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BOUNDARY TRIPLES FOR INTEGRAL SYSTEMS ON THE

HALF-LINE

D. STRELNIKOV

Abstract. Let P , Q and W be real functions of locally bounded variation on [0,∞)

and let W be non-decreasing. In the case of absolutely continuous functions P , Q
and W the following Sturm-Liouville type integral system:

(1) J ~f(x)− J~a =

∫

x

0

(

λdW − dQ 0
0 dP

)

~f(t), J =

(

0 −1
1 0

)

(see [5]) is a special case of so-called canonical differential system (see [16, 20, 24]).
In [27] a maximal Amax and a minimal Amin linear relations associated with sys-
tem (1) have been studied on a compact interval. This paper is a continuation of
[27], it focuses on a study of Amax and Amin on the half-line. Boundary triples for

Amax on [0,∞) are constructed and the corresponding Weyl functions are calculated
in both limit point and limit circle cases at ∞.

1. Introduction

This paper deals with the following integral system

(2) J ~f(x)− J~a =

∫ x

0

dS(t) · ~f(t),

where J and dS are 2× 2 matrices of the form

(3) J =

(
0 −1
1 0

)
, dS =

(
λdW − dQ 0

0 dP

)
,

λ ∈ C, all the functions P , Q and W are real of locally bounded variation on [0,∞)
and W is non-decreasing. Such systems were studied in [3, 5, 2]. System (2) contains
Sturm-Liouville systems, Stieltjes string and Krein-Feller string [13, 18] as special cases.

We associate with system (2) a minimal Amin and a maximal Amax linear relations
in the Hilbert space L2(W ). In this paper both Amin and Amax are not supposed to be
single-valued, therefore we use for them a term linear relation (see [1]). In Theorem 3.12
it is shown that Amax = A∗

min.
The notions of the boundary triple and Weyl function introduced in [7, 19, 6] and [9],

respectively, were proved to be useful in the study of spectral problems and extension
theory problems for symmetric operators, see [14, 10, 11]. Boundary triples for various
differential and difference operators were constructed in [25, 14, 9, 21, 10, 22, 4].

In [27] the boundary triples for Amax (and for some its intermediate extensions) were
constructed on a compact interval. The results of [27] are extended to the so-called
quasiregular case, which is characterized by the condition that P , Q, and W are of

bounded variation on [0,∞) (see Theorem 3.17). In this case the limit limx→∞
~f(x)

exists for every element of Amax and the boundary triple for Amax is determined with
the help of these limiting values. In the general case the Weyl classification for singular
point at ∞ is presented. Boundary triples for the linear relation Amax are constructed
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both in the limit point case (Theorem 4.4) and in the limit circle case (Theorem 4.6).

Notice that in the limit circle case the limits limx→∞
~f(x) may not exist for some element

of Amax and the boundary triple is defined in terms of generalized Wronskians at ∞.
Expressions for the corresponding Weyl functions and γ-fields are also found.

2. Preliminaries

2.1. Linear relations. Let H be a Hilbert space. Any linear subspace of H×H is called
a linear relation on H, [1]. The domain, the range, the kernel, and the multivalued part
of a linear relation T are defined by the following equalities (see [1]):

domT :=

{
f :

(
f
g

)
∈ T

}
, ranT :=

{
g :

(
f
g

)
∈ T

}
,(4)

kerT :=

{
f :

(
f
0

)
∈ T

}
, mulT :=

{
g :

(
0
g

)
∈ T

}
.(5)

The adjoint linear relation T ∗ is defined as

(6) T ∗ :=

{(
u
v

)
∈ H× H : (v, f)H = (u, g)H for any

(
f
g

)
∈ T

}
.

A linear relation T in H is called closed if T is closed as a subspace of H × H. The set

of all closed linear operators (relations) is denoted by C(H) (C̃(H)). Identifying a linear

operator T ∈ C(H) with its graph one can consider C(H) as a part of C̃(H).

Definition 2.1. Suppose T is a linear relation, λ ∈ C, then

(7) T − λI :=

{(
f

g − λf

)
:

(
f
g

)
∈ T

}
.

A point λ ∈ C such that ker (T − λI) = {0} and ran (T − λI) = H is called a regular
point of the linear relation T and is written λ ∈ ρ(T ). The point spectrum σp(T ) of the
linear relation T is defined by

(8) σp(T ) := {λ ∈ C : ker(T − λI) 6= {0}},

A linear relation A is called symmetric if A ⊆ A∗. A point λ ∈ C is called a point
of regular type (and is written λ ∈ ρ̂(A)) for a closed symmetric linear relation A, if
λ /∈ σp(A) and the subspace ran(A − λI) is closed in H. For λ ∈ ρ̂(A) let us set
Nλ := ker(A∗ − λI) and

(9) N̂λ :=

{(
fλ
λfλ

)
: fλ ∈ Nλ

}
.

