∗∗, this means there must exist

0 < ε < dist(F, X̂). Let (βn : n ∈ N) be a sequence of strictly positive numbers such
that limn→∞

1
βn

∑∞
i=n+1 βi = 0.

Part I: We inductively create the two sequences (x̂n : n ∈ N) in Ĉ, and (fn : n ∈ N)
in SX∗ , which satisfy the statements (An) and (Bn), exactly as in Part I of the proof of
Theorem 3.9.

Part II: Define p : X∗ → R to be p(x∗) = sup{x∗(c) : c ∈ C} for all x∗ ∈ X∗. Then p is
norm-continuous, weak∗-lower-semicontinuous and convex. Just as in Part II of the proof
of Theorem 3.9, passing to a subsequence does not disturb the statements (An) and (Bn).

So, by passing to a subsequence and relabelling if necessary, we may assume, by Corollary
3.13, that p is constant on f − aKw∗(fn : n ∈ N) for all f ∈ span{fn : n ∈ N} and all
a ∈ R. Since (fn : n ∈ N) is a sequence in BX∗ (which is weak∗-compact), it must a have
a weak∗-cluster point, call it f∞.

Part III: This step is exactly the same as Part III of the proof of Theorem 3.9 - we
deduce that x̂k(f∞) = 0 for all k ∈ N and that x̂n(fk) > ε/2 for all n > k; from which
we conclude that x̂n(fk − f∞) > ε/2 for all n > k.

Part IV: As in the proof of Theorem 3.9, we use Lemma 3.3 to construct a sequence
(gn : n ∈ N) such that for all n ∈ N:

(i) gn ∈ co{fk : k ≥ n} and

(ii) p(
∑n

i=1 βi(gi − f∞)) + βn+1ε/4 < p(
∑n+1

i=1 βi(gi − f∞)).
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Part V: Since (gn : n ∈ N) is a sequence in BX∗ (which is weak∗-compact), it must a
have a weak∗-cluster point, call it g∞. Then, by Proposition 3.14, we have that g∞ ∈
Kw∗(fn : n ∈ N). While it may no longer be the case that f∞ = g∞ as in Theorem 3.9,
we do have that, for all n ∈ N,

p(
∑n

i=1βi(gi − g∞)) = p(
∑n

i=1βigi −
∑n

i=1βi · g∞)

= p(
∑n

i=1βigi −
∑n

i=1βi · f∞) = p(
∑n

i=1βi(gi − f∞)) (∗∗)

since g∞ ∈ Kw∗(fn : n ∈ N) and for all f ∈ span{fn : n ∈ N} and all a ∈ R, the set
p(f − aKw∗(fn : n ∈ N)) is a singleton. As in Part V of the proof of Theorem 3.9, we set
g :=

∑∞
i=1 βi(gi − g∞) and deduce that g ∈ X∗.

Part VI: This final step is almost the same as Part VI of the proof of Theorem 3.9,
with two small changes that we note here. We may replace f∞ with g∞ throughout
the inequalities, not because f∞ = g∞ but because of statement (∗∗) above. Lastly,
the final contradiction is not because limn→∞ gn(c) = g∞(c) necessarily, but because
lim infn→∞ gn(c) ≤ g∞(c). This still gives a contradiction. �

3.4. James’ Theorem: applications.

Theorem 3.16 ([20]). Let (X, ‖ · ‖) be a Banach space. Then X is reflexive if, and
only if, every continuous linear functional x∗ on X attains its norm (i.e., there exists an
x ∈ BX such that ‖x∗‖ = x∗(x)).

Proof. By Theorem 2.26, X is reflexive if, and only if, BX is weakly compact. So the
result now follows from Theorem 3.15 once one remembers that every continuous linear
functional on X is continuous with respect to the weak topology on X. �

Note: if X is reflexive then one can use the Hahn-Banach Theorem to directly show
that every continuous linear functional on X attains its norm. Indeed, suppose that x∗

is a nonzero continuous linear functional on X. Then by Corollary 2.13 there exists an
x∗∗ ∈ SX∗∗ such that x∗∗(x∗) = ‖x∗‖. However, since X is reflexive, x∗∗ = x̂ for some
x ∈ SX . Hence, ‖x∗‖ = x∗∗(x∗) = x̂(x∗) = x∗(x). This shows that x∗ attains its norm.

We now recall a geometric concept in Banach space theory. We say that a Banach
space, (X, ‖ · ‖), is uniformly convex if, for any ε > 0, there exists δε > 0 with the
following property: if x, y ∈ BX and ‖x+ y‖ > 2− δε, then ‖x− y‖ < ε.

Theorem 3.17 ([41]). Let (X, ‖ · ‖) be a Banach space. If (X, ‖ · ‖) is uniformly convex,
then (X, ‖ · ‖) is reflexive.

Proof. Let x∗ ∈ SX∗ and define (xn : n ∈ N) in BX so that x∗(xn) > 1 − 1
n
. Let ε > 0

and choose δε > 0 such that if x, y ∈ BX and ‖x+y‖ > 2−δε, then ‖x−y‖ < ε Then, for
n,m ∈ N greater than N0 := 2/δε, we have that 2 ≥ ‖xn + xm‖ ≥ x∗(xn + xm) > 2− δε.
By the uniform convexity of X, this gives that for n,m > N0, we have ‖xn − xm‖ ≤ ε.
So, (xn : n ∈ N) is a Cauchy sequence in X. Therefore, (xn : n ∈ N) is convergent to
some x ∈ BX . It is clear that for this x, x∗(x) = 1 = ‖x∗‖. Since x∗ was arbitrary in
SX∗ , every x∗ in X∗ attains its norm, and so, by Theorem 3.16, X is reflexive. �

Another interesting application of Theorem 3.15 is the Krein-Phillips theorem.

Corollary 3.18 (Krein-Phillips Theorem, [30,43]). Let C be a weakly compact subset of
a Banach space (X, ‖ · ‖). Then co(C) is also weakly compact.

Proof. Let K := co(C). Since C is weakly compact, every x∗ ∈ X∗ must attain its
supremum over C i.e. for every x∗ ∈ X∗, there exists c ∈ C ⊆ K such that x∗(c) =
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supx∈C x
∗(x). However, for every x∗ ∈ X∗, it is a routine observation that

sup
x∈C

x∗(x) = sup
x∈co(C)

x∗(x) = sup
x∈K

x∗(x).

Thus, every x∗ ∈ X∗ attains its supremum over K too. Therefore, by James’ Theorem
(Theorem 3.15), K is weakly compact. �

Using Theorem 3.4 we can prove some well-known results of S. Simons, see [48]. For
a detailed survey of Simons’ results and applications thereof, see [5].

Theorem 3.19 (Simons, [48]). Let K be a weak∗-compact, convex subset of the dual of
a Banach space (X, ‖ ·‖), let B be a boundary for K, and let fn : K → R be weak∗-lower-
semicontinuous, convex functions, for all n ∈ N. If (fn : n ∈ N) is equicontinuous with
respect to the norm, and lim sup

n→∞
fn(b

∗) ≤ 0 for all b∗ ∈ B, then lim sup
n→∞

fn(x
∗) ≤ 0 for

all x∗ ∈ K.

Proof. Let ε > 0. For each n ∈ N, define

Cn :=
⋂

k≥n

{y∗ ∈ K : fk(y
∗) ≤ ε/2}.

Let k ∈ N. Since fk : K → R is weak∗-lower-semicontinuous and convex, the set
{y∗ ∈ K : fk(y

∗) ≤ ε/2} is weak∗-closed and convex. It follows that for all n ∈ N, Cn

is the intersection of weak∗-closed and convex sets, and so is weak∗-closed and convex
itself. Then, since Cn ⊆ K for all n ∈ N, we have that Cn is weak∗-compact and convex
for all n ∈ N. Moreover, if b∗ ∈ B, then lim supn→∞ fn(b

∗) ≤ 0 and so b∗ ∈ CN for some
N ∈ N. Hence, (Cn : n ∈ N) is a countable cover of B by weak∗-compact, convex subsets
of K.

Therefore, since B is a boundary for K, by Theorem 3.4 we have that co[
⋃

n∈N
Cn] =⋃

n∈N
Cn (since Cn ⊆ Cn+1 for all n ∈ N) is norm-dense in K. Let x∗ ∈ K. Since

(fn : n ∈ N) is equicontinuous with respect to the norm, there exists a δ > 0 such that
fn(x

∗) < fn(y
∗) + ε/2 for all n ∈ N and all y∗ ∈ B(x∗, δ).

However since
⋃

n∈N
Cn is norm-dense inK, there exists N ∈ N such that B(x∗, δ)∩CN 6=

∅. Therefore, fn(x
∗) < ε for all n > N and so lim supn→∞ fn(x

∗) ≤ ε. Since ε > 0 and
x∗ ∈ K were arbitrary, we have that lim supn→∞ fn(x

∗) ≤ 0 for all x∗ ∈ K as claimed.
�

Corollary 3.20. Let K be a weak∗-compact, convex subset of the dual of a Banach space
(X, ‖ · ‖) and let B be a boundary for K. Let (xn : n ∈ N) be a bounded sequence in X
and let x ∈ X. If lim

n→∞
b∗(xn) = b∗(x) for all b∗ ∈ B, then lim

n→∞
x∗(xn) = x∗(x) for all

x∗ ∈ K.

Proof. For all n ∈ N, define fn : K → R to be given by

fn(x
∗) := |x∗(xn)− x∗(x)| = | ̂(xn − x)(x∗)| for all x∗ ∈ K.

Then fn : K → R is a weak∗-lower-semicontinuous and convex function for all n ∈ N, as

x∗ 7→ ̂(xn − x)(x∗) is weak∗ continuous and linear (into R) and r 7→ |r| is continuous and
convex. Furthermore, (fn : n ∈ N) is equicontinuous with respect to the norm. Finally,
lim supn→∞ fn(b

∗) ≤ 0 for all b∗ ∈ B and so, by Theorem 3.19, lim supn→∞ fn(x
∗) ≤ 0

for all x∗ ∈ K. From this it is clear that lim
n→∞

x∗(xn) = x∗(x) for all x∗ ∈ K. �

Sometimes called the Rainwater-Simons Theorem, Corollary 3.20 is due to S. Simons
(although he proved it differently). It generalises a famous result of J. Rainwater, origi-
nally from [45].
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Corollary 3.21 (Simons). Let K be a weak∗-compact convex subset of the dual of a
Banach space (X, ‖ · ‖), let B be a boundary for K, and let (xn : n ∈ N) be a bounded
sequence in X. Then

sup
b∗∈B

{
lim sup
n→∞

x̂n(b
∗)

}
= sup

x∗∈K

{
lim sup
n→∞

x̂n(x
∗)

}
.

Proof. Since B ⊆ K, clearly

sup
b∗∈B

{
lim sup
n→∞

x̂n(b
∗)

}
≤ sup

x∗∈K

{
lim sup
n→∞

x̂n(x
∗)

}
.

So it only remains to show that

sup
b∗∈B

{
lim sup
n→∞

x̂n(b
∗)

}
≥ sup

x∗∈K

{
lim sup
n→∞

x̂n(x
∗)

}
.

