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ON ISOMETRIES SATISFYING DEFORMED COMMUTATION

RELATIONS

OLHA OSTROVSKA AND ROMAN YAKYMIV

Abstract. We consider an C∗-algebra E
q
1,n, q ≤ 1, generated by isometries sat-

isfying q-deformed commutation relations. For the case |q| < 1, we prove that
E
q
1,n ≃ E0

1,n = O0
n+1

. For |q| = 1 we show that E
q
1,n is nuclear and prove that

its Fock representation is faithul. In this case we also discuss the representation
theory, in particular construct a commutative model for representations.

1. Introduction

In this paper we consider a certain perturbation of a family of pairwise orthogonal
isometries. Namely, we study properties and representation theory for the C∗-algebra
E
q
1,n generated by isometries t, sj , j = 1, n, subject to the relations

s∗i sj = 0, i 6= j, t∗sj = qsjt
∗.

In a recent paper [9] the authors study the C∗-algebra Eq
n,m with n,m ≥ 2, generated

by families {tj}
m
j=1 and {si}

n
i=1. In particular, it was shown that for |q| < 1 one has

Eq
n,m ≃ E0

n,m and for |q| = 1 the C∗-isomorphism class of the quotient of Eq
n,m by the

unique maximal ideal is independent of q and isomorphic to the tensor product of Cuntz
algebras On ⊗ Om.

We show that the result for |q| < 1 remains true for E
q
1,n and show that E

q
1,n for

|q| = 1 is nuclear and its Fock representation is faithful. We also prove an analog of the
Wold decomposition Theorem for our family of isometries and present the uniform form
(commutative model) of its representations.

2. The case |q| < 1

Here we discuss briefly the case |q| < 1. Namely we explain the way to show the
isomorphism E

q
1,n ≃ E0

1,n. Since the ideas we use are similar to the ones presented in [9],
we omit the proofs and restrict ourselves to giving basic statements.

Set s̃j = (1− tt∗)sj , j = 1, n.

Lemma 1. The following commutation relations hold:

t∗s̃j = 0, j = 1, n.

Proposition 1. For any j = 1, n, one has

sj =

∞
∑

k=0

qk tk s̃j t
∗
k.

In particular, the family {t, s̃j , j = 1, n} generates E
q
1,n.

2010 Mathematics Subject Classification. 46L05, 46L35, 46L80, 46L65, 47A67, 81R10.
Key words and phrases. Cuntz-Toeplitz algebra, q-deformation, Fock representation, commutative

model.

152



ON ISOMETRIES SATISFYING DEFORMED COMMUTATION RELATIONS 153

Suppose that E
q
1,n is realized by Hilbert space operators. Consider the left polar

decomposition s̃j = ŝj · cj , where c
2
j = s̃∗j s̃j = 1 − |q|2tt∗ > 0, implying that ŝj is an

isometry and
ŝj = s̃jc

−1
j ∈ E

q
1,n, 1 = 1, n.

Lemma 2. The following commutation relations hold:

t∗ŝj = 0, j = 1, n,

ŝ∗j ŝi = δji1, j, i = 1, n.

Summing up the results stated above, we get the following.

Theorem 1. Let ŝj = (1− tt∗)sj(1− |q|2tt∗)−1/2, j = 1, n. Then the family {t, ŝj}
n
j=1

generates E
q
1,n, and

t∗t = 1, t∗ŝj = 0, ŝ∗j ŝi = δij1, i, j = 1, n.

Corollary 1. Denote by vi, i = 1, n+ 1, the isometries generating E0
1,n = O0

n+1. Then

Theorem 1 implies that the correspondence

v1 7→ s1, v1+j 7→ ŝj , j = 1, n,

extends uniquely to a surjective homomorphism ϕ : E0
1,n → E

q
1,n.

Let us present an inverse homomorphism, ψ : Eq
n,m → E0

n,m. To do this, put

w̃j = v1+j(1− |q|2v1 v
∗
1)

1/2, j = 1, n.

Then w̃∗
j w̃j = 1− |q|2v1 v

∗
1 , and w̃

∗
j w̃i = 0 if j 6= i, j, i = 1, n. Construct

wj =

∞
∑

k=0

qkvk1 w̃j(v
k
1 )

∗, j = 1, n,

Note that the series above converges with respect to the norm in E0
1,n.

Lemma 3. The following commutation relations hold:

w∗
jwi = δji1, v∗1wj = qwjv

∗
1 , i, j = 1, n.

Lemma 4. For any r = 1,m, one has w̃j = (1− v1 v
∗
1)wj.

Theorem 2. Let vi, i = 1, n+ 1, be the isometries generating E0
1,n. Put

w̃j = v1+j(1− |q|2v1v
∗
1)

1/2 and wj =
∑

k=0

qkvk1 w̃r(v
k
1 )

∗.

Then

w∗
jwi = δji1, v∗1wj = qwjv

∗
1 , i, j = 1, n.

Moreover, the family {v1, wj}
n
j=1 generates E0

1,n.

Corollary 2. The statement of Theorem 2 and the universal property of E
q
1,n imply the

existence of a surjective homomorphism ψ : Eq
1,n → E0

1,n defined by

ψ(t) = v1, ψ(sj) = wj , i = 1, n.

Theorem 3. For any q ∈ C, |q| < 1, one has an isomorphism E
q
1,n ≃ E0

1,n.

3. The case |q| = 1

In this section, we study E
q
1,n with |q| = 1. In this case the generating relations imply

a relation of the form
sjt = qtsj , j = 1, . . . , n.
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3.1. The Fock representation of E
q
1,n, |q| = 1. In this part we construct a Fock

representation of Eq
1,n, |q| = 1, and show its faithfulness.

Definition 1. The Fock representation, πq
F , of E

q
1,n, is a unique, up to unitary equiva-

lence, irreducible ∗-representation having the vacuum vector Ω, ||Ω|| = 1, such that

π
q
F (s

∗
j )Ω = 0, π

q
F (t

∗)Ω = 0, j = 1, n.

Let S denote the unilateral shift on l2(Z+), and d1(q) : l2(Z+) → l2(Z+) be a diagonal
unitary operator defined by

d1(q)ek = qkhk, k ∈ Z+,

where hn, n ∈ Z+, are vectors of standard orthonormal basis.

Denote by πF,n the Fock representation of O
(0)
n ⊂ E

q
1,n acting on the space

Fn = T(Hn) = CΩn ⊕
∞
⊕

d=1

H⊗d
n , Hn = C

n,

by the formulas

πF,n(sj)Ωn = ej , πF,n(sj)ei1 ⊗ ei2 · · · ⊗ eid = ej ⊗ ei1 ⊗ ei2 · · · ⊗ eid ,

πF,n(s
∗
j )Ω = 0, πF,n(s

∗
j )ei1 ⊗ ei2 ⊗ · · · ⊗ eid = δji1ei2 ⊗ · · · ⊗ eid , d ∈ N,

where e1, . . . , en is the standard orthonormal basis ofHn. We also denote by dn(q) : Fn →
Fn the unitary operator such that

dn(q)Ωn = Ωn, dn(q)X = qdX, X ∈ H⊗d
n .

Theorem 4. The Fock representation of E
q
1,n exists. Up to a unitary equivalence, the

Fock space is Fq = l2(Z+)⊗ Fn and

π
q
F (t) = S ⊗ 1Fn

,

π
q
F (sj) = d1(q)⊗ πF,n(sj), j = 1, . . . , d.

Proof. Let Ω = h0 ⊗ Ωn ∈ Fq. It is easy to see that

πF (t
∗)Ω = 0, π

q
F (s

∗
j )Ω = 0, j = 1, . . . , n.

Since the pair (S, S∗) acts irreducibly on l2(Z+), and πF,n is irreducible, we get that the
family {πq

F (t), π
q
F (t

∗), πq
F (sj), π

q
F (s

∗
j )}

n
j=1 is irreducible on Fq. �

Remark 1. It follows from the main result of [7] that πq
F is faithful on ∗-subalgebra

E
q
1,n ⊂ E

q
1,n generated by t and sj , j = 1, n.

Remark 2. Below we present two another forms of generators of Eq
1,n in the Fock repre-

sentation,

π
q
F (sj) = 1l2(Z+) ⊗ πF,n(sj), j = 1, n,

π
q
F (t) = S ⊗ dn(q

−1),

or

π
q
F (sj) = d(q1/2)⊗ πF,n(sj), j = 1, n,

π
q
F (t) = S ⊗ dn(q

−1/2).

Next we show that πq
F is a faithful representation of Eq

1,n. To this end we consider the

action α of T2 on Eq
n,m,

αϕ1,ϕ2
(sj) = e2πiϕ1sj , αϕ1,ϕ2

(t) = e2πiϕ2t.

In the following we denote by Λn the set of all words in the alphabet {1, 2, . . . , n}
including the empty word.
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Proposition 2. The fixed point C∗-subalgebra (Eq
1,n)

α ⊂ E
q
1,n with respect to α is an

AF-algebra and the restriction of π
q
F to (Eq

1,n)
α is faithful.

Proof. Indeed, it is easy to see that (Eq
1,n)

α is generated by the family

(1) {tk(tk)∗sµ1
s∗ν1

, |µ1| = |ν1|, µ1, ν1 ∈ Λn, k ∈ Z+}.

Furthermore, the Fock representation of the ∗-algebra, generated by family (1) is faithful.
To finish the proof we recall that a representation of AF-C∗-algebra is faithful iff it is
faithful on finite-dimensional subalgebras. �

Corollary 3. The Fock representation of E
q
1,n is faithful.

Proof. It is easy to see that πq
F is an equivariant homomorphism between the C∗-algebras

E
q
1,n and π

q
F (E

q
1,n). It remains to notice that equivariant homomorphism between C∗-

algebras with group action is faithful iff it is faithful on fixed point subalgebras, see
[2]. �

Theorem 5. The C∗-algebra E
q
1,n is nuclear.

Proof. For q = e2πiϕ0 , consider the action αq of Z on E
q
1,n defined on the generators by

αk
q (sj) = eπikϕ0sj , αk

q (t) = e−πikϕ0t, j = 1, . . . , n, k ∈ Z.

Denote by the same symbol a similar action on E1
1,n ≃ T(C(T))⊗ O

(0)
n . Here we denote

by s̃j and t̃ the generators of E1
1,n.

We claim that for any ϕ0 ∈ [0, 1), one has an isomorphism E
q
1,n ⋊αq

Z ≃ E1
1,n ⋊αq

Z.

Recall that E1
1,n ⋊αq

Z is generated as a C∗-algebra by the elements s̃j , t̃ and a unitary
u, such that the following relations are satisfied

us̃ju
∗ = eiπϕ0 s̃j , ut̃u∗ = e−iπϕ0 t̃, j = 1, n.

Put ŝj = s̃ju and t̂ = t̃u. Obviously, ŝj , t̂r and u generate E1
1,n ⋊αq

Z. Further,

ŝ∗j ŝk = δjk1, t̂∗t̂ = 1,

and

ŝj t̂ = s̃jut̃u = e−iπϕ0 s̃j t̃u
2 = e−iπϕ0 t̃s̃ju

2 = e−2πiϕ0 t̃us̃ju = q̄ ŝj t̂.

In a similar way we get ŝ∗j t̂ = qt̂ŝ∗j , j = 1, n. Finally,

uŝju
∗ = eiπϕ0 ŝj , ut̂u∗ = e−iπϕ0 t̂.

Hence the correspondence

sj 7→ ŝj , t 7→ t̂, u 7→ u,

determines a homomorphism Φq : E
q
1,n ⋊αq

Z → E1
1,n ⋊αq

Z. The inverse is constructed
evidently.

Recall that C∗(t, t∗ | t∗t = 1) ≃ T(C(T)), the algebra of Toeplitz operator with

continuous symbol. Let us show nuclearity of Eq
1,n. Indeed, E1

1,n = T(C(T)) ⊗ O
(0)
n is

nuclear. Then so is the crossed product E1
1,n⋊αq

Z. Then due to the above isomorphism,

E
q
1,n ⋊αq

Z is nuclear, implying nuclearity of Eq
1,n, see [1]. �

Now we prove an analogue of the Wold decomposition theorem. Denote

Q =

n
∑

j=1

sjs
∗
j , P = tt∗.
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Theorem 6 (Generalised Wold decomposition). Let π : Eq
1,n → B(H) be a ∗-representa-

tion. Then

H = H1 ⊕H2 ⊕H3 ⊕H4,

where each Hj, j = 1, 2, 3, 4, is invariant with respect to π, and for πj = π ↾Hj
one has

• H1 = F ⊗K for some Hilbert space K, and π1 = π
q
F ⊗ 1K;

• H2 = l2(Z+)⊗ G2, π2(1−Q) = 0, π2(1− P ) 6= 0,

π1(t) = S ⊗ 1, π1(sj) = d1(q)⊗ π̃1(sj), j = 1, n,

where the operators π̃1(sj) determine representation of On on G2;

• H3 = Fn ⊗ G3, π3(1− P ) = 0, π3(1−Q) 6= 0,

π(sj) = πF,n(sj)⊗ 1, π(t) = dn(q
−1)⊗ U,

where U is unitary on G3;

• π4(1−Q) = 0, π4(1− P ) = 0,

where any of Hj, j = 1, 2, 3, 4, could be zero.

Proof. Let π be a representation of Eq
1,n acting on H. Suppose that π(1 − Q) 6= 0 and

π(1− P ) 6= 0. Put K = kerP ∩ kerQ. Then the minimal invariant subspace H1 ⊂ H is
isomorphic to F ⊗K and the restriction of π to H1 is unitary equivalent to πF ⊗ 1K.

Consider the restriction of π to H⊥
1 . We keep for it the same notations, and put

π(t) = T , π(sj) = Sj . If π(1 − P ) 6= 0, i.e. kerT ∗ 6= {0}, put G2 = kerT ∗. It is easy to
see that

H2 =
⊕

n∈Z+

Tn(G2) ⊂ H⊥
1

is invariant with respect to T , T ∗, Sj , S
∗
j , j = 1, n, H2 ≃ l2(Z+) ⊗ G2. Let π2 be a

restriction of π to H2. Then

π2(t) = S ⊗ 1G2
, π2(sj) = d1(q)⊗ π̃2(sj), j = 1, n,

where
∑n

j=1 π̃2(sjs
∗
j ) = 1G2

. Further, decompose H⊥
1 = H2 ⊕H⊥

2 . Notice that

kerπ(1− T ) ∩H⊥
2 = {0}.

Suppose that kerπ(1−Q) ∩H⊥
2 6= {0}. Put G3 = kerπ(1−Q) ∩H⊥

2 6= {0}. Construct

H3 =
⊕

λ∈Λn

Sλ(G3).

It is invariant with respect to T , Sj , S
∗
j , j = 1, n. Denote by π3 the restriction of π to

H3. Then

π3(sj) = πF,n(sj)⊗ 1G3
, π3(t) = dn(q

−1)⊗ U, j = 1, n,

where U is unitary on G3.
Finally, put H4 to be the orthogonal complement of H3 in H⊥

2 . Evidently 1− P = 0
and 1−Q = 0 on H4. �

3.2. Representations of E
q
1,n. In this part we describe classes of unitary equivalence of

representations of Eq
1,n such that the unitary part in the Wold decomposition of isometry

corresponding to some of sj , j = 1, n, is non-zero.
In the following for a fixed representation π of Eq

1,n we denote π(t) by T and π(sj) by

Sj , j = 1, n. Below we denote by

Λj
n = {λ = (λ1, . . . , λk) | 1 ≤ λj ≤ n, λk 6= j, k ∈ N}.

We also denote by Sλ := Sλ1
· · ·Sλk

.
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Proposition 3. Let π : Eq
1,n → B(H) be a representation such that for some j the unitary

part of Sj = π(sj) is non-zero. Denote by Hu,j ⊂ H the largest subspace invariant with

respect to Sj, S
∗
j , such that the restriction of Sj is unitary. Then Hu,j is invariant with

respect to T , T ∗,

S∗
k(Hu,j) = {0}, Sλ(Hu,j) ⊥ Sµ(Hu,j), k 6= j, λ 6= µ, λ, µ ∈ Λj

n.

Proof. To show that Hu,j is invariant with respect to T we recall that

Hu,j =
∞
⋂

k=1

Sk
j (H).

Then the result follows from the commutation relations T ∗Sj = qSjT
∗ , SjT = qTSj .

Further for k 6= j and x ∈ Hu,j one has

S∗
kx = S∗

k(SjS
∗
j x) = 0.

Let us show that for x, y ∈ Hu,j and λ ∈ Λj
n one has (Sλx, y) = 0. Indeed let m be the

first number such that λm 6= j, i.e., λ = (j, . . . , j, λm, . . . , λk). Since Hu,j is invariant
with respect to Sj , S

∗
j , one has

(

x, Sλy
)

=
(

(S∗
j )

nx, Sλm
· · ·Sλk

y
)

= 0,

where in the last equality we use the fact that S∗
λm

(Hu,j) = {0}. Let |µ| < |λ|, λ, µ ∈ Λj
n.

Then λ = λ̃λ̂, |λ̃| = |µ|, λ̃ ∈ Λj
n, and
(

Sλx, Sµy
)

= δλ̃µ
(

Sλ̂x, y
)

= 0.

Finally, recall that if |λ| = |µ|, then S∗
λSµ = δλµ implying

(

Sλx, Sµy
)

= 0, λ 6= µ, x, y ∈ Hu,j . �

Remark 3. 1. By a similar arguments one can show that if
(

x, y
)

= 0, x, y ∈ Hu,j , then
(

Sλx, Sµy
)

= 0 for any λ, µ ∈ Λj
n.

2. The subspace

H̃ = Hu,j ