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ON MAXIMAL MULTIPLICITY OF EIGENVALUES

OF FINITE-DIMENSIONAL SPECTRAL PROBLEM ON A GRAPH

OLGA BOIKO, OLGA MARTYNYUK, AND VYACHESLAV PIVOVARCHIK

Abstract. Recurrence relations of the second order on the edges of a metric con-

nected graph together with boundary and matching conditions at the vertices gen-
erate a spectral problem for a self-adjoint finite-dimensional operator. This spectral
problem describes small transverse vibrations of a graph of Stieltjes strings. It is
shown that if the graph is cyclically connected and the number of masses on each

edge is not less than 3 then the maximal multiplicity of an eigenvalue is µ+1 where
µ is the cyclomatic number of the graph. If the graph is not cyclically connected
and each edge of it bears at least one point mass then the maximal multiplicity of an
eigenvalue is expressed via µ, the number of edges and the number of interior vertices

in the tree obtained by contracting all the cycles of the graph into vertices.

1. Introduction

Second order difference equations (1) appear in different fields of physics (synthesis of
electrical circuits [7], p. 129, transversal vibrations of the so-called Stieltjes strings [13],
[2], and longitudinal vibrations of point masses connected by springs [16]).

A massless elastic thread bearing point masses is called a Stieltjes string [2]. Small
transverse vibrations of such a string are described by the equation

(1)
vk(t)− vk+1(t)

lk
+
vk(t)− vk−1(t)

lk−1
+mkv

′′

k (t) = 0 (k = 1, 2, . . . , n),

where vk(t) is the transverse displacement of the mass mk and lk is the distance between
mk−1 andmk. We assume the number of masses n to be finite. Let the ends of this string
be fixed, i.e. v0(t) = vn+1(t) = 0 (Dirichlet conditions). Substituting vk(t) = uke

iλt and
z = λ2 we obtain

(2)
uk − uk+1

lk
+
uk − uk−1

lk−1
− zmkuk = 0 (k = 1, 2, . . . , n),

(3) u0 = un+1 = 0.

It is known (see [2]) that the eigenvalues of this problem are simple and for any sequence
of distinct positive numbers {zk}

n
k=1 there exist sequences {mk}

n
k=1, {lk}

n
k=0 of positive

numbers such that {zk}
n
k=1 is the spectrum of the corresponding Dirichlet problem (2),

(3). Also it is known [2] that the data necessary and sufficient to solve the inverse
problem of recovering the sequences {mk}

n
k=1, {lk}

n
k=0 consist of two spectra of Dirichlet-

Dirichlet spectral problem (2), (3) and Dirichlet-Neumann spectral problem which is (2)
with conditions u0 = un+1 − un = 0 and the total length of the string. Generalizations
to the case of damped vibrations are given in [23], [17].

A natural generalization of problem (2), (3) are the problems generated by equations
of the type (2) on tree domains [3], [4], [5]. An unexpected application can be found
in [6]. The simplest tree is a star graph and the simplest generalization of the two

2010 Mathematics Subject Classification. Primary 05C50; Secondary 39A06, 15A18, 39A70.
Key words and phrases. Tree, cycle, eigenvalue.

104



ON MAXIMAL MULTIPLICITY OF EIGENVALUES OF FINITE-DIMENSIONAL . . . 105

spectra inverse problem of [2] is given in [1] for the case of simple eigenvalues and for the
general case in [19]. More complicated case appears if the numbers of the masses on the
edges of the star graph are prescribed. It causes restrictions on possible multiplicities of
eigenvalues. Such inverse problem was solved in [20]. It should be mentioned that those
restrictions on the multiplicities of the eigenvalues are similar to the ones obtained in
[14] for the so-called tree-patterned matrices. The difference is that the point masses in
[20] can be considered as the vertices of the corresponding star-patterned matrices but
the central vertex may be free of masses.

It should be mentioned that the inverse problem by two spectra with simple eigenvalues
for an arbitrary tree was solved in [18].

Unfortunately, any general answer about restrictions on eigenvalue multiplicities for a
spectral problem on an arbitrary tree as well as for an arbitrary tree patterned matrices
is not known in spite of many particular results for tree-patterned matrices in [9], [10],
[11].

The problem of maximal possible multiplicity of eigenvalues for the Sturm-Liouville
spectral problem on graph was solved in [15] and [12]. In present paper we show that in
the case where each edge of the graph of Stieltjes strings bears not less than three point
masses the results of [12] remain true. However, if the number of masses is less than 3,
the results are not true for cyclically connected graphs (see Remark 3.3 below).

In Section 2 we give the corresponding definitions and describe the spectral problem
generated by the Stieltjes string recurrence relations on a connected graph. In Section 3
we consider cyclically connected graphs and show that if the number of point masses
is not less than 3 on each edge then the maximal possible multiplicity of an eigenvalue
ω = µ+1 where µ is the number of linearly independent cycles in the graph. In Section 4
we consider quasi-trees and show that if the number of masses on each edge is greater
or equal to 1 then ω = µ + ppen − 1 where ppen is the number of pendant vertices. In
Section 5 we consider an arbitrary connected graph which is not cyclically connected.
We prove that ω = µ0 + gT − pTin = µ0 + pTpen − 1 where µ0 is the number of linearly

independent cycles, gT , pTin and pTpen are the numbers of edges, of interior and pendant
vertices, respectively, in the tree obtained by contracting each cycle of the graph into a
vertex.