To this end, let

r := sup
b∗∈B

{
lim sup
n→∞

x̂n(b
∗)

}
,

and for each n ∈ N, let fn : K → R be defined by fn(x
∗) := sup{x̂k(x∗) : k ≥ n} − r for

all x∗ ∈ K. Then, for all n ∈ N, fn is weak∗-lower-semicontinuous and convex, as the
pointwise supremum of a family of convex functions is again convex and the pointwise
supremum of a family of lower semi-continuous functions is again lower semi-continuous.
Furthermore, (fn : n ∈ N) is equicontinuous with respect to the norm and moreover,
limn→∞ fn(b

∗) ≤ 0 for all b∗ ∈ B. Therefore, by Theorem 3.19, limn→∞ fn(x
∗) ≤ 0 for

all x∗ ∈ K. From this, the result is immediate. �

In the next part of this subsection we will show that in order to deduce that a closed
and bounded convex subset C of Banach space (X, ‖ · ‖) is weakly compact it is not
necessary to show that all the elements of X∗ attain their maximum value of C, but
only a “large” subset of X∗. To achieve this goal we need some more definitions.

Let K be a subset of the dual of a normed linear space (X, ‖ · ‖). A point x∗ ∈ K
is called a weak∗ exposed point of K if there exists a x ∈ X \ {0} such that x̂(x∗) ≥
supy∗∈K x̂(y∗). There are some simple, but useful, facts that we can easily deduce about
weak∗ exposed points.

Firstly, (i) if x∗ is a weak∗ exposed point of K then λx∗ is a weak∗ exposed point of
λK for any λ ∈ R \ {0}; (ii) if x∗ is a weak∗ exposed point of K then x∗ + y∗ is a weak∗

exposed point of K + y∗ for any y∗ ∈ X∗; (iii) if x∗ ∈ A ⊆ K is a weak∗ exposed point
of K then x∗ is a weak∗ exposed point of A.

The next result shows that weak∗ exposed points are directly related to weak com-
pactness.

Proposition 3.22. Let K be a closed and convex subset of the dual of a Banach space
(X, ‖ · ‖). If 0 ∈ int(K) and every point of Bd(K) is a weak∗ exposed point of K, then
K◦ is a weakly compact subset of X.

Proof. We shall appeal directly to Theorem 3.15. To this end, let x∗ ∈ X∗ \ {0}. We
consider two cases.

Case (I) Suppose that for every 0 < λ, λx∗ ∈ K. Let k ∈ K◦ and let 0 < λ. Then

λx∗(k) = (λx∗)(k) ≤ 1 since λx∗ ∈ K ⊆ (K◦)
◦.

Therefore, x∗(k) ≤ λ−1. Since 0 < λ was arbitrary, x∗(k) ≤ 0 and so x∗ attains its
maximum value over K◦ at 0 ∈ K◦.
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Case(II) Suppose that for some 0 < λ, (λx∗) 6∈ K. Let Λ := {r ∈ [0,∞) : rx∗ ∈ K}.
Then Λ is a closed and bounded interval of [0,∞) since K is closed and convex and
λ 6∈ Λ. Let λ0 := maxr∈Λ r. Then λ0x

∗ ∈ Bd(K). Hence there exists a x ∈ X \ {0} such
that

λ0x̂(x
∗) = x̂(λ0x

∗) = sup
y∗∈K

x̂(y∗) > 0 since 0 ∈ int(K).

By replacing x by µx for some µ > 0 and relabelling if necessary, we can assume that

1 = x̂(λ0x
∗) = sup

y∗∈K

x̂(y∗) = sup
y∗∈K

y∗(x).

Therefore x ∈ K◦. On the other hand, since λ0x
∗ ∈ K ⊆ (K◦)

◦ we have that

(λ0x
∗)(k) ≤ 1 = (λ0x

∗)(x) for all k ∈ K◦.

Therefore λ0x
∗ attains its maximum value overK◦ at x, and hence so does x∗. Therefore,

by Theorem 3.15, K◦ is weakly compact. �

Theorem 3.23 ([24]). Let (X, ‖ · ‖) be a Banach space. If there exists a weak∗ open
subset U of X∗ such that ∅ 6= SX∗ ∩ U and every member of SX∗ ∩ U attains its norm
on X, then X is reflexive.

Proof. Suppose that {x1, x2, . . . , xn} ⊆ X, ε > 0 and x∗0 ∈ X∗ are chosen so that if

W ′ :=
n⋂

k=1

{x∗ ∈ X∗ : |x∗(xk)− x∗0(xk)| < ε} and

W :=
n⋂

k=1

{x∗ ∈ X∗ : |x∗(xk)− x∗0(xk)| ≤ ε}

then ∅ 6= SX∗ ∩W ′ and every member of SX∗ ∩W attains its norm on X (i.e., every
point of SX∗ ∩W is a weak∗ exposed point of BX∗ - just consider the x ∈ BX such that
x̂(x∗) = ‖x∗‖ = 1). Let K ′ := W ∩ BX∗ . Then K ′ is closed and bounded and convex.
Furthermore, int(K ′) 6= ∅. Let us now recall some basic facts from general topology. If
A and B are closed subsets of a topological space (T, τ) then

Bd(A ∩B) ⊆ (Bd(A) ∩B) ∪ (Bd(B) ∩A) ⊆ Bd(A) ∪ Bd(B).

So Bd(K ′) ⊆ [Bd(W ) ∩ BX∗ ] ∪ [SX∗ ∩W ]. We claim that every point of Bd(K ′) is a
weak∗ exposed point. To see this, suppose that x∗ ∈ Bd(W ) ∩ BX∗ ⊆ Bd(W ). Then
clearly, x∗ is a weak∗ exposed point of the set W (exposed by x̂k for some 1 ≤ k ≤ n).
Then by property (iii) above, x∗ is a weak∗ exposed point of W ∩BX∗ . If x∗ ∈ SX∗ ∩W
then by the way W was chosen, x∗ is a weak∗ exposed point of BX∗ and hence by
property (iii) above, also a weak∗ exposed point of BX∗ ∩W . Choose x∗ ∈ int(K ′) and
let K := K ′ − x∗. Then 0 ∈ int(K) and by property (ii) above, each point of Bd(K) is
a weak∗ exposed point. Thus, by Proposition 3.22, K◦ is weakly compact. Now since K
is bounded, 0 ∈ int(K◦). Hence X is reflexive. �

The proof of the next theorem can be found in [36], (see also [39, 40]). Its conclusion
is phrased in terms of the notion of “relative weak compactness”. So in order to avoid
any possible confusion we will give the precise definition of this notion here. A subset
C of a Banach space (X, ‖ · ‖) is said to be relatively weakly compact if its closure, with
respect to the weak topology on X, is weakly compact.

Theorem 3.24 ([47]). Let (X, ‖ · ‖) be a Banach space and let f : X → R ∪ {∞} be
a proper function on X. If f − x∗ attains minimum for every x∗ ∈ X∗ then for each
a ∈ R, S(a) := {(y, s) ∈ X × R : f(y) ≤ s ≤ a} is relatively weakly compact.
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Proof. In this proof we will identify the dual of X × R with X∗ × R. We will also
consider X × R endowed with the norm ‖(x, r)‖1 := ‖x‖ + |r| and note that with this
norm, (X×R, ‖ ·‖1) is a Banach space. We shall apply James’ theorem, (Theorem 3.15),
in X ×R. Let H := {(x, r) ∈ X ×R : r = 0} and define T : (X ×R) \H → (X ×R) \H
by, T (x, r) := r−1(x,−1). Then T is a bijection. In fact, T is a homeomorphism when
(X ×R) \H is considered with the relative weak topology. Note that since f is bounded
below we may assume, after possibly translating, that 1 = infx∈X f(x). Our proof relies
upon the Fenchel conjugate (see, [46, page 102] or [2, page 49]) f∗ : X∗ → R of f , which
is defined by

f∗(x∗) := sup
x∈X

[x∗(x)− f(x)] = − inf
x∈X

[f(x)− x∗(x)]

= −min
x∈X

[f(x)− x∗(x)] = max
x∈X

[x∗(x)− f(x)].

It is routine to check that f∗ is convex on X∗ (see, Proposition 5.2, part (i)). We claim
that co[T (epi(f)) ∪ {(0, 0)}] is weakly compact. To show this, it is sufficient, because
of James’ theorem, to show that every non-zero continuous linear functional attains its
maximum value over T (epi(f)) ∪ {(0, 0)}. To this end, let (x∗, r) ∈ (X∗ × R) \ {(0, 0)}.
We consider two cases.

Case (I) Suppose that for every 0 < λ, f∗(λx∗) ≤ λr. Then x∗(x)− λ−1f(x) ≤ r for
all x ∈ X and all 0 < λ. Let (y, s) ∈ epi(f) and let 0 < λ. Then

(x∗, r)(T (y, s)) = s−1(x∗(y)− r) ≤ s−1(x∗(y)− [x∗(y)− λ−1f(y)]) = s−1f(y)λ−1 ≤ λ−1

since 0 < 1 ≤ f(y) ≤ s. As 0 < λ was arbitrary, (x∗, r)(T (y, s)) ≤ 0 = (x∗, r)(0, 0).
Thus, (x∗, r) attains its maximum value over T (epi(f)) ∪ {(0, 0)} at (0, 0).

Case(II) Suppose that for some 0 < λ, λr < f∗(λx∗). Then, since the mapping,
λ′ 7→ f∗(λ′x∗), is real-valued and convex, it is continuous. Furthermore, it follows, from
the intermediate value theorem applied to the function g : [0, λ] → R, defined by

g(λ′) := f∗(λ′x∗)− λ′r for all λ′ ∈ [0, λ],

that there exists a 0 < µ < λ such that g(µ) = 0, i.e., f∗(µx∗) = µr, since

g(0) = f∗(0x∗) = − inf
x∈X

f(x) = −1 < 0 < g(λ).

Thus, µ(x∗, r) = (µx∗, f∗(µx∗)). Choose z ∈ X such that f∗(µx∗) = µx∗(z)− f(z). We
claim that (x∗, r) attains its maximum value over T (epi(f)) ∪ {(0, 0)} at T (z, f(z)) =
f(z)−1(z,−1). Now,

(x∗, r)(T (z, f(z))) = f(z)−1(x∗(z)− r) = f(z)−1(x∗(z)− [µ−1f∗(µx∗)])

= f(z)−1(x∗(z)− [x∗(z)− µ−1f(z)]) = µ−1 > 0.

On the other hand, if (y, s) ∈ epi(f) then

(x∗, r)(T (y, s)) = s−1(x∗(y)− r) = s−1(x∗(y)− [µ−1f∗(µx∗)])

≤ s−1(x∗(y)− [x∗(y)− µ−1f(y)]) = s−1f(y)µ−1

≤ µ−1 = (x∗, r)(T (z, f(z)))

since 0 < 1 ≤ f(y) ≤ s. Note also that (x∗, r)(0, 0) = 0 < µ−1 = (x∗, r)(T (z, f(z))).
Therefore, by James’ Theorem 3.15, co[T (epi(f)) ∪ {(0, 0)}] is weakly compact.

Let 1 ≤ a, then T (S(a)) ⊆ co[T (epi(f)),∪{(0, 0)}] ∩ {(x, r) ∈ X × R : r ≤ −a−1},
which is weakly compact and disjoint from H. Therefore

S(a) ⊆ T−1(co[T (epi(f)) ∪ {(0, 0)}] ∩ {(x, r) ∈ X × R : r ≤ −a−1}),
which completes the proof. �
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For each a ∈ R, let L(a) := {x ∈ X : f(x) ≤ a}. It follows from Theorem 3.24
that if (X, ‖ · ‖) is a Banach space, f : X → R ∪ {∞} is a proper function on X and
f −x∗ attains minimum for every x∗ ∈ X∗ then, for each a ∈ R, L(a) is relatively weakly
compact, since L(a) = π(S(a)), where π : X × R → X is defined by, π(x, r) := x for all
(x, r) ∈ X × R and is weak-to-weak continuous, (see Proposition 2.10).