The deficiency indices of a symmetric linear relation A are defined as

(10) n±(A) := dimker(A∗ ∓ iI).

2.2. Boundary triples. Let A be a symmetric linear relation. In the case of densely
defined operators a boundary triple notion was introduced in [7, 6, 19, 14] (in different
forms). Following the paper [21, 10] we shall give a definition of a boundary triple for
the linear relation A∗.

Definition 2.2. A tuple Π = {H,Γ0,Γ1}, where H is a Hilbert space, Γ0 and Γ1 are
linear mappings from A∗ to H, is called a boundary triple for the linear relation A∗, if
the following conditions hold:

(i) generalized Green’s identity

(11) (g, u)H − (f, v)H =

(
Γ1

(
f
g

)
,Γ0

(
u
v

))

H

−

(
Γ0

(
f
g

)
,Γ1

(
u
v

))

H

holds for all

(
f
g

)
,

(
u
v

)
∈ A∗;
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(ii) the mapping Γ =

(
Γ0

Γ1

)
: A∗ → H×H is surjective.

Notice that in contrast to [21] the linear relation A is not supposed to be single-
valued. A boundary triple for A∗ exists if and only if the deficiency indices of A coincide
(n+(A) = n−(A)), see [19, 21, 10].

An extension Ã of a symmetric linear relation A is called proper if A ( Ã ( A∗. The
class of all proper extensions of the linear relation A completed with relations A and A∗

is denoted by Ext(A). Denote also

(12) AΘ :=

{(
f
g

)
∈ A∗ : Γ

(
f
g

)
∈ Θ

}
.

Proposition 2.3 ([10]). Let A be a symmetric linear relation, Π = {H,Γ0,Γ1} be a

boundary triple for the adjoint linear relation A∗. Then the mapping Γ: Ã = AΘ → Θ =

ΓÃ is one-to-one from Ext(A) to C̃(H). Notice also that AΘ is selfadjoint if and only if
the linear relation Θ is selfadjoint.

In particular, linear relations

(13) A0 := ker Γ0, A1 := ker Γ1

are disjoint, i.e., A0∩A1 = A, and they are selfadjoint extensions of the symmetric linear
relation A (see [10]).

Definition 2.4 ([9, 10]). Let Π = {H,Γ0,Γ1} be a boundary triple for the linear relation
A∗. Operator valued functions M(·), γ(·) defined by

(14) M(λ)Γ0f̂λ = Γ1f̂λ, γ(λ)Γ0f̂λ = fλ, f̂λ ∈ N̂λ, λ ∈ ρ(A0)

are called the Weyl function and the γ-field of the symmetric linear relation A with
respect to the boundary triple Π.

The Weyl function and the γ-field are connected with the next identity (see. [10])

(15) M(λ)−M(ζ)∗ = (λ− ζ)γ(ζ)∗γ(λ), λ, ζ ∈ ρ(A0).

Definition 2.5 ([17, 11]). An operator valued function F : C+ ∪ C− → B(H) is said to
belong to the class R[H] if the following conditions hold:

(i) F is holomorphic in C+ ∪ C−;
(ii) ImF (λ) ≥ 0 as λ ∈ C+;
(iii) F (λ) = F ∗(λ) for λ ∈ C+ ∪ C−.

It is known that the Weyl function M(λ) of a linear relation A from Definition 2.4
belongs to the class R[H]. If H = C then R[H] is denoted by R and turns out to be the
well-known Pick-Nevanlinna class.

The next proposition gives a description of the spectrum of a linear relation Ã ∈
Ext(A).

Proposition 2.6 ([10]). Let A be a symmetric linear relation in H, Π = {H,Γ0,Γ1} be

a boundary triple for A∗, M(λ) be the corresponding Weyl function of A, Θ ∈ C̃(H), and
λ ∈ ρ(A0). Then

(i) λ ∈ ρ(ÃΘ) ⇐⇒ 0 ∈ ρ(Θ−M(λ));

(ii) λ ∈ σp(ÃΘ) ⇐⇒ 0 ∈ σp(Θ−M(λ)).
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2.3. Integral systems. Denote by BVloc[0,∞) the class of functions that have bounded
variation on every compact interval j ⊂ [0,∞). Let us consider on [0,∞) an integral

system (2), where ~f maps [0,∞) to C2, ~a ∈ C2 is a fixed vector (or a function from
BVloc[0,∞)), λ is a complex parameter, P , Q, and W are functions from the class
BVloc[0,∞) satisfying the condition

(16) P (0) = Q(0) = W (0) = 0

and W is non-decreasing.