2. Formulation of the problem

For a graph G we denote its vertices by vi, i = 1, 2, . . . , p, where p (or pG) is the
number of the vertices of G, its edges by ej , j = 1, 2, . . . , g, where g (or gG) is the
number of edges of G. For each i denote by d(vi) the degree of the vertex vi and for each
j we denote by lj the length of the edge ej .
Assumption. We notice that presence of vertices of degree 2 does not change the
maximal multiplicity of the eigenvalues. Therefore, we assume all through the paper
that each interior vertex is of degree higher than 2.
Definition 2.1. A walk in a graph is a sequence of edges v0v1, v1v2, . . . , vk−1vk. A walk
in which all the edges are distinct is called trail. A trail in which all vertices v0, v1, . . . , vk
are distinct (except possibly for vk = v0) is called a path; a path with vk = v0 is called
a cycle. Any edge joining a vertex vi to itself is called a loop.
Definition 2.2. Two vertices v and w of a connected graph G are said to be cyclically
connected if a finite set of cycles C1, C2, . . . , Ck (Cj ⊂ G, j = 1, 2, . . . , k) exists such
that v ∈ C1, w ∈ Ck and each neighboring pair of cycles possesses at least one common
vertex.
Definition 2.3. A graph is said to be cyclically connected if each pair of vertices in it
is cyclically connected (see Fig. 1).
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Figure 1. A cyclically connected graph.

Definition 2.4. A cyclically connected subgraph G′ of a graph G is said to be maximal
cyclically connected if it is not a nontrivial subgraph of another cyclically connected
subgraph of G.
Definition 2.5. A connected graph with g ≥ 1 is said to be a tree if it has no cycles.
The edges of a tree are said to be its branches.
Definition 2.6. A connected graph with g ≥ 1 is said to be a quasi-tree if it is not
cyclically connected and each (if any) cyclically connected subgraph of it has more than
one vertex in common with the complement of this subgraph. (An example see at Fig. 2
below).

If we direct the edges of G to obtain an oriented graph then in addition to the
degree d(vi) of a vertex vi we introduce d

−(vi) the indegree, the number of edges directed
towards the vertex and d+(vi), the outdegree, the number of edges directed away from
the vertex vi.

The local coordinate on G identifies a directed edge ej (j = 1, 2, . . . , g) of G with the
interval [0, lj ] and the coordinate xj increases in the direction of the edge.

To every cycle we ascribe any of the two possible directions. It is clear that the
direction of an edge can be opposite to the direction of the cycle.
Definition 2.7. The matrix M = {Mk,j}, k = 1, 2, . . . , s, j = 1, 2, . . . , g, where s is the
number of cycles, is said to be the matrix of cycles for an oriented graph G if

1) for an edge ej which does not belong to the k-th cycle Mk,j = 0,
2) for an edge ej which belongs to the k-th cycle and whose direction coincides with

the direction of the cycle Mj,k = 1,
3) for an edge ej which belongs to the k-th cycle and whose direction is opposite to

the direction of the cycle Mj,k = −1.
Definition 2.8. A set of cycles in an oriented graph G is said to be linearly independent
if the corresponding set of rows in the matrix of cycles is linearly independent. The rank
µ = µG of this matrix is said to be the cyclomatic number of the graph G. Each set of
µ linearly independent cycles is said to be fundamental.

It is known (see, e.g. [22]) that µ = g − p+ 1.
Let G be a plane metric graph with q edges and denote by lj the length of the

edge ej . Each edge ej is divided into nj + 1 subintervals of the lengths l
(j)
0 , l

(j)
1 ,. . . , l

(j)
nj

by point masses m
(j)
1 , m

(j)
2 , . . . , m

(j)
nj (l

(j)
k > 0, m

(j)
k > 0, lj =

nj∑

k=0

l
(j)
k ). An interior

vertex vi has outgoing edges ej starting with a subinterval of length l
(j)
0 , while each

incoming edge er ends at v with an interval of lengths l
(r)
nr . It is assumed that the graph

is stretched and the pendant vertices are fixed. The graph can vibrate in the direction

orthogonal to the equilibrium position of the strings. We denote by v
(j)
k (t) the transverse

displacement of the mass m
(j)
k . If an edge ej is ingoing for an interior vertex v then the

displacement of the ingoing end of the edge is denoted by v
(j)
nj+1(t), while if an edge er is

outgoing for a vertex v then the displacement of the outgoing end of the edge is denoted

v
(r)
0 (t). Using such notation vibrations of the graph can be described by the system of
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equations

(4)

v
(j)
k (t)− v

(j)
k+1(t)

l
(j)
k

+
v
(j)
k (t)− v

(j)
k−1(t)

l
(j)
k−1

+m
(j)
k

∂2v
(j)
k

∂t2
(t) = 0

(k = 1, 2, . . . , nj ; nj ≥ 1, j = 1, 2, . . . , g).

Let J be the set of numbers of the edges incident with pendant vertices, K be the set
of numbers of interior vertices, W+

i the set of numbers of edges outgoing away from the
vertex vi and W

−

i the set numbers of edges incoming into the vertex vi (i = 1, 2, . . . , p).
For each interior vertex with ingoing edges ej (j ∈ W−

i ) and outgoing edges er (r ∈
W+

i ) we impose the continuity conditions

(5) v
(r)
0 (t) = v

(j)
nj+1(t).