An interesting corollary of this result is the following.

Corollary 3.25 ([47]). Let ϕ : U → R be a continuous convex function defined on a
nonempty open convex subset U of a Banach space (X, ‖ · ‖). If ϕ−x∗ attains minimum
for every x∗ ∈ X∗ then X is reflexive.

Proof. For each n ∈ N, let Fn := {x ∈ U : ϕ(x) ≤ n}. Then each set Fn is closed and
U =

⋃
n∈N

Fn. Since X is a Banach space, U is of the second Baire category. Thus, there
exists an n0 ∈ N such that int(Fn0

) 6= ∅. In particular, there exists an x0 ∈ Fn0
and a

δ0 > 0 such that B[x0, δ0] ⊆ Fn0
. Therefore, by Theorem 3.24, B[x0, δ0] = x0 + δ0BX is

compact with respect to the weak topology, and hence so is BX . The result now follows
from Theorem 2.26. �

Lemma 3.26 ( [35]). Let (Y, ‖ · ‖) be a Banach space and C be a nonempty bounded
subset of Y × R, endowed with the norm ‖(y, r)‖1 := ‖y‖ + |r|. If for every x∗ ∈ Y ∗,
max{(x∗,−1)(y, s) : (y, s) ∈ C} exists, then C is relatively weakly compact.

Proof. Let π : Y × R → Y be defined by π(y, r) := y, A := π(C) and f : Y → R ∪ {∞}
be defined by,

f(y) :=

{
inf{s ∈ R : (y, s) ∈ C}, if y ∈ A,
∞, if y 6∈ A.

Then f is a proper function on Y and x∗ − f attains it maximum for every x∗ ∈ Y ∗. To
confirm this second assertion, consider the following. Let x∗ ∈ Y ∗, then

sup
y∈Y

(x∗ − f)(y) = sup
y∈A

(x∗ − f)(y) = sup
y∈A

(
x∗(y)− inf

(y,s)∈C
s
)

= sup
y∈A

(
x∗(y) + sup

(y,s)∈C

(−s)
)
= sup

y∈A

(
sup

(y,s)∈C

(x∗(y)− s)
)

= sup
(y,s)∈C

(x∗(y)− s) = sup
(y,s)∈C

(x∗,−1)(y, s). (†)

Now, by assumption, there exists an element (y0, s0) ∈ C such that (x∗,−1)(y0, s0) =
sup

(y,s)∈C

(x∗,−1)(y, s). Thus,

sup
y∈Y

(x∗ − f)(y) ≥ (x∗ − f)(y0) = x∗(y0)− f(y0)

≥ x∗(y0)− s0 since f(y0) ≤ s0

= sup
(y,s)∈C

(x∗,−1)(y, s) = sup
y∈Y

(x∗ − f)(y) by (†).

From this it follows that

(x∗ − f)(y0) = sup
y∈Y

(x∗ − f)(y) and s0 = f(y0).

Therefore, by Theorem 3.24, for each a ∈ R, S(a) := {(y, s) ∈ Y × R : f(y) ≤ s ≤ a} is
relatively weakly compact. Since C is bounded there exists an a ∈ R such that C ⊆ S(a).

�

Theorem 3.27 ([35]). Let (X, ‖ · ‖) be a Banach space and let A and B be nonempty
closed and bounded convex sets with 0 < dist(A,B). If every x∗ ∈ X∗ with sup{(x∗(b) :
b ∈ B} < inf{x∗(a) : a ∈ A} attains its infimum over A and its supremum over B, then
both A and B are weakly compact.
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Proof. To show that both A and B are weakly compact it is sufficient (and necessary) to
show that B −A is weakly compact. This will be our approach. From the hypotheses it
follows that if C := B −A, then C is a bounded nonempty closed and convex subset of
X with 0 6∈ C. Furthermore, it follows that each x∗ ∈ X∗ with sup{x∗(c) : c ∈ C} < 0
attains it supremum over C. Choose y∗ ∈ X∗ such that sup{y∗(c) : c ∈ C} < 0. Note
that such a functional exists by the Hahn-Banach theorem. Let Y := ker(y∗) and choose
x0 ∈ C. Define S : Y ×R → X by, S(y, r) := y+ rx0 and let us consider Y ×R endowed
with the norm ‖(y, r)‖1 := ‖y‖+ |r|. Then S is an isomorphism and there exists an 0 < ε
and an ε < a such that

S−1(C) ⊆ {(y, r) ∈ Y × R : ε ≤ r ≤ a}.

Moreover, each (x∗, r) ∈ (Y ×R)∗ with sup{(x∗, r)(y, s) : (y, s) ∈ S−1(C)} < 0 attains its
supremum over S−1(C). Let π : Y ×R → Y be defined by π(y, r) := y, A := π(S−1(C))
and f : Y → R ∪ {∞} be defined by

f(y) :=

{
inf{s ∈ R : (y, s) ∈ S−1(C)}, if y ∈ A,
∞, if y 6∈ A.

Next, we define T : Y × (R \ {0}) → Y × (R \ {0}) by T (y, s) := s−1(y,−1). Then T is
a bijection. In fact, T is a homeomorphism when Y × (R \ {0}) is considered with the
relative weak topology. Let f∗ : Y ∗ → R be defined by

f∗(x∗) := sup
y∈Y

[x∗(y)− f(y)] = sup{(x∗,−1)(y, s) : (y, s) ∈ S−1(C)},

as in the proof of Lemma 3.26.

It is routine to check that f∗ is real-valued and convex on Y ∗ (see, Proposition 5.2, part
(i)). To show that C is weakly compact it is sufficient to show S−1(C) is weakly compact,
and to show that S−1(C) is weakly compact, it is sufficient to show that

T (S−1(C)) ⊆ T (S−1(C))
weak ⊆ {(y, r) ∈ Y × R : −1/ε ≤ r ≤ −1/a}

is a relatively weakly compact subset of Y × R. To achieve this we appeal to Lemma
3.26. First note that T (S−1(C)) is a nonempty bounded subset of Y ×R. Then consider
any x∗ ∈ Y ∗. We consider two cases.

Case (I) Suppose that for every 0 < λ, f∗(λx∗) ≤ −λ. Then x∗(y)− λ−1f(y) ≤ −1
for all y ∈ Y and all 0 < λ. In particular, −λ−1f(0) ≤ −1 for all 0 < λ, i.e., λ ≤ f(0) for
all 0 < λ. On the other hand, S(0, 1) = x0 ∈ C, i.e., (0, 1) ∈ S−1(C) and so f(0) ≤ 1.
Thus, Case (I) does not occur.

Case(II) Suppose that for some 0 < λ, −λ < f∗(λx∗). Then, since the mapping,
λ′ 7→ f∗(λ′x∗), is real-valued and convex, it is continuous. Furthermore, it follows from
the intermediate value theorem applied to the function g : [0, λ] → R, defined by

g(λ′) := f∗(λ′x∗) + λ′ for all λ′ ∈ [0, λ],

that there exists a 0 < µ < λ such that g(µ) = 0, i.e., f∗(µx∗) = −µ, since

g(0) = f∗(0x∗) = − inf
y∈Y

f(y) ≤ −ε < −0 = 0 < g(λ).

Thus, µ(x∗,−1) = (µx∗, f∗(µx∗)) and so f∗(µx∗) = sup{(µx∗,−1)(y, s) : (y, s) ∈
S−1(C)} = −µ < 0.

Choose (z, s0) ∈ S−1(C) such that (µx∗,−1)(z, s0) = sup{(µx∗,−1)(y, s) : (y, s) ∈
S−1(C)} = f∗(µx∗). Note that, as in the proof of Lemma 3.26, z ∈ A and s0 = f(z).
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We claim that (x∗,−1) attains its maximum value over T (S−1(C)) at T (z, f(z)) =
f(z)−1(z,−1). Now,

(x∗,−1)(T (z, f(z))) = f(z)−1(x∗(z) + 1) = f(z)−1(x∗(z)− [µ−1f∗(µx∗)])

= f(z)−1(x∗(z)− [x∗(z)− µ−1f(z)]) = µ−1.

On the other hand, if (y, s) ∈ S−1(C) then

(x∗,−1)(T (y, s)) = s−1(x∗(y) + 1)

= s−1(x∗(y)− [µ−1f∗(µx∗)]) ≤ s−1(x∗(y)− [x∗(y)− µ−1f(y)])

= s−1f(y)µ−1 ≤ µ−1 = (x∗,−1)(T (z, f(z)))

since 0 < ε ≤ f(y) ≤ s. This completes the proof. �

Remark 3.28. It might be interesting to note the following: If (X, ‖·‖) is a Banach space,
A and B are nonempty closed and bounded convex sets such that every x∗ ∈ X∗ with
inf{x∗(a) : a ∈ A} < sup{x∗(b) : b ∈ B} attains its infimum over A and its supremum
over B, then both A and B are weakly compact. To see this, note that C := co[{0}∪B −A]
is a closed and bounded convex subset of X with the property that every continuous linear
function attains it supremum over C.

A special case of the previous theorem was given in [4].

Example 3.29. Let (X, ‖ · ‖) be a non-trivial normed linear space. Then there exists an
equivalent norm ||| · ||| on X and a nonempty open subset U of X∗ such that every member
of U attains its norm on (X, ||| · |||).
Proof. Choose x0 ∈ X with ‖x0‖ = 2. Then, by the Hahn-Banach theorem, there
exists a continuous linear functional x∗ ∈ SX∗ such that x∗(x0) = 2. Let U := {y∗ ∈
X∗ : ‖y∗ − x∗‖ < 1/3} and let B := co(BX ∪ {x0,−x0}). Then B is convex, bounded,
symmetric and 0 ∈ int(B). Therefore, B is the closed unit ball of some equivalent norm
||| · ||| on X. Furthermore, every member of U attains its maximum value over B at x0.
Indeed, if y∗ ∈ U then

y∗(x0) = x∗(x0) + [y∗(x0)− x∗(x0)] ≥ 2− ‖y∗ − x∗‖‖x0‖ > 4/3.

On the other hand, for any x ∈ BX ,

y∗(x) = x∗(x) + [y∗(x)− x∗(x)] ≤ 1 + ‖y∗ − x∗‖‖x‖ < 1 + 1/3 = 4/3 < y∗(x0)

and y∗(−x0) = −y∗(x0) = −2 < y∗(x0). Therefore, y∗ attains its maximum value over
B at x0. �

Together, Example 3.29 and Theorem 3.23 give rise to the following conjecture.

Conjecture 3.30. Let (X, ‖ · ‖) be a Banach space. If there exists a weak open subset
U of X∗ such that ∅ 6= SX∗ ∩ U and every member of SX∗ ∩ U attains its norm on X,
then X is reflexive.

A special case of this conjecture was proven in [24]. For some further results in this
direction see [7].

4. Convex analysis and minimal uscos

In this section we prove a generalisation of James’ weak compactness theorem. Un-
fortunately, to achieve this generalisation we will need to take an excursion into convex
analysis and set-valued analysis. Hopefully, some of the results along the way are of some
interest in their own right.
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4.1. Convex functions and monotone operators. We shall need the following very
important fact regarding the continuity of convex functions.