Remark 2.7. In equality (2) and further in the text we mean that the integration set is a
half-open interval [0, x) (under this convention integrals as the functions of upper limits
are always left-continuous).

Definition 2.8. We say that a vector valued function ~f is a solution to integral system (2)

(with a fixed function ~a) if (each component of) ~f is of locally bounded variation on [0,∞)
and the equality (2) holds for every point x from [0,∞).

An existence and uniqueness theorem for system (2) has been proved in [5].

Theorem 2.9 ([5]). For any left-continuous vector-function ~a(x) from the class BVloc[0,∞)
there is a unique solution of system (2).

Everywhere in the following, we suppose that

Assumption 2.10. The functions Q and W have no discontinuities in common with P .

3. Green’s identity and linear relation Amax

3.1. Green’s identity. Let us denote by Lloc(W ) and L2
loc(W ) the sets of functions

such that

(17)

∫

j

|f(t)| dW (t) < ∞ and

∫

j

|f(t)|2 dW (t) < ∞,

respectively, for every compact interval j ⊂ [0,∞). In the case where the integrals in
(17) are finite for j = [0,∞), we should write L(W ) and L2(W ), respectively. An inner
product in L2(W ) is defined by

(18) (f, g)W :=

∫ ∞

0

f(t)g(t)dW (t).

Denote by L2(W ) the corresponding quotient space, which consists of equivalence classes
with respect to the measure dW . To avoid confusion we will denote elements of the space
L2(W ) with Gothic letters f, g etc.

Let us consider on [0,∞) the nonhomogeneous system:

(19) J

(
f
f [1]

)∣∣∣∣
x

0

=

∫ x

0

(
−dQ 0
0 dP

)(
f
f [1]

)
+

∫ x

0

(
dW 0
0 0

)(
g
0

)
.

Definition 3.1. A pair {~f, g} that consists of a vector-function ~f =

(
f
f [1]

)
and a scalar

function g is said to satisfy system (19) (or ~f is a solution to this system with fixed g),
if the following conditions hold:

(i) g ∈ Lloc(W );

(ii) ~f ∈ BVloc[0,∞);
(iii) equality (19) holds for each x ∈ [0,∞).
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For a pair of vector valued functions ~f =

(
f
f [1]

)
and ~u =

(
u
u[1]

)
we define the

generalized Wronskian by

(20)
[
~f, ~u
]
:=
(
fu[1] − f [1]u

)
.

In the case of a finite interval the following theorem has been proved in [27, Theo-
rem 3.3], however in the case of the half-line the proof is similar.

Theorem 3.2 (The second Green’s identity). Suppose Assumption 2.10 holds, pairs{
~f, g
}
, {~u, v} satisfy system (19) (see Definition 3.1) and 0 6 α < β < ∞. Then the

next equality holds:

(21)

∫ β

α

(gu− fv)dW =
[
~f, ~u
]∣∣∣

β

α
.

3.2. Linear relation Amax.

Definition 3.3. We shall say that a pair of classes

(
f

g

)
∈ L2(W ) × L2(W ) belongs to

the linear relation Amax if there exist functions f , f [1], and g such that

(i) the pair
{
~f, g
}
, where ~f =

(
f
f [1]

)
, satisfies (19) (in the sense of Definition 3.1);

(ii) f ∈ f, g ∈ g.

In the succeeding we require the following

Assumption 3.4. There exists a compact interval [α, β] ⊂ [0,∞) such that system (19)

is surjective on it, i.e., for any a, b, a1, b1 ∈ C one can choose a pair {~f, g} that satis-
fies (19) and the next boundary conditions hold:

(22) f(α) = a, f(β) = b, f [1](α) = a1, f [1](β) = b1.

Remark 3.5. If all the functions P , Q, andW are absolutely continuous, then the definite-
ness (see e.g. [20]) of system (19) implies its surjectivity. In case of arbitrary coefficients
the Assumption 3.4 does not hold, however in a special case the sufficient condition for
system (19) to be surjective is provided by the following proposition.

Proposition 3.6 ([27]). If dQ ≡ 0 and there exist closed on the left disjoint intervals
ı1, ı2 ⊂ [α, β] such that

(23) dimL2(W, ık) > 0, k ∈ {1, 2},

(24)
1

dW (ı2)

∫

ı2

P (t)dW (t) >
1

dW (ı1)

∫

ı1

P (t)dW (t),

then Assumption 3.4 holds.

Proposition 3.7. If Assumption 3.4 holds for system (19) on some compact interval

[α, β] then it also holds on an interval [α̃, β̃], where [α, β] ⊆ [α̃, β̃] ⊂ [0,∞).