If W−

i = ∅ (W+
i = ∅) then instead of (5) we have v

(j)
nj+1(t) = v

(s)
ns+1(t) (v

(j)
0 (t) = v

(s)
0 (t))

for all j, s ∈W−

i (j, s ∈W+
i ).

The balance of forces at such a vertex implies

(6)
∑

r∈W
+
i

v
(r)
1 (t)− v

(r)
0 (t)

l
(r)
0

=
∑

j∈W
−

i

v
(j)
nj+1(t)− v

(j)
nj (t)

l
(j)
nj

.

Here the the right-hand side (left-hand side) of (6) must be taken zero in case of W+
i = ∅

(W−

i = ∅). For an edge ej incident with a pendant vertex we impose Dirichlet boundary
condition

(7) v
(j)
0 (t) = 0 or v

(j)
nj+1(t) = 0.

Substituting v
(j)
k (t) = eiλtu

(j)
k , z = λ2 into (4)–(7) we obtain

(8)

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k zu

(j)
k = 0

(k = 1, 2, . . . , nj , j = 1, 2, . . . , g).

For each interior vertex with incoming edges ej (j ∈W−

i ) and outgoing edges er (r ∈W+
i )

we have

(9) u
(r)
0 = u

(j)
nj+1,

(10)
∑

r∈W
+
i

u
(r)
1 − u

(r)
0

l
(r)
0

=
∑

j∈W
−

i

u
(j)
nj+1 − u

(j)
nj

l
(j)
nj

.

If W−

i = ∅ (W+
i = ∅) then instead of (9) we have u

(j)
nj+1 = u

(s)
ns+1 (u

(j)
0 = u

(s)
0 ) for all

j, s ∈ W−

i (j, s ∈ W+
i ). Here the the right-hand side (left-hand side) of (10) must be

taken zero in case of W+
i = ∅ (W−

i = ∅).
For each edge ej incident with a pendant vertex

(11) u
(j)
0 = 0

or

(12) u
(j)
nj+1 = 0.

The fundamental system of two linearly independent solutions to (8) can be composed by

the polynomials R
(j)
2k−2(z, 0) and R

(j)
2k−2(z, 1) which satisfy (see e.g. [18]) the initial con-

ditions R
(j)
0 (z, 0) = 1, R

(j)
−1(z, 0) =

1

l
(j)
0

, R
(j)
0 (z, 1) = 1, R

(j)
−1(z, 1) = 0 and the recurrence
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relations

R
(j)
2k−1(z, 0) = −zm

(j)
k R

(j)
2k−2(z, 0) +R

(j)
2k−3(z, 0),

(13) R
(j)
2k−1(z, 1) = −zm

(j)
k R

(j)
2k−2(z, 1) +R

(j)
2k−3(z, 1),

R
(j)
2k (z, 0) = l

(j)
k R

(j)
2k−1(z, 0) +R

(j)
2k−2(z, 0) (k = 1, 2, . . . , nj),

(14) R
(j)
2k (z, 1) = l

(j)
k R

(j)
2k−1(z, 1) +R

(j)
2k−2(z, 1) (k = 1, 2, . . . , nj),

We are looking for the solutions of (8) in the form

u
(j)
k = R

(j)
2k−2(z, 0)q

(j)
1 +R

(j)
2k−2(z, 1)h

(j)
1

on the edge ej with constants q
(j)
1 and h

(j)
1 .

With this notations we obtain using (9)–(12):
For each interior vertex with incoming edges ej and outgoing edge ek

(15) R
(j)
2nj

(z, 0)q
(j)
1 +R

(j)
2nj

(z, 1)h
(j)
1 = h

(r)
1 ,

(16)
∑

r∈W
+
i

q
(r)
1

l
(r)
0

=
∑

j∈W
−

i

(R
(j)
2nj−1(z, 0)g

(j)
1 +R

(j)
2nj−1(z, 1)h

(j)
1 ).

For each edge ej incident with a pendant vertex

(17) h
(j)
1 = 0

or

(18) R
(j)
2nj−1(z, 0)q

(j)
1 +R

(j)
2nj−1(z, 1)h

(j)
1 = 0.

Then the characteristic polynomial of problem (14)–(18), i.e. a polynomial whose

zeros coincide with the spectrum of the problem can be expressed by l
(j)
0 R

(j)
2nj

(z, 0),

l
(j)
0 R

(j)
2nj−1(z, 0), R

(j)
2nj

(z, 1) and R
(j)
2nj−1(z, 1). To do it we introduce the following system

of vectors

ψj(z)

= col{0, 0, . . . , 0, l
(j)
0 R

(j)
−2(z, 0), l

(j)
0 R

(j)
0 (z, 0), . . . , l

(j)
0 R

(j)
2nj

(z, 0), 0, 0, . . . , 0
︸ ︷︷ ︸

n+2g

, 0, 0, . . . , 0
︸ ︷︷ ︸

n+2g

},

ψj+g(z)