Proposition 4.1 ([42, Proposition 1.6]). Let U be a nonempty open convex subset of a
Banach space (X, ‖ · ‖) and let ϕ : U → R be a convex function. If ϕ is locally bounded
above on U , that is, for every x0 ∈ U there exists an M > 0 and a δ > 0 such that
B(x0, δ) ⊆ U and ϕ(x) ≤ M for all x ∈ B(x0, δ), then it is locally Lipschitz on U ; that
is, for every x0 ∈ U , there exists an L > 0 and δ > 0 such that B(x0, δ) ⊆ U and

|ϕ(x)− ϕ(y)| ≤ L‖x− y‖

for all x, y ∈ B(x0, δ).

Proof. Let x0 ∈ U . Choose M∗ > 0 and δ > 0 such that B(x0, 2δ) ⊆ U and ϕ(x) ≤ M∗

for all x ∈ B(x0, 2δ). Then for all x ∈ B(x0, δ) we have that 2x0 − x = x0 − (x− x0) ∈
B(x0, δ) and x0 = (1/2)(2x0 − x) + (1/2)x. Hence,

ϕ(x0) ≤
ϕ(2x0 − x) + ϕ(x)

2
≤ M∗ + ϕ(x)

2
,

so −ϕ(x) ≤M∗ + 2|ϕ(x0)|; that is, |ϕ(x)| ≤ (M∗ + 2|ϕ(x0)|) =:M ′ for all x ∈ B(x0, δ).
So |ϕ| is bounded by M ′ on B(x0, δ). Let δ′ := δ/2. If x and y are distinct points in
B(x0, δ

′), let α := ‖x− y‖ and let z := y+(δ/α)(y− x). Note that z ∈ B(x0, 2δ
′). Since

y = [α/(α+ δ′)]z + [δ′/(α+ δ′)]x is a convex combination (lying in B(x0, 2δ
′)), we have

that ϕ(y) ≤ [α/(α+ δ′)]ϕ(z) + [δ′/(α+ δ′)]ϕ(x) and so

ϕ(y)− ϕ(x) ≤ [α/(α+ δ′)](ϕ(z)− ϕ(x)) + [δ′/(α+ δ′)](ϕ(x)− ϕ(x))

≤ (α/δ′)2M ′ = (2M ′/δ′)‖x− y‖.

Interchanging x and y gives the desired result, with M := 2M ′/δ′. �

Suppose that f : C → R is a convex function defined on a nonempty convex subset of
a normed linear space (X, ‖ · ‖) and x ∈ C. Then we define the subdifferential ∂f(x) by,

∂f(x) := {x∗ ∈ X∗ : x∗(y)− x∗(x) ≤ f(y)− f(x) for all y ∈ C}.

We can also define the subdifferential in terms of the right-hand derivative of f .
Suppose that f : U → R is a convex function defined on a nonempty open convex subset
U of a normed linear space (X, ‖ · ‖). Let x0 ∈ U and let v ∈ X. Then the right-hand
directional derivative of f , at the point x0 ∈ U , in the direction v, is defined to be

f ′+(x0; v) := lim
λ→0+

f(x0 + λv)− f(x0)

λ
.

Now there is a subtlety that we have overlooked. Namely, how do we know if the limit
exists? Well, if we revisit Lemma 3.1, then we can see why. So suppose f , x0 and v 6= 0
are as in the definition of f ′+(x0; v) and suppose that 0 < β and 0 < β′ Then,

f(x0 + (β + β′)v)− f(x0)

β + β′
=

[f(x0 + (β + β′)v)− f(x0 + βv)] + [f(x0 + βv)− f(x0)]

β + β′

≥ 1

β + β

(
β′

β
[f(x0 + βv)− f(x0)] + [f(x0 + βv)− f(x0)]

)
by Lemma 3.1

=
1

β + β

(
β + β′

β
[f(x0 + βv)− f(x0)]

)
=
f(x0 + βv)− f(x0)

β
.

Therefore, t 7→ f(x0+tv)−f(x0)
t

is an increasing function over (0, δ) for some δ > 0 small
enough so that x0 + tv ∈ U whenever 0 < t < δ. Since one can also use Lemma 3.1 to
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show that

f(x0 + sv)− f(x0)

s
≤ f(x0 + tv)− f(x0)

t
for any s < 0 and 0 < t (but small enough to stay in U),

we see that the limit in the definition of the right-hand directional derivative always
exists.

We can now give the basic properties of the subdifferential mapping x 7→ ∂ϕ(x).

Lemma 4.2 ([42, Proposition 1.11]). Let U be a nonempty open and convex subset of
a normed linear space (X, ‖ · ‖) and let ϕ : U → R be a continuous convex function. If
x0 ∈ U then ∂ϕ(x0) 6= ∅.

Proof. Let x0 ∈ U and define p : X → R by, p(x) := f ′+(x0;x) for all x ∈ X. Note that
p is well-defined. Let 0 < µ <∞ and let x ∈ X then

p(µx) = lim
λ→0+

ϕ(x0 + λ(µx))− ϕ(x0)

λ

= µ lim
λ→0+

ϕ(x0 + (λµ)x)− ϕ(x0)

λµ

= µ lim
λ′→0+

ϕ(x0 + λ′x)− ϕ(x0)

λ′
(where λ′ := λµ)

= µp(x).

So p is positively homogeneous on X. Next, choose δ > 0 such that B[x0, δ] ⊆ U . We
claim that p is convex on B[0, δ]. Fix n ∈ N and define pn : B[0, δ] → R by

pn(x) :=
ϕ(x0 + (1/n)x)− ϕ(x0)

(1/n)
for all x ∈ B[0, δ].

Since, x 7→ x0+(1/n)x, is an affine map, x 7→ ϕ(x0+(1/n)x), is convex, and so pn is also
convex. Now, p(x) = limn→∞ pn(x) for each x ∈ B[0, δ]. Therefore, p|B[0,δ] is convex,
as the pointwise limit of convex functions is again convex. Since p is also positively
homogeneous on X it is an easy exercise to show that p is sublinear on X.

Let y0 be any element of SX and define f : span{y0} → R by, f(λy0) := λp(y0) for
all λ ∈ R. Then f(λy0) = λp(y0) = p(λy0) ≤ p(λy0) for all 0 < λ < ∞. Now, fix
0 < λ <∞, then

0 = p(0) = p((−λ)y0 + λy0) ≤ p((−λ)y0) + p(λy0).

Therefore, (−λ)p(y0) = −p(λy0) ≤ p((−λ)y0). Thus,

f((−λ)y0) = (−λ)p(y0) ≤ p((−λ)y0).

Hence, f(λy0) ≤ p(λy0) for all λ ∈ R. Thus, by the Hahn-Banach Theorem (Theorem
2.11) there exists a linear functional F : X → R such that F (x) ≤ p(x) for all x ∈ X.
Note also, that by Proposition 4.1 and the definition of p, there exists an L > 0 such
that F (x) ≤ p(x) ≤ L‖x‖ for all x ∈ X. Thus, F ∈ X∗. We claim that F ∈ ∂ϕ(x0). To
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see this, let x ∈ U then

F (x)− F (x0) = F (x− x0)

≤ p(x− x0)

= lim
λ→0+

ϕ(x0 + λ(x− x0))− ϕ(x0)

λ

≤ ϕ(x0 + 1(x− x0))− ϕ(x0)

1

since λ 7→ ϕ(x0+λ(x−x0))−ϕ(x0)
λ

is increasing over (0, 1]

= ϕ(x)− ϕ(x0).

This completes the proof. �

Proposition 4.3 ([42, Proposition 1.11]). Let U be a nonempty open and convex subset
of a normed linear space (X, ‖ · ‖) and let ϕ : U → R be a continuous convex function.
If x0 ∈ U , then ∂ϕ(x0) is a weak∗-compact convex subset of X∗. Moreover, the map
x 7→ ∂ϕ(x) is locally bounded at x0. That is, there exists an L > 0 and a δ > 0 such that
B(x0, δ) ⊆ U and ‖x∗‖ ≤ L whenever x ∈ B(x0, δ) and x

∗ ∈ ∂ϕ(x).

Proof. For each x ∈ U , let

Fx := {x∗ ∈ X∗ : x∗(x− x0) ≤ ϕ(x)− ϕ(x0)} = (x̂− x0)
−1(−∞, ϕ(x)− ϕ(x0)].

Thus, each set Fx is weak∗ closed and convex. Now, ∂ϕ(x0) =
⋂

x∈U Fx. Therefore,
∂ϕ(x0) is weak

∗ closed and convex. Let us now show that, x 7→ ∂ϕ(x), is locally bounded
at x0 (Note: this will then automatically show that ∂ϕ(x) is weak∗ compact, by Theorem
2.23). By Proposition 4.1, there exists an L > 0 and a δ > 0 such that B(x0, δ) ⊆ U
and |ϕ(x)− ϕ(y)| ≤ L‖x− y‖ for all x, y ∈ B(x0, δ). We claim that ‖x∗‖ ≤ L whenever
x ∈ B(x0, δ) and x

∗ ∈ ∂ϕ(x). To this end, let x ∈ B(x0, δ) and x
∗ ∈ ∂ϕ(x). Let v ∈ SX

and choose 0 < µ such that x+ µv ∈ B(x0, δ). Then,

x∗(v) =
x∗((x+ µv)− x)

µ
≤ ϕ(x+ µv)− ϕ(x)

µ
≤ L‖µv‖

µ
= L.

Thus, ‖x∗‖ ≤ L. Note: we used here the simple fact that if x∗(v) ≤ L for all v ∈ SX

then ‖x∗‖ ≤ L. �

One of the most important features of the subdifferential mapping of a convex function
is that it belongs to a much studied class of set-valued mappings called “monotone
operators”.

Let T : X → 2X
∗

be a set-valued mapping from (X, ‖·‖) be a normed linear space into
subsets of its dual X∗. T is said to be a monotone operator provided (x∗−y∗)(x−y) ≥ 0
whenever x, y ∈ X and x∗ ∈ T (x), y∗ ∈ T (y).

Proposition 4.4 ([42, Example 2.2]). If ϕ : U → R be a continuous convex function
defined on a nonempty open convex subset U of a normed linear space (X, ‖ · ‖) then
T : X → 2X

∗

defined by

T (x) :=

{
∂ϕ(x), x ∈ U,

∅, x /∈ U

is a monotone operator on X.

Proof. Let x∗, y∗ ∈ X∗ and suppose that x∗ ∈ T (x) and y∗ ∈ T (y) for some x, y ∈ X.
Then x, y ∈ U since T (x) 6= ∅ and T (y) 6= ∅. In fact, T (x) = ∂ϕ(x) and T (y) = ∂ϕ(y).
Therefore,

x∗(y − x) ≤ ϕ(y)− ϕ(x) and (−y∗)(y − x) = y∗(x− y) ≤ ϕ(x)− ϕ(y).
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If we add these two inequalities together we get (x∗−y∗)(y−x) ≤ 0 and so (x∗−y∗)(x−
y) ≥ 0. Hence, T is indeed a monotone operator. �

4.2. Minimal Uscos. In order to prove our final “convex analysts” proof of James’
theorem, we will need to briefly consider some notions from set-valued analysis.

A set-valued mapping ϕ from a topological space A into subsets of a topological space
(X, τ) is τ -upper semicontinuous at a point x0 ∈ A if for each τ -open set W in X,
containing ϕ(x0), there exists an open neighbourhood U of x0 such that ϕ(U) ⊆W . If ϕ
is τ -upper semicontinuous at each point of A then we say that ϕ is τ -upper semicontinuous
on A. In the case when ϕ also has nonempty compact images then we call ϕ a τ -usco
mapping. Finally, if (X, τ) is a linear topological space then we call a τ -usco mapping
into convex subsets of X a τ -cusco mapping.