Proof. Let ã, ã1, b̃, b̃1 be fixed values from C. We build the function ~f as a (unique)
solution of the next systems

(25) J ~f(x)− J

(
ã
ã1

)
=

∫ x

α̃

(
−dQ 0
0 dP

)
~f

and

(26) J

(
b̃

b̃1

)
− J ~f(x) =

∫ β̃

x

(
−dQ 0
0 dP

)
~f
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on [α̃, α] and [β, β̃], respectively. Thus, we have

(27) ~f(α) = ~f(α̃) + J−1

∫ α

α̃

(
−dQ 0
0 dP

)
~f,

(28) ~f(β) = ~f(β̃) + J−1

∫ β̃

β

(
−dQ 0
0 dP

)
~f.

As it follows from Assumption 3.4, there exists a function g ∈ L(W, [α, β]) such that the

corresponding (unique) solution ~f of system (19) on [α, β] satisfies (27) and (28). Finally,

assuming g ≡ 0 on [α̃, β̃] \ [α, β], one can see that the solution ~f satisfies the conditions
of the Proposition. �

It follows from Assumption 3.4 and Proposition 3.7 that system (19) with l > β is
surjective on [0, l]. In this case, the following Proposition holds, see [27, Theorem 3.8].

Proposition 3.8. Suppose Assumption 3.4 holds for system (19) on [0, l],

(
f

g

)
∈ Amax,

pairs {~f1, g1} and {~f2, g2} satisfy system (19), f1, f2 ∈ f, g1, g2 ∈ g. Then

(29) f1(0) = f2(0), f
[1]
1 (0) = f

[1]
2 (0), f1(l) = f2(l), f

[1]
1 (l) = f

[1]
2 (l).

Proposition 3.9. If

(
f

g

)
,

(
u

v

)
∈ Amax then there exists a finite limit

(30)
[
~f, ~u
]
∞

:= lim
l→∞

[
~f, ~u
]
l
.

Proof. It follows from Theorem 3.2 that

(31)

∫ β

0

(gu− fv) dW =
[
~f, ~u
]β
0
.

Let us pass to the limit in the last equality as β → ∞. The finiteness of the limit on
the left hand side follows from the conditions of this Proposition. And the finiteness of[
~f, ~u
]
0
follows from Proposition 3.8, which completes the proof. �

In the case of densely defined symmetric linear operator S the next lemma has been
proven in [11].

Lemma 3.10. Let S be a symmetric linear relation in H, Pn (n ∈ N) be a sequence of

orthogonal projections in H such that Pn
s
−→ IH, S = ∪n∈NSn where Sn = (Pn × Pn)S.

Then

(32)

(
f

g

)
∈ S∗ ⇐⇒

(
Pnf

Png

)
∈ S∗

n for any n ∈ N.

Proof. Suppose

(
f

g

)
∈ S∗, then for any pair

(
u

v

)
∈ Sn one has

(33) (v, Pnf) = (v, f) = (u, g) = (u, Png)

This implies

(
Pnf

Png

)
∈ S∗

n. Conversely, let

(
Pnf

Png

)
∈ S∗

n for any n ∈ N. For any

(
u

v

)
∈ S

there exists n ∈ N such that

(
u

v

)
∈ Sn and equality (33) holds, hence

(
f

g

)
∈ S∗. �



90 D. STRELNIKOV

Definition 3.11. We define a linear relation Amin as

(34) Amin :=

{(
f

g

)
∈ Amax : f(0) = f [1](0) =

[
~f, ~u
]
∞

= 0 for all

(
u

v

)
∈ Amax

}
,

where f ∈ f, g ∈ g, u ∈ u, v ∈ v and the pairs {f, g}, {u, v} satisfy system (19).

Theorem 3.12. The linear relation Amin is symmetric and A∗
min = Amax.

Proof. Note that by Proposition 3.9 the linear relation Amin in (34) is well defined. The
symmetry property of Amin is implied by the Green formula (see Theorem 3.2).

Let ∆n = [0, ln] be a sequence of nested intervals which exhaust the interval [0,∞),
and let Pn be the orthogonal projections from L2(W ) to L2(W,∆n) such that the interval
[α, β] from Assumption 3.4 is contained in ∆1. Consider the sequence of minimal and
maximal linear relations An,min, An,max generated by system (19) in L2(W,∆n), which
in view of [27, Theorem 3.12] are connected by A∗

n,min = An,max.

Let S be the linear relation in L2(W ) defined by S = ∪n∈NAn,min. Obviously, S is
symmetric. Since Amax has the property

(35)

(
f

g

)
∈ Amax ⇔

(
Pnf

Png

)
∈ An,max for any n ∈ N

one obtains from Lemma 3.10 that Amax = S∗.