= col{0, 0, . . . , 0
︸ ︷︷ ︸

n+2g

, 0, 0, . . . , 0, R
(j)
−2(z, 1), R

(j)
0 (z, 1), . . . , R

(j)
2nj

(z, 1), 0, 0, . . . , 0
︸ ︷︷ ︸

n+2g

}

for j = 1, 2, . . . , g, where g is the number of edges in G, n =
g∑

j=1

nj . As in [21] we denote

by Lj (j = 1, 2, . . . , 2g) the linear functionals C2n+4g → C generated by (14)–(18). Then

Φ(z) = {Lj(ψp(z)}
2g
j,p is the characteristic matrix which represents the system of linear

equations describing the boundary conditions at pendant vertices and continuity and
balance of forces conditions for the interior vertices. We call

φN (z) := det(Φ(z))

the characteristic polynomial of problem (8)–(11). It is easy to see that the characteristic
function satisfies

φN (z) = φN (z).
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Remark 2.9. IfW+
i orW−

i is empty then the 0 must stand in the left- or the right-hand
side of (16), correspondingly. Also condition (15) should look like

h
(j)
1 = h

(s)
1 for all j, s ∈W+

i

or

R
(j)
2nj−1(z, 0)q

(j)
1 +R

(j)
2nj−1(z, 1)h

(j)
1 = R

(s)
2ns−1(z, 0)q

(s)
1 +R

(s)
2ns−1(z, 1)h

(s)
1 for all j, s ∈W−

i ,

correspondingly.
Let G be the above described graph with local coordinates on its edges. Changing

the massesm
(j)
k (k = 1, 2, . . . , nj , j = 1, 2, . . . , g) and the intervals l

(j)
k (k = 0, 1, . . . , nj , j =

1, 2, . . . , g) we change the operator L and therefore its spectrum and the multiplicities of
its eigenvalues too. We denote the set of all obtained operators by LG. In this section
we find the maximal possible value of an eigenvalue multiplicity of the operators L ∈ LG

for a graph G of a given form. Namely, we show that the maximal multiplicity of an
eigenvalue depends only on such parameters of the graph as the cyclomatic number, the
number of noncyclic edges, the number of noncyclic interior vertices and the number of
the so-called maximal cyclically connected subgraphs. This question can be reduced to
the following one. Let arbitrary z ≥ 0 be fixed. For the set of all L ∈ LG for which λ is
an eigenvalue what the maximal multiplicity of it can be. It will be clear that the result
does not depend on the lengths of the edges. It is required that nj ≥ 1 and for some of
our results even nj ≥ 3 for all j = 1, 2, . . . , g.

3. Cyclically connected graphs

In this section the directions of edges are arbitrary. Let us notice that in a cyclically
connected graph all the vertices are interior.

Since in this section graphs have no pendant vertices we consider problem (8)–(10).
We consider also the auxiliary problem which we obtain from problem (8)–(10) imposing
additionally any of the conditions

(19) u
(j)
0 = 0, for some j ∈W+

i and some i

or

(20) u
(j)
nj+1 = 0, for some j ∈W−

i and some i.

We will use the following lemma.
Lemma 3.1 (Lemma 3.1 in [12]). Let G be a cyclically connected graph with the cyclo-
matic number µ ≥ 2. Then there exists an edge in G such that after deleting this edge we
obtain a graph G′ which is cyclically connected and its cyclomatic number is µ′ = µ− 1.
Theorem 3.2.

1. Let nj ≥ 3 for all j = 1, 2, . . . , g. The maximal multiplicity of an eigenvalue of
problem (8)–(10) on a cyclically connected graph is µ+ 1.

2. If in addition to (8)–(10) we impose condition (19) or (20) at any of the vertices in
G, then the maximal multiplicity of an eigenvalue of problem (8)–(10), (19) or problem
(8)–(10), (20), is µ.

Proof. By assumption there are no vertices of degree 2 and, therefore, each vertex is of
degree higher than 2.

First of all let us show that the multiplicity can reach µ+1. For a fixed positive z we

can choose masses and subintervals such that m
(j)
k = m

(j)
nj−k+1, l

(j)
k = l

(j)
nj−k for all k and

j, and R
(j)
2nj

(z, 0) = 0. By the Lagrange identity (see Lemma 3.5 in [19])

(21) R
(j)
2nj

(z, 1)R
(j)
2nj−1(z, 0)−R

(j)
2nj

(z, 0)R
(j)
2nj−1(z, 1) = R

(j)
2nj

(z, 1)R
(j)
2nj−1(z, 0) =

1

l
(j)
0

.
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Since for a symmetric string R
(j)
2nj−1(z, 0) = ±l

(j)
0 R

(j)
2nj

(z, 1), we obtain from (21)

R
(j)
2nj−1(z, 0) = l

(j)
0 R

(j)
2nj

(z, 1) = ±1. The masses {m
(j)
k }

nj

k=1 and the intervals {l
(j)
k }

nj

k=0

can be chosen such that not only R
(j)
2nj

(z, 0) = 0 but also R
(j)
2nj−1(z, 0) = 1. This is

possible because due to the condition nj ≥ 3 the number of eigenvalues of Dirichlet
problem (8), (11), (12) on an edge is not less than 3 and z can be chosen equal to the
second eigenvalue of problem (8), (11), (12).

Then we choose a cycle Ci with the edges eji
k
, k = 1, 2, . . . , r(i), jik < jik+1 and compose

the corresponding eigenvector

Yi = {0, 0, . . . , Sji1
(z, 0), 0, 0, . . . , 0, Sji2

(z, 0), 0, 0, . . . , 0, Sji
r(i)

(z, 0), 0, 0, . . . , 0},

where

(22) Sjis
(z, 0) = {l

(jis)
0 R

(jis)
0 (z, 0), l

(jis)
0 R

(jis)
2 (z, 0), . . . , l

(jis)
0 R

(jis)
2n

jis
−2(z, 0)}.

Thus, we can compose an eigenvector corresponding to each of µ fundamental cycles.
One more eigenvector is

Yµ+1 = {1, Q1(z, 1), 1, Q2(z, 1), 1, . . . , 1, Qg(z, 1)},

where Qj(z, 1) = {R
(j)
0 (z, 1), R

(j)
2 (z, 1), . . . , R

(j)
2nj−2(z, 1)}.

All in all we have µ + 1 linearly independent eigenvectors. Since the vectors Yj (j =
1, 2, . . . , µ) satisfy condition (19) or (20) we conclude that the maximal multiplicity of
an eigenvalue of problem (8)–(10), (19) or (8)–(10), (20) can reach µ.

Now we need to prove that the maximal multiplicity does not exceed µ+1 for problem
(8)–(10) and that it does not exceed µ for problem (8)–(10), (19) or problem (8)–(10),
(20).

First consider the case of µ = 1. Here we face the periodic problem

(23)
uk − uk+1

lk
+
uk − uk−1

lk−1
−mkzuk = 0

(k = 1, 2, . . . , n),

(24) u0 = un+1,

(25)
u1 − u0

l0
=
un+1 − un

ln
.

The maximal multiplicity of an eigenvalue of this problem is 2 with the eigenvectors
{0, S1(λ, 0)} and {1, Q1(λ, 1)}. Thus, Statement 1 of Theorem 3.2 is valid in this case.
Statement 2 for µ = 1 follows from uniqueness of the solution of problem (23)–(24) under
additional condition u0 = 0.

Let us assume the statements of Theorem 3.5 to be valid for all cyclically connected
graphs with the cyclomatic number µ = k. Let us consider a cyclically connected graph
G with µ = k + 1. We need to prove that the maximal multiplicity m does not exceed
k + 2. Let us recall that we have no vertices of degree 2. According to Lemma 3.1 it
is possible to delete an edge ej1 from G in such a way that the obtained graph G′ will
be cyclically connected with the cyclomatic number µ′ = k. If after deleting the edge
a vertex of degree 2 appears then we can remove that vertex and contract the incident
edges (without changing µ′) so that achieve the assumption. Let v be the vertex from
which ej1 is going away.

By our assumption the maximal multiplicity of an eigenvalue of problem (8)–(10) on
G′ is k+1 and for the problem with additional condition (19) or (20) on G′ the maximal
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multiplicity is k. For any eigenvalue of problem (8)–(10) on G the eigen-subspace can be
chosen in such a way that

Y1 = {U1,1, . . . , U1,j1−1, Qj1(λ, 1), U1,j1+1, . . . , U1,g(x)},

Y2 = {U2,1, . . . , U2,j1−1, Sj1(λ, 0), U2,j1+1, . . . , U2,g},

Y3 = {U3,1, . . . , U3,j1−1, 0, 0, . . . , 0, U3,j1+1, . . . , U3,g},

. . . ,

Ym = {Um,1, . . . , Um,j1−1, 0, 0, . . . , 0, Um,j1+1, . . . , Um,g},

where Uk,j(λ) are some solution of (8) on the edge ej .

Consider the m− 2 projections Ỹ3 = {U3,1, . . . , U3,j1−1, U3,j1+1, . . . , U3,g},. . . ,

Ỹm = {Um,1, . . . , Um,j1−1, Um,j1+1, . . . , Um,g} of vectors Y3,. . . ,Ym. These projections are
eigenvectors of the problem on G′ because the continuity conditions and the balance of
forces condition are satisfied by Ỹj , j = 3, 4, . . . ,m as the vectors on G′. The additional

condition u
(j2)
0 = 0 or u

(j2)
nj2

= 0 is satisfied, where ej2 is an edge incident with the vertex
for which ej1 was an outgoing edge in G. By the induction assumption m − 2 ≤ k,

i.e. m ≤ k + 2. Since Y1 does not satisfy u
(j2)
0 = 0, we conclude that the maximal

eigenvalue multiplicity does not exceed k + 1 for problem (8)–(10). Theorem is proved
by induction. �

Remark 3.3. It should be mentioned that if n = 1 problem (23)–(24) has only one
simple eigenvalue λ = 0 and in case of n = 2 it has two simple eigenvalues. This is in
accordance with the known result (see [8], Theorem 3.2) for the eigenvalues of a periodic
Jacobi matrices which in our notation is

z1 < z2 ≤ z3 < z4 ≤ z5 < · · ·

4. Quasi-trees

Let us describe orientation of edges and the way of their enumeration we use for quasi-
trees. First consider a tree rooted at a pendant vertex. We direct the edges away from
the root and enumerate them successively such that the combinatorial distance from the
root is a non-decreasing sequence of the number of the edge. Thus each vertex except
for the root has one incoming edge and if j ∈W+

i and k ∈W−

i then k < j.
Now let G be a quasi-tree. Denote by T the tree obtained by contracting each maximal

cyclically connected subgraph of G into a vertex. Having no cycles the obtained graph
is a tree according to Definition 2.5. Since G is not cyclically connected, T has at least
two pendant vertices. Then we direct the edges of T in the way described above. We
enumerate the branches in G, i.e. the edges common for G and T in the way described
above but when meeting a vertex in T obtained by contracting a maximal cyclically
connected subgraph Γ we omit gΓ successive numbers where gΓ is the number of edges
in Γ.