Our interest in cusco mappings is revealed in the next proposition.

Proposition 4.5 ([42, Proposition 2.5]). If ϕ : U → R is a continuous convex function
defined on a nonempty open convex subset U of a normed linear space (X, ‖ · ‖), then the
subdifferential mapping, x 7→ ∂ϕ(x), is a weak∗-cusco on U .

Proof. It follows from Lemma 4.2 and Proposition 4.3 that we need only show that,
x 7→ ∂ϕ(x), is weak∗-upper semicontinuous on U . So suppose, in order to obtain a
contradiction, that ∂ϕ is not weak∗ upper semicontinuous at some point x0 ∈ U . Then
there exists a weak∗ open subset W of X∗, containing ∂ϕ(x0), such that for every 0 < δ,
∂ϕ(B(x0, δ)) 6⊆ W . Therefore, in particular, there exist sequences (xn : n ∈ N) in U
and (x∗n : n ∈ N) in X∗ such that limn→∞ xn = x0 and x∗n ∈ ∂ϕ(xn) \W . Furthermore,
by Proposition 4.3, we can assume that the sequence (x∗n : n ∈ N) is norm bounded in
X∗. Hence, by the Banach-Alaoglu Theorem (Theorem 2.23), the sequence (x∗n : n ∈ N)
has a weak∗ cluster-point x∗∞, which must lie in X∗ \W . We will obtain our desired
contradiction by showing that x∗∞ ∈ ∂ϕ(x0) ⊆ W . To this end, fix x ∈ U and ε > 0.
Since ϕ is continuous at x0 there exists an N ∈ N such that |ϕ(xn) − ϕ(x0)| < ε for all
n > N . Let n > N then,

(x̂− x0)(x
∗
n) = x∗n(x− x0) ≤ ϕ(x)− ϕ(xn) = [ϕ(x)− ϕ(x0)] + [ϕ(x0)− ϕ(xn)]

< [ϕ(x)− ϕ(x0)] + ε.

Therefore, x∗∞(x− x0) = (x̂− x0)(x
∗
∞) ≤ [ϕ(x)− ϕ(x0)] + ε. Since ε > 0 was arbitrary,

we have that x∗∞(x − x0) ≤ ϕ(x) − ϕ(x0). Since x ∈ U was arbitrary, we have that
x∗∞ ∈ ∂ϕ(x0), as desired. �

Among the class of usco (cusco) mappings, special attention is given to the so-called
minimal usco (minimal cusco) mappings.

An usco (cusco) from a topological space A into subsets of a topological space X
(linear topological space X) is said to be a minimal usco (minimal cusco) if its graph
does not contain, as a proper subset, the graph of any other usco (cusco) on A.

It is not immediately obvious from this definition that there are any interesting mini-
mal usco mappings at all, apart from single-valued continuous functions (e.g. f : A→ X),
which are trivially minimal uscos once one replaces f(x) with {f(x)} - to make them
set-valued mappings. So our first task is to show that there are always many minimal
uscos.

Proposition 4.6 ([6]). Suppose that (X, τ) and (Y, τ ′) are topological spaces and ϕ :
X → 2Y is an usco on X. If (Y, τ ′) is Hausdorff then there exists a minimal usco
mapping Ψ : X → 2Y such that Gr(Ψ) ⊆ Gr(ϕ) (i.e., every usco contains a minimal
usco).
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Proof. Let U denote the family of all usco mappings defined on X whose graphs are
contained in the graph of ϕ. Obviously U 6= ∅ as the mapping ϕ is contained in U . We
may now partially order U as follows. If Ψ1 and Ψ2 are members of U , then we write
Ψ1 ≤ ψ2 if Ψ1(x) ⊆ Ψ2(x) for each x ∈ X. Next, we apply Zorn’s lemma to show that
(U ,≤) possesses a minimal element. To this end, let {Ψγ : γ ∈ Γ} be a totally ordered
subset of U and let ϕM : X → 2Y be defined by, ϕM (x) :=

⋂{Ψγ(x) : γ ∈ Γ}. Since each
Ψγ(x) is nonempty and compact, ϕM (x) too is nonempty and compact. Let W be an
open subset of Y and consider U := {x ∈ X : ϕM (x) ⊆ W}. We need to show that U is
open in X. We may, without loss of generality, assume that U 6= ∅ and consider x0 ∈ U .
By the finite intersection property, there exists some γ0 ∈ Γ such that Ψγ0

(x0) ⊆ W .
Hence there exists an open neighbourhood U0 of x0 such that Ψγ0

(U0) ⊆ W , which
means that ϕM (U0) ⊆ W . Therefore x0 ∈ U0 ⊆ U and so U is open in X. From this,
it follows that ϕM ∈ U and ϕM ≤ Ψγ for each γ ∈ Γ. Thus, by Zorn’s lemma, (U ,≤)
possesses a minimal element. It is now easy to see that this element is in fact a minimal
usco. �

A similar argument shows that every cusco contains a minimal cusco. However, there
is a much more concrete supply of minimal cuscos.

Proposition 4.7. Let ϕ : A → 2X
∗

be a weak∗-cusco defined on a nonempty open
subset A of a normed linear space (X, ‖ · ‖). If the mapping T : X → 2X

∗

defined by,
T (x) := ϕ(x) if x ∈ A and by T (x) := ∅ if x ∈ X \ A, is a monotone operator, then ϕ
is a minimal weak∗-cusco.

Proof. Suppose, in order to obtain a contradiction, that ϕ is not a minimal weak∗-cusco.
Then there exists a weak∗-cusco Ψ : A → 2X

∗

such that Ψ(x) ⊆ ϕ(x) for all x ∈ A,
but Ψ(x0) 6= ϕ(x0) for some x0 ∈ A. Choose x∗0 ∈ ϕ(x0) \ Ψ(x0) = T (x0) \ Ψ(x0). By
the Separation Theorem (Theorem 2.17), applied in (X∗,weak∗), there exists a y ∈ X
such that supy∗∈Ψ(x0) ŷ(y

∗) < ŷ(x∗0). Let W := {x∗ ∈ X∗ : ŷ(x∗) < ŷ(x∗0)}. Then

W is a weak∗-open subset of X∗, containing Ψ(x0). Therefore, there exists an open
neighbourhood U ⊆ A of x0 such that Ψ(U) ⊆ W . Choose 0 < t < ∞ such that
x0 + ty ∈ U . Let y∗ ∈ Ψ(x0 + ty) ⊆ ϕ(x0 + ty) = T (x0 + ty). Since T is a monotone
operator, x∗0 ∈ T (x0) and y

∗ ∈ T (x0 + ty), we have that

t(y∗ − x∗0)(y) = (x∗0 − y∗)(−ty) = (x∗0 − y∗)(x0 − (x0 + ty)) ≥ 0,

which implies that y∗(y) ≥ x∗0(y). However, this contradicts the fact that y∗ ∈ W , i.e.,
ŷ(y∗) < ŷ(x∗0). Thus, ϕ must be a minimal weak∗-cusco on A. �

Corollary 4.8. If ϕ : U → R is a continuous convex function defined on a nonempty
open convex subset U of a normed linear space (X, ‖·‖), then the subdifferential mapping,
x 7→ ∂ϕ(x), is a minimal weak∗-cusco on U .

Proof. By Proposition 4.5 we have that, x 7→ ∂ϕ(x), is a weak∗-cusco on U . So the result
follows from Proposition 4.4 and Proposition 4.7. �

We will end our detour into set-valued analysis by giving two more results concerning
uscos. The first one shows that minimal usco behave a lot like quasi-continuous mappings,
see [12, page 52], while the last result shows how to convert an usco into a cusco.

Proposition 4.9 ([6,12]). Let ϕ : A→ 2X be a minimal τ -usco acting from a topological
space A into nonempty subsets of a topological space (X, τ). Then, for every pair of open
subsets U of A and W of X such that ϕ(U) ∩W 6= ∅, there exists a nonempty open
subset V of U such that ϕ(V ) ⊆W .
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Proof. Let U be an open subset of A and let W be an open subset of X such that
ϕ(U) ∩W 6= ∅. We consider two cases.

Case(I): If there exists a x ∈ U such that ϕ(x) ⊆W , then the result follows directly
from the τ -upper semicontinuity of ϕ.

Case(II): Suppose that for each x ∈ U , ϕ(x) 6⊆ W . Let Ψ : A → 2X be defined by,
Ψ(x) := ϕ(x)∩ (X \W ) if x ∈ U and by Ψ(x) := ϕ(x) if x 6∈ U . Then, by assumption, Ψ
has nonempty compact images. In fact, we claim that Ψ is a τ -usco on A. To show this,
we need only show that Ψ is τ -upper semicontinuous. Let x0 ∈ A and letW ′ be a τ -open
set in X containing Ψ(x0). If x0 6∈ U then clearly there exists an open neighbourhood
U of x0 such that Ψ(U) ⊆W ′ since, in this case, ϕ(x0) = Ψ(x0) ⊆W ′ and Ψ(x) ⊆ ϕ(x)
for all x ∈ A. So we are left to consider the case when x0 ∈ U . Suppose x0 ∈ U . Then
ϕ(x0) ⊆W ′∪W , since ϕ(x0)∩(X\W ) = Ψ(x0) ⊆W ′. Since ϕ is τ -upper semicontinuous
there exists an open neighbourhood U of x0 such that ϕ(U) ⊆W ′ ∪W . Therefore,

Ψ(U) = ϕ(U) ∩ (X \W ) ⊆ (W ′ ∪W ) ∩ (X \W ) =W ′ ∩ (X \W ) ⊆W ′.

This shows that Ψ is an τ -usco. Since, ϕ is a minimal τ -usco, we must have that ϕ = Ψ,
but then ϕ(U) = Ψ(U) ⊆ (X \ W ), which contradicts our original assumption that
ϕ(U) ∩ W 6= ∅. Therefore, Case(II) does not occur, and so the result follows from
Case(I). �

Proposition 4.10 ( [25, 42]). Suppose that ϕ : A → 2X is a τ -usco acting from a
topological space A into nonempty subsets of a locally convex space (X,+, ·, τ). If for
each t ∈ A, coτϕ(t) is a compact subset of X, then the mapping Ψ : A→ 2X defined by,
Ψ(t) := coτϕ(t) for all t ∈ A, is a τ -cusco on A.

Proof. Clearly, Ψ has nonempty, compact convex images. So it is sufficient to show that
Ψ is τ -upper semicontinuous on A. Let x0 ∈ A and let W be a τ -open subset of X,
containing Ψ(x0). Since vector addition is continuous, for each x ∈ Ψ(x0) there exist
τ -open convex neighbourhoods Ux of x and Vx of 0 such that x = x+0 ⊆ Ux + Vx ⊆W .
Since linear topological spaces are also regular we can assume, by possibly making Vx
smaller, that Ux + Vx

τ ⊆ W . Now, {Ux : x ∈ Ψ(x0)} is an open cover of Ψ(x0).
Therefore, there exists a finite subcover {Uxk

: 1 ≤ k ≤ n} of {Ux : x ∈ Ψ(x0)}. Let
V :=

⋂
1≤k≤n Vxk

. Then V is a convex open neighbourhood of 0 and futhermore,

Ψ(x0) + V
τ ⊆ (

⋃
1≤k≤nUxk

) + V
τ
=

⋃
1≤k≤n(Uxk

+ V
τ
) =⊆ ⋃

1≤k≤n(Uxk
+ Vxk

τ
) ⊆W.

Since ϕ(x0) ⊆ Ψ(x0) + V , which is τ -open, there exists an open neighbourhood U of x0
such that ϕ(U) ⊆ Ψ(x0) + V . Let x ∈ U . Then

Ψ(x) = coτϕ(x) ⊆ coτ (Ψ(x0) + V ) ⊆ Ψ(x0) + V
τ ⊆W

since Ψ(x0) + V
τ
is closed and convex.

Here we used the fact that the sum of a closed set with a compact set is closed. �

4.3. A generalisation of James’ Theorem. By making an obvious modification to
Corollary 3.13, we obtain the following lemma.

Lemma 4.11. Let ϕ : A→ R be a τ -continuous convex function defined on a nonempty
convex subset A of a locally convex space (X, τ) and let τ ′ be a Hausdorff locally convex
topology on X such that (i) τ ′ ⊆ τ and (ii) ϕ is τ ′-lower semicontinuous. If T is a
nonempty τ ′-closed and convex subset of X and S is any τ -separable subset of A such
that S − T ⊆ A then, for every sequence x̃ := (xn : n ∈ N) in T , either there exists a
subsequence without any τ ′-cluster points, or else, there exists a subsequence, x̃|J , of x̃
such that ϕ is constant on, y − aKτ ′(x̃|J ) for all y ∈ S and all a ∈ [0, 1].
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The following lemma shows us that in Theorem 4.13 we get the weak∗ lower semicon-
tinuity of ϕ for free.

Lemma 4.12. Let (X, ‖ · ‖) be a Banach space and let A be a nonempty open convex

subset of X∗. If ϕ : A→ R is a continuous convex function and ∂ϕ(x∗) ∩ X̂ 6= ∅ for all
x∗ ∈ A, then ϕ is weak∗-lower-semicontinuous on A.

Proof. Let x∗0 ∈ A and let ε > 0. Then, there exists an x̂ ∈ ∂ϕ(x∗0)∩X̂. Define h : A→ R
to be

h(x∗) := x̂(x∗)− x̂(x∗0) + ϕ(x∗0) for all x∗ ∈ A.

Then observe that, since x̂ ∈ ∂ϕ(x∗0), we have h(x∗) ≤ ϕ(x∗) for all x∗ ∈ A. Now the set

U := {x∗ ∈ A : |x̂(x∗ − x∗0)| < ε},
is a weak∗-open neighbourhood of x∗0, and for all x∗ ∈ U , we have that

ϕ(x∗0)− ε < x̂(x∗)− x̂(x∗0) + ϕ(x∗0) = h(x∗) ≤ ϕ(x∗).

Therefore, ϕ is weak∗-lower-semicontinuous at x∗0. Since x∗0 was arbitrary, we conclude
that ϕ is weak∗-lower-semicontinuous on A. �

At last, we can present our “convex analysts” version of James’ weak compactness
theorem.

Theorem 4.13. Let (X, ‖ · ‖) be a Banach space and let A be a nonempty open convex

subset of X∗. If ϕ : A→ R is a continuous convex function and ∂ϕ(x∗) ∩ X̂ 6= ∅ for all

x∗ ∈ A, then ∂ϕ(x∗) ⊆ X̂ for all x∗ ∈ A.

Proof. Let x∗0 ∈ A. Without loss of generality, we may assume that x∗0 = 0. Indeed, if
not, we consider the function ψ : (A − x∗0) → R given by ψ(x∗) := ϕ(x∗ + x∗0). Note
that ψ is continuous and convex and that ∂ϕ(x∗ + x∗0) = ∂ψ(x∗) for all x∗ ∈ A− x∗0. In

particular, ∂ψ(x∗) ∩ X̂ 6= ∅ for all x∗ ∈ (A− x∗0) and ∂ϕ(x
∗
0) = ∂ψ(0). So, if x∗0 6= 0, we

can simply translate ϕ and use the argument at 0.

Since A is open and since x∗ 7→ ∂ϕ(x∗) is locally bounded (Proposition 4.3), there
exist m,L > 0 such that mBX∗ ⊆ A and ‖x∗∗‖ ≤ L for all x∗∗ ∈ ∂ϕ(mBX∗). Let
(βn : n ∈ N) be a sequence of strictly positive numbers such that

∑∞
n=1 βn < m/2 and

limn→∞
1
βn

∑∞
i=n+1 βi = 0.

Since x∗ 7→ ∂ϕ(x∗) is a minimal weak∗-cusco, (see, Corollary 4.8) we know that there
exists a minimal weak∗-usco, M : A → 2X

∗∗

, such that M(x∗) ⊆ ∂ϕ(x∗) for all x∗ ∈ A,

by Proposition 4.6. In fact, by Proposition 4.10, we know that ∂ϕ(x∗) = cow
∗

[M(x∗)]
for all x∗ ∈ A.

Therefore, to show that ∂ϕ(0) ⊆ X̂, it suffices to show that M(0) ⊆ X̂. This is be-

cause if M(0) ⊆ X̂, then M(0) is weakly compact (see Remark 2.25) and then, by the
Krein-Phillips Theorem (Corollary 3.18), co[M(0)] is also weakly compact. Since the
weak∗ topology is weaker than the weak topology, co[M(0)] is clearly weak∗-compact
and hence weak∗-closed. Therefore,

∂ϕ(0) = cow
∗

[M(0)] = co[M(0)] ⊆ X̂.

So suppose, for a contradiction, that M(0) 6⊆ X̂. Then there exists an F ∈ M(0) \ X̂.

Since X̂ is a closed subspace of X∗∗, this means there must exist an 0 < ε < dist(F, X̂).

Part I: Let f0 := 0. We inductively create sequences (fn : n ∈ N) in SX∗ , (vn : n ∈ N)
in mBX∗ ⊆ A, and (x̂n : n ∈ N) in X̂, such that the statements
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(An) ‖vn‖ < m/n and x̂n ∈ ∂ϕ(vn),
(Bn) |(F − x̂n)(fj)| ≤ ε/2 for all 0 ≤ j < n,
(Cn) F (fn) > ε and x̂j(fn) = 0 for all 1 ≤ j ≤ n

are true for all n ∈ N. [Note that for the remainder of this proof B(0, r) will denote
the open ball in X∗, centred at 0, of radius r > 0.] For the first step, choose any

v1 ∈ B(0,m) ⊆ A. Then ∂ϕ(v1) ∩ X̂ 6= ∅ and so we may choose x̂1 ∈ ∂ϕ(v1) ∩ X̂ which
clearly satisfies |(F − x̂1)(f0)| = 0 ≤ ε/2. Now note that

dist(F, span{x̂1}) ≥ dist(F, X̂) > ε,

and so, by Lemma 3.8, there exists f1 ∈ SX∗ such that F (f1) > ε and x̂1(f1) = 0. So
the statements (A1), (B1) and (C1) hold.

Now fix k ∈ N. Suppose that we have created {v1, . . . , vk}, {x̂1, . . . , x̂k} and {f1, . . . , fk}
such that the statements (Ak), (Bk) and (Ck) hold true. Then consider the set

W :=
⋂k

j=0{G ∈ X∗∗ : |(F −G)(fj)| < ε/2}.

Note that F ∈M(0) ∩W and so M(B(0, m
k+1 )) ∩W 6= ∅. Therefore, by the minimality

of M and Proposition 4.9, there exists a nonempty open set V ⊆ B(0, m
k+1 ) such that

M(V ) ⊆W .

Choose vk+1 ∈ V . Then ‖vk+1‖ < m/(k + 1). By hypothesis, since vk+1 ∈ A, we

have that ∂ϕ(vk+1) ∩ X̂ 6= ∅, and so we may choose x̂k+1 ∈ X̂ such that

x̂k+1 ∈ ∂ϕ(vk+1) = cow
∗

[M(vk+1)] ⊆ cow
∗

(W ) ⊆ ⋂k
j=0{G ∈ X∗∗ : |(F −G)(fj)| ≤ ε/2}.

Thus the statements (Ak+1) and (Bk+1) hold. Finally, observe that

dist(F, span{x̂1, . . . , x̂k+1}) ≥ dist(F, X̂) > ε,

and so, by Lemma 3.8, there exists fk+1 ∈ SX∗ such that F (fk+1) > ε and x̂j(fk+1) = 0
for all 1 ≤ j ≤ k + 1. Therefore the statement (Ck+1) also holds. This completes the
induction.

Part II: Now let (nk : k ∈ N) be a strictly increasing sequence of natural numbers.
Then for all k ∈ N, define v′k := vnk

and x′k := xnk
and f ′k := fnk

. Also define f ′0 := 0.
Then the sequences (v′n : n ∈ N), (x̂′n : n ∈ N) and (f ′n : n ∈ N) still satisfy (An), (Bn)
and (Cn) for all n ∈ N. Therefore, the properties (An), (Bn) and (Cn) are stable under
passing to subsequences.

Now, since ∂ϕ(x∗)∩X̂ 6= ∅ for all x∗ ∈ A, we have that ϕ is weak∗-lower-semicontinuous
on A, by Lemma 4.12. Let S := m

2 BX∗ ∩ span{fn : n ∈ N} and T := m
2 BX∗ and note

that S−T ⊆ mBX∗ ⊆ A. Then, by passing to a subsequence and relabelling if necessary,
we may assume, by Lemma 4.11, that ϕ is constant on f − a[(m/2)Kw∗(fn : n ∈ N)]
for all 0 ≤ a ≤ 1 and all f ∈ S. Since (fn : n ∈ N) is a sequence in BX∗ (which is
weak∗-compact), it must have a weak∗-cluster point, call it f∞.

Part III: As in Part III of the proof of Theorem 3.9, we derive from the statements
(Bn) and (Cn) that x̂k(f∞) = 0 for all k ∈ N and that x̂n(fk) > ε/2 for all n > k; from
which we conclude that x̂n(fk − f∞) > ε/2 for all n > k. We also note that, from the
statement (An), we have vn → 0 in norm. Therefore, since ϕ is norm-continuous, there
exists N0 ∈ N such that

|ϕ(vn)− ϕ(0)| < β1ε/8 for all n > N0.
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Lastly observe that for all n ∈ N, vn ∈ B(0,m) and x̂n ∈ ∂ϕ(vn) and thus ‖x̂n‖ ≤ L by
the local-boundedness of ∂ϕ. Therefore, if n > 8Lm

β1ε
, we have that

|x̂n(vn)| ≤ ‖x̂n‖‖vn‖ ≤ Lm

n
<
β1ε

8
.

Part IV: For each n ∈ N, let Kn := co{fk : k ≥ n} − f∞ and note that (Kn : n ∈ N)
is a decreasing sequence of nonempty convex subsets of X∗. Set r := ε/8 > 0. Then we
have that

β1r + ϕ(0) < inf
f∈K1

ϕ(β1f).

To see this, let f ∈ K1. Then f =
∑k

i=1 λifni
− f∞ where 0 ≤ λi for all 1 ≤ i ≤ k and∑k

i=1 λi = 1. Set N > max{n1, . . . , nk, N0,
8Lm
β1ε

}. Then we have

ϕ(β1f)−ϕ(0) = [ϕ(β1f)− ϕ(vN )] + [ϕ(vN )− ϕ(0)]

≥ x̂N (β1f)− x̂N (vN ) + [ϕ(vN )− ϕ(0)] since x̂N ∈∂ϕ(vN )

> β1x̂N (f)− x̂N (vN )− β1ε/8

> β1x̂N (f)− β1ε/8− β1ε/8

= β1(x̂N (
∑k

i=1 λifni
− f∞))− β1ε/4

= β1
∑k

i=1 λix̂N (fni
− f∞)− β1ε/4 > β1ε/4.

Therefore, since f ∈ K1 was arbitrary, we have that β1r + ϕ(0) < inff∈K1
ϕ(β1f) as

claimed. So, by Lemma 3.2, there exists a sequence (gn : n ∈ N) such that for all n ∈ N:

(i) gn ∈ co{fk : k ≥ n} and

(ii) ϕ(
∑n

i=1 βi(gi − f∞)) + βn+1r < ϕ(
∑n+1

i=1 βi(gi − f∞)). (∗)

Part V: Since (gn : n ∈ N) is a sequence in BX∗ , it must have a weak∗-cluster point.
So, let g∞ be a weak∗-cluster point of (gn : n ∈ N). Then, by Proposition 3.14, we
have that g∞ ∈ Kw∗(fn : n ∈ N). Since for all n ∈ N, we have that

∑n
i=1 βigi ∈ S =

m
2 BX∗ ∩ span{fn : n ∈ N}, and 0 ≤ ∑n

i=1 βi ≤ m/2, then

ϕ(
∑n

i=1βi(gi − g∞)) = ϕ(
∑n

i=1βigi −
∑n

i=1βi · g∞) = ϕ(
∑n

i=1βigi −
∑n

i=1βi · f∞)

= ϕ(
∑n

i=1βi(gi − f∞)), (∗∗)
by the observation made in Part II. As in Part V of the proof of Theorem 3.9, we set
g :=

∑∞
i=1 βi(gi − g∞) and deduce that g ∈ X∗.

Part VI: Lastly note that ‖g‖ ≤ 2
∑∞

i=1 βi ≤ m and so g ∈ mBX∗ ⊆ A. Therefore,

there exists x̂ ∈ X̂ such that x̂ ∈ ∂ϕ(g). Then, if n > 1,

βnr < ϕ(
∑n

i=1βi(gi − f∞))− ϕ(
∑n−1

i=1 βi(gi − f∞)) by (∗)
= ϕ(

∑n
i=1βi(gi − g∞))− ϕ(

∑n−1
i=1 βi(gi − g∞)) by (∗∗)

≤ ϕ(g)− ϕ(
∑n−1

i=1 βi(gi − g∞)) since ϕ(g) = supn∈Nϕ(
∑n

i=1βi(gi − g∞))

≤ x̂(g)− x̂(
∑n−1

i=1 βi(gi − g∞)) since x̂ ∈ ∂ϕ(g)

= x̂(
∑∞

i=nβi(gi − g∞)) = βnx̂(gn − g∞) +
∑∞

i=n+1βix̂(gi − g∞).

Rearranging gives us that

r < x̂(gn − g∞) +
1

βn

∑∞
i=n+1βix̂(gi − g∞) ≤ x̂(gn − g∞) +

2‖x̂‖
βn

∑∞
i=n+1βi.
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Taking the limit, as n→ ∞, we get that

r ≤ lim inf
n→∞

gn(x)− g∞(x) + 2‖x̂‖
(

lim
n→∞

1

βn

∑∞
i=n+1βi

)
= lim inf

n→∞
gn(x)− g∞(x),

which contradicts the inequality lim inf
n→∞

gn(x) ≤ g∞(x). Thus, our assumption that

M(0) 6⊆ X̂ was false.
This completes the proof. �

Remark 4.14. To see that Theorem 4.13 is indeed a generalisation of Theorem 3.15
consider the following. Suppose that C is a nonempty closed and bounded convex subset
of a Banach space (X, ‖ · ‖) with 0 ∈ C. Define p : X∗ → R by, p(x∗) := supc∈C x

∗(c)

for all x∗ ∈ X∗. Then Ĉ ⊆ ∂p(0). If every x∗ ∈ X∗ attains its supremum over C then

∂p(x∗) ∩ X̂ 6= ∅ for every x∗ ∈ X∗. This last fact follows because, if x∗ ∈ X∗ \ {0},
c ∈ C and p(x∗) = x∗(c) then ĉ ∈ ∂p(x∗). Thus, by Theorem 4.13,

Ĉ
w∗

⊆ ∂p(0) ⊆ X̂ since ∂p(0) is weak∗-closed.

Hence, C is weakly compact by Remark 2.25. Let us also note that an earlier version of
Theorem 4.13 appeared in [33, Theorem 2.2].

5. Variational Principle

The corner stone of this section is the Brøndsted-Rockafellar Theorem which gives the
existence of subgradients for lower semicontinuous convex functions defined on Banach
spaces. The key notion behind this theorem is the notion of an “ε-subgradient”. Suppose
that f : X → R ∪ {∞} is a proper function on a normed linear space (X, ‖ · ‖) and
x ∈ Dom(f). Then, for any ε > 0, we define the ε-subdifferential ∂εf(x) by,

∂εf(x) := {x∗ ∈ X∗ : x∗(y)− x∗(x) ≤ f(y)− f(x) + ε for all y ∈ Dom(f)}.

Theorem 5.1 ([3]). Suppose that f : X → R ∪ {∞} is a convex proper lower semi-
continuous function on a Banach space (X, ‖ · ‖). Then, given any point x0 ∈ Dom(f),
ε > 0 and any x∗0 ∈ ∂εf(x0), there exists x ∈ Dom(f) and x∗ ∈ X∗ such that x∗ ∈ ∂f(x),
‖x− x0‖ ≤ √

ε and ‖x∗ − x∗0‖ ≤ √
ε.

We will use the Brøndsted-Rockafellar Theorem (Theorem 5.1) to show that certain
functions attain their maximum value in a rather strong way, that we now make precise.
We shall say that a function f : X → [−∞,∞) defined on a normed linear space (X, ‖·‖)
attains a (or has a) strong maximum at x0 ∈ X if, f(x0) = supx∈X f(x) and limn→∞ xn =
x0 whenever (xn : n ∈ N) is a sequence in X such that limn→∞ f(xn) = supx∈X f(x) =
f(x0).

In addition to the Brøndsted-Rockafellar Theorem and the definition of a strong max-
imum, we shall require one more definition. Let ϕ : X → 2Y be a set-valued mapping
acting between a topological space (X, τ) and a normed linear space (Y, ‖ · ‖). Then we
say that ϕ is single-valued and norm upper semicontinuous at x0 ∈ X if, ϕ(x0) =: {y0}
is a singleton subset of Y and for each ε > 0 there exists an open neighbourhood U of
x0 such that ϕ(U) ⊆ B[y0, ε].

We shall now combine the Brøndsted-Rockafellar Theorem with these definitions in
order to obtain the following preliminary result.
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Proposition 5.2. Suppose that f : X → R∪{∞} is a proper function on a Banach space
(X, ‖ · ‖) and suppose that f∗ : X∗ → R ∪ {∞} (the Fenchel conjugate of f), see [2, 46],
is defined by,

f∗(x∗) := sup
x∈X

[x∗(x)− f(x)] = sup
x∈Dom(f)

[x∗(x)− f(x)].

Then,

(i) f∗ is a convex and weak∗ lower semicontinuous function on Dom(f∗);
(ii) f∗ is continuous on int(Dom(f∗));
(iii) if x∗ ∈ Dom(f∗) and x ∈ argmax(x∗ − f) then x̂ ∈ ∂f∗(x∗);
(iv) if ε > 0, x∗ ∈ Dom(f∗), x ∈ X and f∗(x∗)−ε < x∗(x)−f(x) then x̂ ∈ ∂εf

∗(x∗);
(v) if x∗0 ∈ int(Dom(f∗)), x ∈ argmax(x∗0 − f) and x∗ 7→ ∂f∗(x∗) is single-valued

and norm upper semicontinuous at x∗0, then x
∗
0 − f has a strong maximum at x.

Proof. For those people familiar with the Fenchel conjugate, they may wish to skip the
proofs of (i)-(iv).

(i) For each x ∈ Dom(f) define gx : X∗ → R by, gx(x
∗) := x̂(x∗)− f(x). Then each

function gx is weak∗ continuous and affine. Now for each x∗ ∈ X∗, f∗(x∗) =
supx∈Dom(f) gx(x

∗). Thus, as the pointwise supremum of a family of weak∗ con-
tinuous affine mappings, the Fenchel conjugate of f , is itself convex and weak∗

lower semicontinuous. [Recall the general fact that the pointwise supremum of a
family of convex functions is convex and the pointwise supremum of a family of
lower semicontinuous mappings is again lower semicontinuous].

(ii) Since this statement is vacuously true when int(Dom(f∗)) = ∅, we will assume
that int(Dom(f∗)) is nonempty. Let us first recall that by Proposition 4.1, the
fact that f∗ is convex, and the fact that int(Dom(f∗)) is also convex, it is suf-
ficient to show that f∗ is locally bounded above on int(Dom(f∗)). In fact, as
we shall now show, it is sufficient to show that f∗ is locally bounded above at a
single point x∗0 ∈ int(Dom(f∗)). To this end, suppose that f∗ is locally bounded
above at x∗0 ∈ int(Dom(f∗)). Then there exist an 0 < M and a 0 < δ such that
f∗(y∗) ≤ M for all y∗ ∈ B[x∗0, δ]. Let x∗ be any point in int(Dom(f∗)). Since
int(Dom(f∗)) is an open convex set, there exists a point y∗ ∈ int(Dom(f∗)) and
a 0 < λ < 1 such that x∗ = λy∗ + (1 − λ)x∗0. Let M∗ := max{M,f∗(y∗)} and
note that

x∗ ∈ B[x∗, (1−λ)δ]=λy∗+(1−λ)B[x∗0, δ]⊆ int(Dom(f∗)) since int(Dom(f∗)) is convex.

We claim that f∗ is bounded above by M∗ on B[x∗, (1 − λ)δ]. To see this, let
z∗ be any element of B[x∗, (1 − λ)δ]. Then z∗ = λy∗ + (1 − λ)w∗ for some
w∗ ∈ B[x∗0, δ] since,

B[x∗, (1−λ)δ] = x∗+(1−λ)B[0, δ] = λy∗+(1−λ)x∗0+(1−λ)B[0, δ] = λy∗+(1−λ)B[x∗0, δ].

Therefore,

f∗(z∗) = f∗(λy∗ + (1− λ)w∗) ≤ λf∗(y∗) + (1− λ)f∗(w∗) ≤ λM∗ + (1− λ)M∗ =M∗.

Next, we will use that fact that since int(Dom(f∗)) is a nonempty open subset
of a complete metric space, it is itself a Baire space with the relative topology.
Now, for each n ∈ N, let

Fn := {x∗ ∈ int(Dom(f∗)) : f∗(x∗) ≤ n}.
Since f∗ is weak∗ lower semicontinuous, it is lower semicontinuous with respect
to the norm topology too. Therefore, each set Fn is closed with respect to the
relative norm topology on int(Dom(f∗)). Since int(Dom(f∗)) =

⋃
n∈N

Fn, there
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exists an n0 ∈ N such that int(Fn0
) 6= ∅. Hence, f∗ is locally bounded above at

each point of int(Fn0
). This completes the proof of part (ii).

(iii) Let y∗ be any element of Dom(f∗). Then,

x̂(y∗)− x̂(x∗) = y∗(x)− x∗(x) = [y∗(x)− f(x)]− [x∗(x)− f(x)]

= [y∗(x)− f(x)]− f∗(x∗) ≤ f∗(y∗)− f∗(x∗).

Therefore, x̂ ∈ ∂f∗(x∗).
(iv) Let y∗ be any element of Dom(f∗). Then,

x̂(y∗)− x̂(x∗) = y∗(x)− x∗(x) = [y∗(x)− f(x)]− [x∗(x)− f(x)]

≤ [y∗(x)− f(x)]− [f∗(x∗)− ε] ≤ f∗(y∗)− f∗(x∗) + ε.

Therefore, x̂ ∈ ∂εf
∗(x∗).

(v) Let (xn : n ∈ N) be a sequence in X such that

lim
n→∞

(x∗0 − f)(xn) = sup
x∈X

(x∗0 − f)(x) = f∗(x∗0).

We will show that (xn : n ∈ N) converges to x. Let ε > 0. By (iii) and the
assumption that ∂f∗(x∗0) is a singleton we have that ∂f∗(x∗0) = {x̂}. Since,
x∗ 7→ ∂f∗(x∗), is norm upper semicontinuous at x∗0 there exists a 0 < δ < ε such
that if ‖x∗ − x∗0‖ ≤ δ then ‖F − x̂‖ < ε for all F ∈ ∂f∗(x∗). Choose N ∈ N such
that (x∗0 − f)(xn) > f∗(x0) − δ2 for all n > N . Then, by (iv), x̂n ∈ ∂δ2f

∗(x∗0)
for all n > N . Let n > N . Then, by the Brøndsted-Rockafellar Theorem, there
exist x∗n ∈ Dom(f∗) and Fn ∈ X∗∗ such that Fn ∈ ∂f∗(x∗n), ‖x∗n − x∗0‖ ≤ δ and
‖Fn − x̂n‖ ≤ δ < ε. Therefore,

‖xn − x‖ = ‖x̂n − x̂‖ ≤ ‖x̂n − Fn‖+ ‖Fn − x̂‖ ≤ ε+ ε = 2ε.

This completes the proof. �

Our first variational principle applies to dual differentiation spaces, [15]. Recall that
a Banach space (X, ‖ · ‖) is called a dual differentiability space (or DD-space for short) if
every continuous convex function ϕ : A→ R defined on a nonempty open convex subset

A of X∗ such that {x∗ ∈ A : ∂ϕ(x∗)∩ X̂ 6= ∅} contains a dense and Gδ subset of A, has
the property that its subdifferential mapping ∂ϕ : A → 2X

∗∗

is single-valued and norm
upper semicontinuous at each point of a dense and Gδ subset of A (or equivalently, ϕ is
Fréchet differentiable at the points of a dense and Gδ subset of A, [42, Proposition 2.8]).

Theorem 5.3. Let f : X → R ∪ {∞} be a proper function on a dual differentiation
space (X, ‖ · ‖). If there exists a nonempty open subset A of Dom(f∗) and a dense and
Gδ subset R of A such that argmax(x∗ − f) 6= ∅ for each x∗ ∈ R, then there exists a
dense and Gδ subset R′ of A such that (x∗− f) : X → R∪{−∞} has a strong maximum
for each x∗ ∈ R′. In addition, if 0 ∈ A and ε > 0 then there exists an x∗0 ∈ X∗ with
‖x∗0‖ < ε such that (x∗0 − f) : X → R ∪ {−∞} has a strong maximum.

Proof. Consider ∂f∗ : A→ 2X
∗∗

. Then by Proposition 5.2 part (iii)

R1 := {x∗ ∈ A : ∂f∗(x∗) ∩ X̂ 6= ∅}
contains a dense and Gδ subset of A. Since X is a dual differentiation space,

R2 := {x∗ ∈ A : ∂f∗ is single-valued and norm upper semicontinuous at x∗}
contains a dense and Gδ subset of A. Let R′ := R1 ∩R2. Then R

′ contains a dense and
Gδ subset of A and by Proposition 5.2 part (v), (x∗− f) has a strong maximum for each
x∗ ∈ R′. �
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Remark 5.4. There are two main weaknesses with this theorem: (i) although it is known
that many Banach spaces (e.g. all spaces with the Radon-Nikodým property, [15], all
weakly Lindelöf spaces, [29], all spaces that admit an equivalent locally uniformly rotund
norm [16] and all spaces whose dual space X∗ is weak Asplund, [15]) are dual differen-
tiation spaces, it is still an open question as to whether every Banach space is a dual
differentiation space; (ii) it is not clear how one would go about showing that there exists
a “large” subset R of int(Dom(f∗)) with the property that argmax(x∗ − f) 6= ∅ for each
x∗ ∈ R.

For our next result, and main variational principle, we address concern (i) of Re-
mark 5.4 by giving a variational principle that holds in all Banach spaces. Unfortunately,
there is a cost for this level of generality. Namely, we need to impose a strong assumption
upon the mapping x∗ 7→ argmax(x∗ − f). We also need to employ the following non-
trivial result concerning minimal weak cuscos, which was first proved by J. Christensen
in [6], using topological games (in the domain space), and later rephrased in [15].

Theorem 5.5. A minimal weak∗ cusco ϕ : A → 2X
∗∗

from a complete metric space
A into subsets of the second dual X∗∗ of a Banach space (X, ‖ · ‖), where the set {x ∈
A : ϕ(x) ⊆ X̂} contains a dense and Gδ subset of A, is single-valued and norm upper
semicontinuous at the points of a dense and Gδ subset of A.

In order to extend the applicability of Theorem 5.5, we will show that some sets
that are not necessarily complete metric spaces under their given metrics can be “re-
metrized” to become a complete metric space under a new metric, while retaining the
same topology. Indeed, suppose that A is a nonempty open subset of a complete metric
space (M,d). Then (M × R, ρ) is also a complete metric space under the metric,

ρ((x1, r1), (x2, r2)) := d(x1, x2) + |r1 − r2|.
Let f : A → R be defined by, f(x) := inf{d(x, y) ∈ R : y ∈ M \ A} = dist(x,M \ A).
Note that f is continuous on A. Let G := {(x, r) ∈ M × R : x ∈ A and r = 1/f(x)}.
Then G is a closed subset of M × R, and hence is a complete metric space with respect
to the restriction of the metric ρ to G. Finally, let us note that G is homeomorphic to
A. Indeed, the mapping π : G → A defined by, π(x, r) := x, is such a homeomorphism.
Thus, a nonempty open subset of a complete metric space is “completely metrisable”.

Theorem 5.6. Let f : X → R∪ {∞} be a proper function on a Banach space (X, ‖ · ‖).
If there exists a nonempty open subset A of Dom(f∗) such that argmax(x∗ − f) 6= ∅ for
each x∗ ∈ A, then there exists a dense and Gδ subset R′ of A such that (x∗ − f) : X →
R∪{−∞} has a strong maximum for each x∗ ∈ R′. In addition, if 0 ∈ A and ε > 0 then
there exists an x∗0 ∈ X∗ with ‖x∗0‖ < ε such that (x∗0 − f) : X → R ∪ {−∞} has a strong
maximum.

Proof. Consider ∂f∗ : A → 2X
∗∗

. Then, by Proposition 5.2 part (iii), ∂f∗(x∗) ∩ X̂ 6= ∅
for all x∗ ∈ A. Thus, by Theorem 4.13, ∂f∗(x∗) ⊆ X̂ for all x∗ ∈ A. Furthermore, by
Proposition 4.5, x∗ 7→ ∂f∗(x∗), is a minimal weak∗ cusco on A. Therefore, by Theorem
5.5, there exists a dense and Gδ subset R′ of A such that ∂f∗ is single-valued and norm
upper semicontinuous at each point of R′. So, by Proposition 5.2 part (v), (x∗ − f) has
a strong maximum for each x∗ ∈ R′. �

Note that the conclusion of this theorem is identical to that of Stegall’s variational
principle, see [49].

Question 5.7. Is every Banach space (X, ‖ · ‖) a dual differentiation space?

If the answer to this question is “yes” then Theorem 5.3 will supersede Theorem 5.6.
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Index of notation and assumed knowledge

• The natural numbers, N := {1, 2, 3, . . .}.
• The integers, Z := {. . . ,−2,−1, 0, 1, 2 . . .}.
• The rational numbers, Q := {a/b : a, b ∈ Z, b 6= 0}.
• The real numbers, R.
• For any set X, P(X) is the set of all subsets of X.
• For any subset A of a topological space (X, τ), we define

– int(A), called the interior of A, is the union of all open sets contained in A;
– A, called the closure of A, is the intersection of all closed sets containing A;
– Bd(A), called the boundary of A, is A \ int(A),

• For any points x and y in a vector space X, we define the following intervals:
– [x, y] := {x+ λ(y − x) : 0 ≤ λ ≤ 1};
– (x, y) := {x+ λ(y − x) : 0 < λ < 1};
– [x, y) := {x+ λ(y − x) : 0 ≤ λ < 1};
– (x, y] := {x+ λ(y − x) : 0 < λ ≤ 1}.

• For any normed linear space (X, ‖ · ‖·), we define
– B[x, r] := {y ∈ X : ‖x− y‖ ≤ r}, for any x ∈ X and r > 0;
– B(x; r) := {y ∈ X : ‖x− y‖ < r} , for any x ∈ X and r > 0;
– BX := B[0, 1];
– SX := {x ∈ X : ‖x‖ = 1} .

• Given a compact Hausdorff space K, we write C(K) for the set of all real-
valued continuous functions on K. This is a vector space under the operations of
pointwise addition and pointwise scalar multiplication. C(K) becomes a Banach
space when equipped with the uniform norm ‖ · ‖∞, defined by

‖f‖∞ := sup
x∈K

|f(x)| for all f ∈ C(K).

• Let A and B be sets. Given a function f : A → B, we define f(A) :=⋃
a∈A{f(x)}. Similarly, given a set valued mapping ϕ : A → P(B), we define

ϕ(A) :=
⋃

a∈A ϕ(x).
• For a normed linear space (X, ‖ · ‖·), X∗, the set of bounded linear maps from X

to R, is called the dual space of X. X∗ is a Banach space when equipped with
the operator norm, given by

‖f‖ := sup
x∈BX

|f(x)| for all f ∈ X∗.

• Let X be a set and Y a totally ordered set. For any function f : X → Y we
define

argmax(f) : = {x ∈ X : f(y) ≤ f(x) for all y ∈ X},
argmin(f) : = {x ∈ X : f(x) ≤ f(y) for all y ∈ X}.

• Let A be a subset of a vector space X. Then the convex hull of A, denoted by
co(A), is defined to be the intersection of all convex subsets of X that contain A.

• Let X be a set and let f : X → R ∪ {∞} a function. Then

Dom(f) := {x ∈ X : f(x) <∞}.

We say that the function f is a proper function if Dom(f) 6= ∅.
• Let (X, ‖ · ‖) be a normed linear space and f : X → [−∞,∞]. Then the Fenchel

conjugate of f is the function f∗ : X∗ → [−∞,∞] defined by,

f∗(x∗) := sup
x∈X

{x∗(x)− f(x)}.
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The function f∗ is convex and if f is a proper function then f∗ never takes the
value −∞.

• If f is a convex function defined on a nonempty convex subset K of a normed
linear space (X, ‖ · ‖·) and x ∈ K, then we define the subdifferential of f at x to
be the set ∂f(x) of all x∗ ∈ X∗ satisfying

x∗(y − x) ≤ f(y)− f(x) for all y ∈ K.

• It is assumed that the reader has a basic working knowledge of metric spaces,
normed linear spaces and even basic general topology. In particular, it is assumed
that the reader is familiar with Tychonoff’s theorem.

Theorem (Tychonoff’s Theorem [10]). The Cartesian product
∏

s∈S Xs, where
Xs 6= ∅ for all s ∈ S, is compact if, and only if, all spaces Xs are compact.
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