Let us show that S = Amin. Indeed, if

(
f

g

)
∈ Amin then by Theorem 3.2

(
f

g

)
∈

A∗
max = S. Conversely, if

(
f

g

)
∈ S = A∗

max then for every

(
u

v

)
∈ Amax one has

(36)
[
~f, ~u
]
∞

−
[
~f, ~u
]
0
= 0.

It follows from Assumption 3.4 (and Proposition 3.7) that for any n ∈ N there exists

pairs

(
u1
v1

)
and

(
u2
v2

)
such that

(37) u1(0) = 1, u
[1]
1 (0) = 0, u1(x) = 0, u

[1]
1 (x) = 0,

(38) u2(0) = 0, u
[1]
2 (0) = 1, u2(x) = 0, u

[1]
2 (x) = 0,

as x > ln. Substituting these pairs into (36) one obtains

(39) f(0) =
[
~f, ~u2

]
0
= 0, f [1](0) = −

[
~f, ~u1

]
0
= 0,

[
~f, ~u
]
∞

=
[
~f, ~u
]
0
= 0.

Hence

(
f

g

)
∈ Amin. This proves that S = Amin and thus A∗

min = Amax. �

Lemma 3.13 (a decomposition of generalized Wronskian). Let ~y1 and ~y2 be real vector
valued functions satisfying condition

(40) [~y1, ~y2]x ≡ 1, x ∈ [0,∞].

Then for every vector valued functions ~f, ~u defined on [0,∞), the next equality holds

(41)
[
~f, ~u
]
x
=
[
~f, ~y1

]
x
[~u, ~y2]x −

[
~f, ~y2

]
x
[~u, ~y1]x, x ∈ [0,∞).

Proof. Applying formula (20) we obtain

�(42)
[
~f, ~y1

]
[~u, ~y2]−

[
~f, ~y2

]
[~u, ~y1] =

(
fu[1] − f [1]u

)(
y1y

[1]
2 − y

[1]
1 y2

)
=
[
~f, ~u
]
.
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3.3. Quasiregular case.

Definition 3.14. The endpoint ∞ is called quasiregular for system (19) if all the func-
tions P , Q and W are of bounded variation on [0,∞).

Next, we need generalized Gronwall’s lemma.

Lemma 3.15 ([5]). Let function u be locally integrable on [0,∞) w.r.t. a positive measure
df , A be a positive constant and

(43) 0 6 u(x) 6 A+

∫ x

0

u df, x ∈ [0,∞)

then u(x) 6 A exp
∫ x

0
df .

The following theorem is an analogue of [4, Proposition 2.6].

Theorem 3.16. Suppose the endpoint ∞ is quasiregular for system (19) and g ∈ L(W ).
Then:

(i) each solution ~f of system (19) belongs to L2(W );

(ii) there exists a finite limit ~f(∞) := limx→∞
~f(x);

(iii) for any fixed ~b ∈ C2 there exists a unique solution of system (19) such that

limx→∞
~f(x) = ~b.

Proof. (i) Let us rewrite system (19) as follows

(44) ~f(x) = ~f(0) +

∫ x

0

J−1

(
−dQ 0
0 dP

)
~f +

∫ x

0

J−1

(
dW 0
0 0

)(
g
0

)
.

Using the uniform norm in C2 and the corresponding norm for matrices ‖A‖ = maxj
∑

k |ajk|,
we pass to the inequality in (44):

(45) ‖~f(x)‖ 6

(
‖~f(0)‖+

∫ x

0

|g| dW

)
+

∫ x

0

‖~f(s)‖max {|dP |, |dQ|}.

By the conditions of the theorem we have
∫ x

0
|g| dW 6 ‖g‖L(W ) < ∞. Applying

Lemma 3.15 we obtain an estimate

(46) ‖~f(x)‖ 6

(
‖~f(0)‖+ ‖g‖L(W )

)
exp (max {V ∞

0 (P ), V ∞
0 (Q)}).

It follows from the last inequality that solution ~f is bounded by the norm, and taking

into account that W ∈ BV [0,∞) we get ~f ∈ L2(W ).
(ii) Passing to the limit in (44), we get

(47) lim
x→∞

~f(x) = ~f(0) +

∫ ∞

0

J−1

(
−dQ 0
0 dP

)
~f +

∫ ∞

0

J−1

(
dW 0
0 0

)(
g
0

)
.

(iii) There exists a finite limit in (47), therefore

(48) ~f(x) = lim
x→∞

~f(x) +

∫ ∞

x

J−1

(
−dQ 0
0 dP

)
~f +

∫ ∞

x

J−1

(
dW 0
0 0

)(
g
0

)
,

and further

(49) ‖~f(x)‖ 6

(
‖ lim
x→∞

~f(x)‖+ ‖g‖L(W )

)
exp (max {V ∞

x (P ), V ∞
x (Q)}).

It follows from (49) that for any solution ~f to the system (19) (as g = 0) the linear

mapping ~f 7→ limx→∞
~f(x) is injective, and hence surjective. This concludes the proof.

�
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Theorem 3.17. Suppose Assumption 3.4 holds, endpoint ∞ is quasiregular for sys-
tem (19), and mappings Γ0,Γ1 : Amax 7→ C2 are defined as

(50) Γ0

(
f

g

)
:=

(
f(0)
f(∞)

)
, Γ1

(
f

g

)
:=

(
f [1](0)

−f [1](∞)

)
,

where the pair {~f, g} satisfies system (19), f ∈ f, g ∈ g, and f(∞) := limx→∞ f(x),
f [1](∞) := limx→∞ f [1](x). Then

(i) the mappings Γ0 and Γ1 in (50) are well defined;
(ii) the tuple {C2,Γ0,Γ1} is a boundary triple for the linear relation Amax.

Proof. (i) Notice that by Theorem 3.16 the limits limx→∞ f(x) and limx→∞ f [1](x) are

well defined for any solution ~f to the system (19) (with an arbitrary g). Since Assump-

tion 3.4 holds, the values Γ0

(
f

g

)
and Γ1

(
f

g

)
are independent of the choice of the classes

f ∈ f, g ∈ g (see the proof of Theorem 3.7 in [27]).
(ii) The fulfillment of the requirements of Definition 2.2 follows directly from Theo-

rem 3.2 and Theorem 3.16. �

4. Weyl classification for the linear relation Amax

4.1. Weyl classification. Suppose Assumption 3.4 holds. Let c(x, λ) and s(x, λ) be the
solutions to the spectral problem

(51) J

(
f
f [1]

)∣∣∣∣
x

0

=

∫ x

0

(
λdW − dQ 0

0 dP

)(
f
f [1]

)
,

that satisfy the initial conditions

(52) c(0, λ) = 1, c[1](0, λ) = 0, s(0, λ) = 0, s[1](0, λ) = 1

(their existence and uniqueness follow from Theorem 2.9). Notice, that for any λ ∈ C

these functions satisfy the conditions of Lemma 3.13, see [27, Theorem 3.14].
Since the linear relation Amax is not self-adjoint and for any λ ∈ C there exist exactly

two linearly independent solutions to (51), the deficiency indices n±(Amin) are equal to
either 2 or 1. For further references we fix this as the following Assertion.

Assertion 4.1. For any λ ∈ C\R at least one solution to system (51) belongs to L2(W )
on [0,∞).

Definition 4.2. System (51) is said to be in

(i) the limit point case at ∞, if n±(Amin) = 1;
(ii) the limit circle case at ∞, if n±(Amin) = 2.

In the limit point case N̂λ(Amin) contains a unique element d̂λ for such that d(0, λ) = 1
for any instance d(·, λ) ∈ dλ satisfying (51); the solution d(·, λ) is called the Weyl solution
to (51). In the limit circle case, denote by cλ and sλ the equivalence classes in L2(W )
generated by the fundamental solutions c(·, λ) and s(·, λ), see [27, Section 3.3].

4.2. Limit point case.

Theorem 4.3. Let system (2) be in the limit point case, then

(i) for any

(
f

g

)
,

(
u

v

)
∈ Amax the following equality holds:

(53) lim
x→∞

[
~f, ~u
]
x
= 0,

here the pairs {~f, g}, {~u, v} satisfy system (19) and the following inclusions hold
f ∈ f, g ∈ g, u ∈ u, v ∈ v;
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(ii) the minimal linear relation Amin defined already in Definition 3.11 coincides with
the linear relation

(54) A :=

{(
f

g

)
∈ Amax : f(0) = f [1](0) = 0

}
.

Proof. Since n±(Amin) = 1, then it follows from the first Neumann’s formula that

dim(Amax/Amin) = 2. By the Assumption 3.4 there exist two pairs of functions {~f1, g1}

and {~f2, g2} that satisfy system (19) and the next boundary conditions

(55)
f1(0) = 1, f

[1]
1 (0) = 0, f1(β) = 0, f

[1]
1 (β) = 0

f2(0) = 0, f
[1]
2 (0) = 1, f2(β) = 0, f

[1]
2 (β) = 0.

Extending functions g1 and g2 to [β,∞) with zero, let us build on the half-line the

corresponding finite solutions ~f1 and ~f2. Each element

(
f

g

)
∈ Amax can be written as

(56)

(
f

g

)
=

(
f0
g0

)
+

(
f1
g1

)
+

(
f2
g2

)
,

(
f0
g0

)
∈ Amin,

(
f1
g1

)
,

(
f2
g2

)
∈ Amax,

where f1 ∈ f1, f2 ∈ f2, g1 ∈ g1, g2 ∈ g2.

Then [~f1, ~u]∞ = [~f2, ~u]∞ = 0 and from Definition 3.11 we have [~f0, ~u]∞ = 0. The
theorem assertions follow now from decomposition (56). �

Theorem 4.4. Suppose Assumption 3.4 holds, system (2) is in the limit point case, d̂λ
is the defect element of Amax, and the mappings Γ0,Γ1 : Amax 7→ C are defined as

(57) Γ0

(
f

g

)
:= f [1](0), Γ1

(
f

g

)
:= −f(0)

where the pair {~f, g} satisfies system (19), f ∈ f, g ∈ g. Then

(i) the mappings Γ0, Γ1 in (57) are well defined;
(ii) the tuple {C,Γ0,Γ1} with the mappings Γ0, Γ1 from (57) is a boundary triple for

the linear relation Amax;
(iii) the corresponding Weyl function and γ-field have the forms

(58) M(λ) = d(0, λ)/d[1](0, λ), γ(λ) = d(λ), d(·, λ) ∈ dλ.

Proof. (ii) It follows immediately from Proposition 3.8 that Γ0,Γ1 in (57) are well defined.
(iii) The generalized Green’s identity from Definition 2.2 may be verified directly and

the surjectivity of the mapping Γ :=

(
Γ0

Γ1

)
follows from Theorem 2.9.

(iv) The formulas (58) follow directly from Definition 2.4. �

4.3. Limit circle case.

Theorem 4.5. Suppose Assumption 3.4 holds, system (2) is in the limit circle case.
Then dimNλ(Amin) = 2 for any λ ∈ C.

Proof. By the assumptions, c(x, λ), s(x, λ) ∈ L2(W ) for any λ ∈ C \ R. Now let a ∈ R.
It follows from Theorem 3.2 that

(59) [~c(x, a),~c(x, λ)] = (a− λ)

∫ x

0

c(t, a)c(t, λ) dW,

(60) [~c(x, a), ~s(x, λ)] = 1 + (a− λ)

∫ x

0

c(t, a)s(t, λ) dW.

Multiplying (59) by s(x, λ) and subtracting it from (60) multiplied by s(x, λ), we obtain

(61) c(x, a) = c(x, λ) + (a− λ)

∫ x

0

c(t, a) {c(x, λ)s(t, λ)− s(x, λ)c(t, λ)} dW.

Using the well-known procedure (see e.g. [3, Theorem 5.6.1]) one can show that c(x, a)
belongs to L2(W ). For s(x, a) the proof is similar. �
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Theorem 4.6. Suppose Assumption 3.4 holds, system (2) is in the limit circle case, and
the mappings Γ0,Γ1 are defined as

(62) Γ0

(
f

g

)
:=

(
f(0)[
~f,~s0

]
∞

)
, Γ1

(
f

g

)
:=

(
f [1](0)[
~f,~c0

]
∞

)
,

where ~c0 := ~c(x, 0), ~s0 := ~s(x, 0), pair ~f and g satisfies system (19), f ∈ f, g ∈ g.
Then

(i) the mappings in (62) are well defined;
(ii) the tuple {C2,Γ0,Γ1} from (62) is a boundary triple for the linear relation Amax;
(iii) the corresponding Weyl function and the γ-field have the form

M(λ) =
1

[~s(·, λ), ~s0]∞

(
− [~c(·, λ), ~s0]∞ 1

1 [~s(·, λ),~c0]∞

)
,(63)

γ(λ) =
1

[~s(·, λ), ~s0]∞
(cλ sλ)

(
[~s(·, λ), ~s0]∞ 0
− [~c(·, λ), ~s0]∞ 1

)
.(64)

Proof. (i) This statement follows from Propositions 3.8, 3.9 and Theorem 4.5
(ii) Lemma 3.13 implies that the generalized Green’s identity from Definition 2.2 holds.

Let us show that the mapping Γ :=

(
Γ0

Γ1

)
is surjective. According to the Assumption 3.4

there exist two pairs {~f1, g1} and {~f2, g2} satisfying system (19) with the boundary con-
ditions (55). Extend the functions g1 and g2 to [β,∞) with zero, then the corresponding

solutions ~f1 and ~f2 are trivial on [β,∞) and belong to L2(W ). Applying the mapping

Γ to the elements

(
f1
g1

)
,

(
f2
g2

)
,

(
c0
0

)
,

(
s0
0

)
of the linear relation Amax, one will have

linearly independent vectors

(65) Γ

(
f1
g1

)
=




1
0
0
0


 , Γ

(
f2
g2

)
=




0
0
1
0


 , Γ

(
c0
0

)
=




1
1
0
0


 , Γ

(
s0
0

)
=




0
0
1
−1


 .

This proves surjectivity of Γ.
(iii) Let fλ ∈ Nλ(Amin), then fλ = ξ1cλ + ξ2sλ. Herewith

(66) Γ0

(
fλ
λfλ

)
=

(
1 0

[~c(·, λ), ~s0]∞ [~s(·, λ), ~s0]∞

)(
ξ1
ξ2

)
=: Y0

(
ξ1
ξ2

)
,

(67) Γ1

(
fλ
λfλ

)
=

(
0 1

[~c(·, λ),~c0]∞ [~s(·, λ),~c0]∞

)(
ξ1
ξ2

)
=: Y1

(
ξ1
ξ2

)
.

It follows from the Weyl function definition 2.4 and Lemma 3.13, that

(68)

M(λ) = Y1Y
−1
0 =

1

[~s(·, λ), ~s0]∞

(
− [~c(·, λ), ~s0]∞ 1
[~c(·, λ), ~s(·, λ)]

∞
[~s(·, λ),~c0]∞

)

=
1

[~s(·, λ), ~s0]∞

(
− [~c(·, λ), ~s0]∞ 1

1 [~s(·, λ),~c0]∞

)
.

By the definition of the γ-field, we have

�(69) γ(λ) = (cλ sλ)Y
−1
0 =

1

[~s(·, λ), ~s0]∞
(c(·, λ) s(·, λ))

(
[~s(·, λ), ~s0]∞ 0
− [~c(·, λ), ~s0]∞ 1

)
.

Remark 4.7. Noticing that

(70)
[~s(·, λ), ~s0]∞ = − λsλs0|∞ , [~c(·, λ), ~s0]∞ = − λcλs0|∞ ,

[~s(·, λ),~c0]∞ = − λsλc0|∞ ,
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one can clarify the formulas (63) and (64).

5. Special cases

5.1. Absolutely continuous case. Let functions P , Q and W be absolutely continuous
on [0,∞), i.e. there exist functions p, q and w from L1[0,∞) such that

(71) P (x) =

∫ x

0

p(t)dt, Q(x) =

∫ x

0

q(t)dt, W (t) =

∫ x

0

w(t)dt,

p(t) 6= 0 and w(t) > 0 almost everywhere with respect to Lebesgue measure on [0,∞).
In this case system (51) may be written as a special Hamiltonian system

(72) J ~f ′(x) = λ∆(x)~f(x) +H(x)~f(x), ~f(0) = ~a(0),

where

∆(x) =

(
w(x) 0
0 0

)
, H(x) =

(
−q(x) 0

0 p(x)

)
, ~f(x) =

(
f(x)
f [1](x)

)
,

which is also equivalent to the Sturm-Liouville equation in the most general form

(73) −
d

dx

(
1

p(x)

d

dx
f(x)

)
+ q(x)f(x) = λw(x)f(x), f(0) = a, f [1](0) = a1.

Analogues of the Titchmarsh-Weyl coefficient for general canonical systems with ma-
trix valued coefficients ∆(x) andH(x) were given in [12, 26, 2]. Boundary triple approach
to general canonical systems was developed in [20, 4, 23]. Spectral and pseudospectral
functions of regular (resp. singular) systems were described in [26, 2] (resp. [23]). Notice
that our results of Theorems 3.17, 4.4, and 4.6 in the absolutely continuous case are
contained in the corresponding statements of [4].

5.2. The Krein-Feller operator. Suppose dQ ≡ 0, dP = dx is the Lebesgue measure
on [0,∞), and function W is arbitrary increasing such that P (0) = 0. In this special
case the function f is absolutely continuous and f [1] coincides with the derivative f ′ a.e.
on [0,∞). The system (19) may be written as

(74) f(x) = f(0) + xf [1](0)−

∫ x

0

(x− s)g(s) dW (s).

The differential operation (74) was investigated by I. Kats and M. Krein in [18].
There was shown that equation (74) is in the limit circle case precisely if the integral∫∞

0
x2 dW (x) diverges. In this case the Weyl function M(λ) introduced in Theorem 4.4

coincides with the Stieltjes function Γ(λ) associated with the orthogonal spectral function
of a singular string in [18, Theorem 10.1]

In [5, Proposition 2.4] the last criteria was extended to a more general case. With an
arbitrary function P equation (74) takes the form

(75) f(x) = f(0) + P (x)f [1](0)−

∫ x

0

(P (x)− P (s)) g(s) dW (s).

It has been shown in [5] that (75) is in the limit point case if and only if the integral∫∞

0

(
1 + |P (x)|2

)
dW (x) diverges.
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