Let us direct and enumerate the edges of a maximal cyclically connected subgraph of
our quasi-tree. Let Γ be such a subgraph. We call entrance the vertex v0 ∈ Γ incident
with the incoming branch while the vertices incident with the outgoing branches vi
(i = 1, 2, . . . , n) we call exits.

The following two lemmas were proved in [12].
Lemma 4.1. Let Γ be a maximal cyclically connected subgraph of a quasi-tree. Then the
edges of Γ can be directed and enumerated such that

1) W−

i = ∅ only for the entrance (for v0),
2) W+

i = ∅ can be only for exits (for vi, i = 1, 2, . . . , n),
3) if j ∈W+

i and k ∈W−

i then k < j.
Lemma 4.2. The edges of any quasi-tree G can be oriented and enumerated such that
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1) W−

i = ∅ only for the root,
2) W+

i = ∅ only for pendant vertices except for the root,
3) if j ∈W+

i and k ∈W−

i then k < j.
The maximum for eigenvalue multiplicities for quasi-trees is given by the following

theorem.
Theorem 4.3. Let nj ≥ 1 for all j. Then the maximal multiplicity of an eigenvalue of
the operator L defined on a quasi-tree with g ≥ 1 is ω := µ + ppen − 1, where ppen is
the number of pendant vertices. Equivalently, ω = g − pin where pin is the number of
interior vertices.

Proof. First of all let us show that the multiplicity can be equal to ω.

As we have seen in the proof of Theorem 3.2 we can choose the masses {m
(j)
k }

nj

k=1 and

the intervals {l
(j)
k }

nj

k=0 (j = 1, 2, . . . , q) such that R
(j)
2nj

(z, 0) = 0 and R
(j)
2nj−1(z, 0) = −1

for all j = 1, 2, . . . , g.
We choose ω linearly independent paths, i.e. paths which correspond to linearly

independent rows of the adjacency matrix, {eik}
r[i]
k=1 ( i = 1, 2, . . . , ω), connecting the

root with the pendant vertices. This is possible because for a tree the number of such
paths is ppen − 1 and each linearly independent cycle contributes 1 into the number of
such paths. Let us denote by

Yi={0, 0, . . . , 0, Si1(z, 0), 0, 0, . . . , 0,−Si2(z, 0), 0, 0, . . . , 0, (−1)
ir[i]−1Sir[i](z, 0), 0, 0, . . . , 0}.

The eigenvectors {Yi}
ω
i=1 are linearly independent. This shows that the multiplicity of

an eigenvalue can reach ω.
Now let us prove that the multiplicity cannot exceed ω. The solution of equations (8)

on an edge ej is

(26) Uj = Bj(1, Qj(z, 1)) +Aj(0, Sj(z, 0)),

where Aj and Bj are constants.

The boundary condition at the root is u
(1)
0 = 0 and therefore

(27) B1 = 0.

Let W−

i = {i−1 , i
−

2 , . . . , i
−

d−(i)} and W+
i = {i+1 , i

+
2 , . . . , i

+
d+(i)}, where we enumerate such

that i−k < i−k′ , i
+
k < i+k′ if k < k′ and i−k < i+p for all i−k ∈ W−

i and all i+k ∈ W+
i . The

matching conditions at a vertex vi ∈ K are

(28)

u
(j)
0 = u

(j′)
0 , for all j ∈W+

i and j′ ∈W+
i ,

u
(j)
lj

= u
(j′)
lj′

, for all j ∈W−

i and j′ ∈W−

i ,

u
(j′)
0 = u

(j)
lj
, if j′ ∈W+

i and j ∈W−

i







,

(29)
∑

j∈W
+
i

u
(j)
1 − u

(j)
0

l
(j)
0

=
∑

p∈W
−

i

u
(p)
np+1 − u

(p)
np

lnp

, i ∈ K {balance of forces}.

The boundary conditions at the pendant vertices (except for the root) are

(30) u
(j)
nj+1 = 0, j ∈ J.

Substituting (26) into (28), (29) and (30) we obtain

(31) Bj −Bi
−

1
R

(i−1 )
2n

i
−

1

(z, 1)−Ai
−

1
R

(i−1 )
2n

i
−

1

(z, 0) = 0, for each j ∈W+
i ,

(32)
∑

j∈W
+
i

Aj −
∑

j∈W
−

i

(

BjR
(j)
2nj−1(z, 1) +AjR

(j)
2nj−1(z, 0)

)

= 0.
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If d−(vi) > 1 we have additionally for each j ∈W−

i , j 6= i−1

(33) Bi
−

1
R

(i−1 )
2n

i
−

1

(z, 1) +Ai
−

1
R

(i−1 )
2n

i
−

1

(z, 0)−BjR
(j)
2nj

(z, 1)−AjR
(j)
2nj

(z, 0) = 0.

For each pendant vertex vj except for the root the Dirichlet boundary conditions give

(34) BjR
(j)
2nj

(z, 1)) +AjR
(j)
2nj

(z, 0) = 0.

Equations (27), (31)–(34) compose a system of homogeneous linear algebraic equations
with unknowns B1, A1, B2, A2, . . . , Bg, Ag. We enumerate the unknowns successively, i.e.
B1 is the first and Ag is the unknown number 2g. Equations (27), (31), (32) we call
leading and equip each of the leading equations with a numerical rating equal to the
maximal number among its unknowns with non-zero coefficients. This coefficient before
the unknown of the maximal number we call leading coefficient for the corresponding
leading equation. According to our way of enumeration j > j′ for all j ∈ W+

i and
j′ ∈W−

i and, therefore, all the ratings of the leading equation are different. Let us place
the leading equations in the order of growing rating. The rest of the equations we place
after the leading equations in arbitrary order. The multiplicity of an eigenvalue λ is equal
to the number of linearly independent solutions of the obtained system of equations.

Since the rating of each succeeding leading equation is higher than that of the previ-
ous leading equation, each row in the matrix of the system corresponding to a leading
equation can not be presented as a linear combination of the previous rows and, conse-
quently, the rows corresponding to the leading equations are linearly independent. Thus,
the rank of the systems matrix is not less than the number of leading equations. Let us
count this number.

Equation (27) is leading and corresponds to the edge e1. Each of the other edges of G
is outgoing away from a vertex and, therefore, the number of equations of the form (31)
is equal to g − 1. The number of an equation of the form (32) is equal to the number of
interior vertices pin. Thus, the number of leading equation is 1 + g − 1 + pin = g + pin
and the rank of the matrix is not less than g + pin.

Since the number of linearly independent solutions of a system ofR homogeneous linear
equations is equal to R− r where r is the rank of the systems matrix, we conclude that
in our case the number of linearly independent solutions does not exceed 2g− (g+pin) =
g − pin.

Let us show that g − pin = µ+ gT − pTin.
Denote by gΓk the number of edges and by pΓk the number of vertices in a maximal

cyclically connected subgraph Γk. We denote by p̃Tin the number of interior vertices in

G which does not belong to Γ =
t
∪

k=1
Γk, where t is the number of maximal cyclically

connected subgraphs in G. Then

(35)

g − pin = gT +

t∑

k=1

gΓk −
t∑

k=1

pΓk − p̃Tin

= gT +

t∑

k=1

(gΓk − pΓk + 1)− t− p̃Tin = gT + µ− pTin.

On the other hand, µ = g − p + 1 = g − pin − ppen + 1 and, therefore, g − pin =
µ+ ppen − 1. �

Theorem 4.4. The statement of Theorem 4.3 remains true if the Dirichlet conditions

u
(j1)
nj1

+1 = 0 at some of the pendant vertices vj1 of the quasi-tree are replaced with the

corresponding Neumann conditions u
(j1)
nj1

+1 = u
(j1)
nj1

.
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Proof. Let us show that the eigenvalue multiplicity can reach ω. It is possible to change
the masses and subintervals on the edge incident with the pendant vertex vj such that
instead of R2nj1

(z, 0) = 0 we obtain R2nj1
−1(z, 0) = 0. The rest of the proof is the same

as in the proof of Theorem 4.3. �

5. Connected Graphs

Now we consider a connected graph G0 which is not cyclically connected (the case of
cyclically connected graphs has been considered in Sec. 3). We exclude the case g = 0,
i.e. our graph has at least one edge. It is clear from Definition 2.6 that any such graph can
be obtained by attaching cyclically connected graphs Γk (k = 1, 2, . . . , t) to a quasi-tree
G in such a way that each Γk has only one common vertex with G. If we contract each
maximal cyclically connected subgraph of G0 into a vertex then we obtain a connected
graph with at least one edge which has no cycles, i.e. a tree T (see Definition 2.5). For
the quasi-tree G obtained from G0 by contracting each maximal cyclically connected
subgraph which has only one common vertex with its complement in G0 we denote by µ
the cyclomatic number of G. We denote by µ0 the cyclomatic number of G0 and by g0
the number of edges in G0. An example see at Fig. 2.

Figure 2

Theorem 5.1. Let G0 be a connected but not cyclically connected graph. Let nj ≥ 3
for all j = 1, 2, . . . , g. Then the maximal possible multiplicity of an eigenvalue of the
operator L is µ0 + gT − pTin.

Proof. If our graph G0 is a quasi-tree then Theorem 5.1 is nothing but Theorem 4.3.
Now let us show that the maximal possible multiplicity of an eigenvalue of the operator
L on G0 is µ0 + gT − pTin if we attach a maximal cyclically connected subgraph Γ of
cyclomatic number µΓ = µ0−µ to a quasi-tree G. First let us show that the multiplicity
of an eigenvalue of L on G0 can reach µ0 + gT − pTin. Consider the following two cases.

1. We attach the maximal cyclically connected subgraph Γ of cyclomatic number µΓ

to an interior vertex of the quasi-tree G.
Let us start enumerating the edges of G0 with the edges ej ∈ G (j = 1, 2, . . . , g). In

the proof of Theorem 4.4 it was shown that for some value of z we can choose the sets

{m
(j)
k }

nj

k=1 and {l
(j)
k }

nj

k=0 (j = 1, 2, . . . , g) such that there will be µ + gT − pTin linearly

independent eigenvectors of L on G satisfying R
(j)
2nj

(z, 0) = 0 and l
(j)
0 R

(j)
2nj−1(z, 0) =

R
(j)
2nj

(z, 1) = 1 for j = 1, 2, . . . , g. Being prolonged by 0 onto Γ they compose µ+gT −pTin

linearly independent eigenvectors {Yi}
µ+gT

−pT
in

i=1 of L on G0 = G ∪ Γ. We can choose the
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set {m
(j)
k }

nj

k=1 and {l
(j)
k }

nj

k=0 (j = g+1, g+2, . . . , g0) where ej ∈ Γ such that R
(j)
2nj

(z, 0) = 0

and l
(j)
0 R

(j)
2nj−1(z, 0) = R

(j)
2nj

(z, 1) = 1 for each edge of the attached maximal cyclically

connected subgraph Γ. Let {CΓ
i }

µ0−µ
i=1 be some fundamental set of cycles in the max-

imal cyclically connected subgraph Γ. Like in Section 3 for each cycle CΓ
i in Γ with

the edges eΓ
i[k], i = 1, 2, . . . , r(i), i[k] < i[k + 1] we compose the corresponding eigenvec-

tor Y Γ
i = {0, 0, . . . , 0, SΓ

i[1](z, 0), 0, 0, . . . , 0, S
Γ
i[2](z, 0), 0, 0, . . . , 0, S

Γ
i[r(i)](z, 0), 0, 0, . . . , 0}.

Thus we obtain the set {Y Γ
i }

µ0+gT
−pT

in

i=µ+gT−pT
in

+1
of linearly independent eigenvectors for L on

Γ which being prolonged by 0 onto G are also eigenvectors for L on G0 = G ∪ Γ.
Therefore, all in all we have µ0−µ+µ+g

T −pTin = µ0+g
T −pTin linearly independent

eigenvectors.
2. We attach the maximal cyclically connected subgraph of cyclomatic number µΓ =

µ0 − µ to a pendant vertex vi of the quasi-tree G. According to Theorem 4.4 the set
{qj(x)}

g
j=1 can be chosen such that there exist µ+ gT − pTin linearly independent eigen-

vectors of L on G with Neumann condition at vi and Dirichlet conditions at the rest
of pendant vertices. Each of these eigenvectors being prolonged onto Γ by cj(λ, x) for
each ej ∈ Γ form an eigenvector on G0. It is clear that all these eigenvectors are linearly
independent and their number is µ+ gT − pTin.

Then for each cycle CΓ
i in Γ with the edges eΓ

i[k], k = 1, 2, . . . , r(i), i[k] < i[k + 1] we

compose the corresponding eigenvector
Y Γ
i = {0, 0, . . . , 0, SΓ

i[1](z, 0), 0, 0, . . . , 0, S
Γ
i[2](z, 0), 0, 0, . . . , 0, S

Γ
i[r(i)](z, 0), 0, 0, . . . , 0} for

the operator L on Γ. Being prolonged onto G by 0 these vectors are linearly independent
eigenvectors for the operator L on G0 = G∪ Γ. It is clear that all these eigenvectors are
linearly independent. Thus, again all in all we have µ0−µ+µ0+g

T −pTin = µ0+g
T −pTin

linearly independent eigenvectors. Attaching cyclically connected subgraphs successively
we see that the multiplicity of an eigenvalue of L on G0 can reach µ0 + gT − pTin in case
of finite number of cyclically connected subgraphs attached.

Now let us prove that the maximal multiplicity does not exceed µ0 + gT − pTin.
Let us attach a cyclically connected graph Γ1 to the quasi-tree G in such a way that

Γ1 has only one common vertex with G. We denote the obtained graph by G(1) = Γ1∪G.
It follows from Theorem 3.2 that there exist not more than µΓ1 linearly independent

eigenvectors of L on G(1) which are identically zero on the edges of G.
The number of linearly independent eigenvectors of L on G does not exceed µ+gT−pTin

according to Theorem 4.4. Therefore, the number of linearly independent eigenvectors
of the problem on G(1) which are not identically zero on G does not exceed µ+ gT − pTin.
This means that the number of eigenvectors for the operator L on G(1) does not exceed
µΓ1 + µ + gT − pTin. Thus, Theorem 5.1 is proved for the case of a quasi-tree with one
attachment. Now we attach a cyclically connected graph Γ2 to G(1) such that Γ2 and
G(1) have only one vertex in common and denote G(2) = Γ2 ∪G

(1). Again Theorem 3.2
implies that there exist not more than µΓ2 linearly independent eigenvectors of L on G(2)

which are identically zero on the edges of G(1).
The number of linearly independent eigenvectors of L on G(1) does not exceed µΓ1 +

µ+gT −pTin according to what has been proved above. Therefore, the number of linearly
independent eigenvectors of the problem on G(2) which are not identically zero on G(1)

does not exceed µG1 + µ + gT − pTin. This means that the number of eigenvectors for
the operator L on G(2) does not exceed µΓ2 + µΓ1 + µ+ gT − pTin. By this procedure we
can include all the attachments and finally obtain that the maximal multiplicity of an

eigenvalue of L onG0 = G
t
∪

k=1
Γk does not exceed

t∑

k=1

µΓk+µ+gT−pTin = µ0+g
T−pTin. �
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