
Methods of Functional Analysis and Topology
Vol. 25 (2019), no. 2, pp. 134–141

THE WELLAND INEQUALITY ON HYPERGROUPS

M. G. HAJIBAYOV

Abstract. The Welland inequality for fractional integrals on hypergroups with

quasi-metric and Haar measure is proved. This inequality gives pointwise estimates
of fractional integrals by fractional maximal operators.

1. Introduction

Let 0 < α < n. The operator

Iαf (x) =

∫

Rn

|x− y|
α−n

f (y) dy

is known as the classical Riesz potential. We refer to the monographs [1], [19], [21] for
various properties of Riesz potentials.

Also define fractional maximal operator on Rn as

Mαf (x) = sup
r>0

1

|b(0, r)|1−
α

n

∫

b(0,r)

|f(x− y)|dy,

where b(0, r) is the open bold in Rn with center zero and radius r > 0, and |b(0, r)| is
the Lebesgue measure of b(0, r).

It is well known the following fact. Let 0 < α < n. For any ǫ, 0 < ǫ < min(α, n− α),
there exists constant C > 0 such that for any nonnegative locally integrable function
f : Rn → R+ and for any x ∈ Rn the following inequality holds:

Iαf (x) ≤ C
√

Mα−ǫf (x)Mα+ǫf (x) .

This is known as the Welland inequality for classical Riesz potentials and was proved
by G. Welland (see inequality (2.3) in [24]). In [17] and [8], the same results have
been obtained for Riesz potentials on homogeneous and nonhomogeneous spaces, cor-
respondingly. For multilinear fractional integrals on Rn this inequality was proved by
G. Pradolini (see Theorem 2.26 in [20]). The Welland inequalities for potentials on hy-
pergroups associated with the Laplace-Bessel differential operator and for potentials on
Dunkl hypergroups were introduced in [9] and [22] respectively.

In this paper we prove the Welland inequality for fractional integrals on more general
hypergroups.

2. Preliminaries

Let K be a set. A function ρ : K ×K → [0,∞) is called quasi-metric if:

(1) ρ (x, y) = 0 ⇔ x = y;
(2) ρ (x, y) = ρ (y, x) ;
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(3) there exists a constant Cρ ≥ 1 such that for every x, y, z ∈ K

ρ (x, y) ≤ Cρ (ρ (x, z) + ρ (z, y)) .

In the theory of locally compact groups there arise certain spaces which, though not
groups, have some of the structure of groups. Often, the structure can be expressed in
terms of an abstract convolution of measures on the space.

A hypergroup (K, ∗) consists of a locally compact Hausdorff space K together with a
bilinear, associative, weakly continuous convolution on the Banach space of all bounded
regular Borel measures on K with the following properties:

1. For all x, y ∈ K, the convolution of the point measures δx ∗ δy is a probability
measure with compact support.

2. The mapping: K ×K → C(K), (x, y) 7→ supp(δx ∗ δy) is continuous with respect
to the Michael topology on the space C(K) of all nonvoid compact subsets of K,
where this topology is generated by the sets

UV,W = {L ∈ C(K) : L ∩ V 6= ∅, L ⊂ W}

with V,W open in K.
3. There is an identity e ∈ K with δe ∗ δx = δx ∗ δe = δx for all x ∈ K.
4. There is a continuous involution ∼ on K such that

(δx ∗ δy)
∼

= δy∼ ∗ δx∼

and e ∈ supp(δx ∗ δy) ⇔ x = y∼ for x, y ∈ K (see [16], [23], [3], [2], [18] ).

The measure λ on K is called Haar measure if for every Borel measurable function f

on K,
∫

K

f(δx ∗ δy)dλ(y) =

∫

K

f(y)dλ(y) (x ∈ K).

Hypergroup K is called commutative if δx ∗ δy = δy ∗ δx for all x, y ∈ K.
It is well known that every commutative hypergroup K possesses a Haar measure

(see [23]).
Define the generalized translation operators T x, x ∈ K, by

T xf(y) =

∫

K

fd(δx ∗ δy)

for all y ∈ K. If K is a commutative hypergroup, then T xf(y) = T yf(x).
Let K be hypergroup with Haar measure λ. The convolution of two functions is

defined by

f ∗ g(x) =

∫

K

T xf(y∼)g(y)dλ(y).

Let (K, ∗) be a hypergroup, with quasi-metric ρ, Haar measure λ and all balls B(x, r) =
{y ∈ K : ρ(x, y) < r} be λ-measurable. We will say Haar measure λ is a doubling on an
identity, if there exists a constant Cλ > 0, not depending r > 0, such that

(1) λB(e, 2r) ≤ CλλB(e, r).

In this condition holds the triple (K, ∗, λ) we will call a space of homogeneous type on
an identity.

To avoid trivial measures we will always assume that 0 < λB(e, r) < +∞, for all
r > 0.
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Given a space of homogeneous type (K, ∗, λ) on an identity, we will call that it is a
reverse doubling space on an identity if there exists a constant 0 < γ < 1 such that for
every r > 0 such that B(e, r) 6= K,

(2) λB
(

e,
r

2

)

≤ γλB(e, r).

If this condition holds we also say that the measure λ is reverse doubling on an identity.

Lemma 2.1. Let (K, ∗) be a hypergroup, with quasi-metric ρ and Haar measure λ,
(K, ρ, λ) reverse doubling space on an identity and λ(K) = +∞ Then λ{e} = 0.

Proof. By (2) we have

λ{e} = lim
n→∞

λB(e, 2−n) ≤ lim
n→∞

γnλB(e, 1) = 0.

�

Lemma 2.2. Let (K, ∗) be a hypergroup, with quasi-metric ρ and Haar measure λ,
(K, ρ, λ) reverse doubling space on an identity and diam(K) < +∞. Then λ{e} = 0.

Proof. If λ(K) = +∞ then we have the validity of lemma from Lemma 2.1.

Let λ(K) < +∞. There exist two points x, y ∈ K such that ρ(x, y) >
diam(K)

2
.

Choose

0 < r <
diam(K)

8Cρ

.

Then at least one of points x and y does not belong to B(e, r). Otherwise, we have
x, y ∈ B(e, r) and

diam(K)

2
< ρ(x, y) ≤ Cρ (ρ(e, x) + ρ(e, y)) < 2Cρr <

diam(K)

4
.

The obtained contradiction shows that the ball B(e, r) is strictly contained in K. Hence
the balls B(e, 2r−n) are strictly contained in K, for integer n, and by reverse doubling
property we have

λ{e} = lim
n→∞

λB(e, 2−nr) ≤ lim
n→∞

γnλB(e, r) = 0.

�

3. Main result

Let (K, ∗) be a hypergroup, with quasi-metric ρ and Haar measure λ and 0 < β < 1.
For λ-locally integrable function f on hypergroup K, define fractional maximal operator

Mβf(x) = sup
r>0

1

λB(e, r)1−β
(|f | ∗ χB(e,r))(x)

and fractional integral

Iβf(x) = (f ∗ λB(e, ρ(e, ·))β−1)(x)

on hypergroup K. Different problems of fractional integrals and fractional maximal
operators were investigated in [5]–[7], [10]–[15].

Now formulate the main result.

Theorem 3.1. Let (K, ∗) be a hypergroup, with quasi-metric ρ and Haar measure λ,
(K, ρ, λ) reverse doubling space on an identity, ε is a positive number satisfying ε <

min{β, 1 − β}. Assume also λ(K) = +∞ or diam (K) < +∞. Then there exists a
positive constant C such that for every f ∈ L1

loc(K) and for every x ∈ K,

(3) |Iβf(x)| ≤ C

√

Mβ−εf(x)Mβ+εf(x).
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Proof. Without loss of generality we can exclude the cases where f = 0 almost everywhere
by λ or |f | = +∞ on a set of positive λ-measure. Take any x ∈ K and fix.

First assume λ(K) = +∞. Define set

(4)

{

̺ > 0 : λB(e, ̺) ≤

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

}

.

Show that this set is non-empty. Assume the contrary. Then

λB(e, ̺) >

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

for all ̺ > 0. In particular,

λB

(

e,
1

n

)

>

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

,

for an integer n. Hence we have

λ{e} = lim
n→+∞

λB

(

e,
1

n

)

≥

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

> 0.

But the last relation contradicts Lemma 2.1.
Therefore, the set (4) is non-empty. Also, this set is bounded above. Let

ξ = sup

{

̺ > 0 : λB(e, ̺) ≤

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

}

.

Take any r with
1

2
ξ < r < ξ and fix. Then

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

< λB(e, 2r) and by doubling

property

1

Cλ

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

<
1

Cλ

λB(e, 2r)

≤ λB(e, r) ≤ λB(e, ξ) ≤

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

.

Therefore, we have chose r such that

(5) λB(e, r) ∼

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

.

Fix this number r. It is clear that

(6) |Iβf(x)| ≤ |U1 (f(x), r) |+ |U2 (f(x), r) |,

where

U1 (f(x), r) =

∫

B(x,r)

T xf(y∼)λB(e, ρ(e, y))β−1dλ(y),

U2 (f(x), r) =

∫

K\B(x,r)

T xf(y∼)λB(e, ρ(e, y))β−1dλ(y).

Estimate |U1 (f(x), r) |.
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(7)

|U1 (f(x), r) | ≤

∫

B(x,r)

T x|f(y∼)|λB(e, ρ(e, y))β−1dλ(y)

=

∞
∑

k=1

∫

2−kr≤ρ(e,y)<2−k+1r

T x|f(y∼)|λB(e, ρ(e, y))β−1dλ(y)

≤
∞
∑

k=1

λB(e, 2−kr)β−1

∫

ρ(e,y)<2−k+1r

T x|f(y∼)|dλ(y)

=

∞
∑

k=1

(

λB(e, 2−k+1r)

λB(e, 2−kr)

)1−β
λB(e, 2−k+1r)ε

λB(e, 2−k+1r)1−β+ε

×

∫

ρ(e,y)<2−k+1r

T x|f(y∼)|dλ(y)

≤
∞
∑

k=1

C
1−β
λ (γε)kλB(e, r)εMβ−εf(x)

≤
C

1−β
λ

1− γε
λB(e, r)εMβ−εf(x)

Now estimate |U2 (f(x), r) |.

(8)

|U2 (f(x), r) | ≤

∫

K\B(x,r)

|T xf(y∼)|λB(e, ρ(e, y))β−1dλ(y)

≤
∞
∑

k=0

∫

2kr≤ρ(e,y)<2k+1r

T x|f(y∼)|λB(e, ρ(e, y))β−1dλ(y)

≤

∞
∑

k=0

(

λB(e, 2k+1r)

λB(e, 2kr)

)1−β
λB(e, 2k+1r)−ε

λB(e, 2k+1r)1−β−ε

∫

ρ(e,y)<2k+1r

T x|f(y∼)|dλ(y)

≤

∞
∑

k=0

C
1−β
λ (γε)k+1λB(e, r)−εMβ+εf(x)

≤
C

1−β
λ

1− γε
λB(e, r)−εMβ+εf(x)

Substituting (5) into inequalities (7) and (8), we obtain

|Iβf(x)| ≤ C

√

Mβ−εf(x)Mβ+εf(x),

when λ(K) = +∞.
Let now diam(K) < +∞. Without loss of generality we can assume λ(K) < +∞. We

have

1

λB(e, r)1−β−ε

∫

K

T x|f(y∼)|χB(e,r)(y)dλ(y)

≤ λ(K)2ε
1

λB(e, r)1−β+ε

∫

K

T x|f(y∼)|χB(e,r)(y)dλ(y)

≤ λ(K)2εMβ−εf(x).
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Hence

Mβ+εf(x) = sup
r>0

1

λB(e, r)1−β−ε

∫

K

T x|f(y∼)|χB(e,r)(y)dλ(y) ≤ λ(K)2εMβ−εf(x)

and

(9)

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

≤ λ(K) < +∞.

Define set

(10)

{

̺ > 0 : λB(e, ̺) ≤
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

}

.

Show that this set is non-empty. Assume the contrary. Then

λB(e, ̺) >
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

for all ̺ > 0. Let τ > 0 is chosen such that the ball B(e, τ) is strictly contained in
K (Repeating the method in the proof of Lemma 2.2 one can be sure the existence of

such ̺). Then the balls λB
(

e,
τ

n

)

are strictly contained in K and

λB
(

e,
τ

n

)

>

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

,

for an integer n. Hence we have

λ{e} = lim
n→+∞

λB
(

e,
τ

n

)

≥

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

> 0.

But the last relation contradicts Lemma 2.2.
Therefore, the set (10) is non-empty. By (9) we have this set is bounded above. Let

ξ = sup

{

̺ > 0 : λB(e, ̺) ≤
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

}

.

Take any r with
1

2
ξ < r < ξ and fix. Then

1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

< λB(e, 2r)

and by doubling property

1

2Cλ

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

<
1

Cλ

λB(e, 2r)

≤ λB(e, r) ≤ λB(e, ξ) ≤
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

.

We showed that if diam(K) < +∞ then one can choose r such that

(11)
1

2Cλ

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

< λB(e, r) ≤
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

.

Fix this number r. Split |Iβf(x)| as in (6). Since

λB(e, r) ≤
1

2

(

Mβ+εf(x)

Mβ−εf(x)

)
1
2ε

≤
1

2
λ(K)
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we have that the ball B(e, r) is strictly contained in K. Then the balls B(e, 2−k+1r) are
strictly contained in K for integer k and and we may apply the reverse doubling condition
to the these balls. Therefore one can be sure that the estimate (7) for |U1 (f(x), r) | is
valid when diam(K) < +∞.

Let d = min{k : k is an integer, 2kr > diam(K)} Then the sets {y : 2kr ≤ ρ (e, y) <
2k+1r} are empty, for all integer k > d− 1. Estimating |U2 (f(x), r) | we have

|U2 (f(x), r) | ≤

d−1
∑

k=0

∫

2kr≤ρ(e,y)<2k+1r

T x|f(y∼)|λB(e, ρ(e, y))β−1dλ(y)

≤
d−1
∑

k=0

(

λB(e, 2k+1r)

λB(e, 2kr)

)1−β
λB(e, 2k+1r)−ε

λB(e, 2k+1r)1−β−ε

∫

ρ(e,y)<2k+1r

T x|f(y∼)|dλ(y).

Now let j = min{i : i is an integer, 2i ≥ Cρ}. For 0 ≤ k ≤ d− 1 we have

2k−j−3r ≤
2d−1r

8Cρ

≤
diam(K)

8Cρ

.

In the proof of Lemma 2.2 we showed that the ball B(e, δ), for any 0 < δ <
diam(K)

8Cρ

, is

strictly contained in K . Hence the balls B(e, 2k−j−3r) are strictly contained in K. By
conditions (1) and (2) we have

λB(e, 2k+1r) ≥ λB(e, 2k−j−3r) ≥
λB(e, 2−j−3r)

γk
≥

λB(e, r)

C
j+3
λ γk

.

Continue the estimate of |U2 (f(x), r) |.

|U2 (f(x), r) | ≤
d−1
∑

k=0

(

λB(e, 2k+1r)

λB(e, 2kr)

)1−β
λB(e, 2k+1r)−ε

λB(e, 2k+1r)1−β−ε

∫

ρ(e,y)<2k+1r

T x|f(y∼)|dλ(y)

(12) ≤

d−1
∑

k=0

C
1−β
λ

(

λB(e, r)

C
j+3
λ γk

)−ε

Mβ+εf(x)

≤
C

1−β+ε(j+3)
λ

1− γε
λB(e, r)−εMβ+εf(x).

Substituting (11) into inequalities (7) and (12), we obtain

|Iβf(x)| ≤ C

√

Mβ−εf(x)Mβ+εf(x),

for diam(K) < +∞. Theorem is proved. �
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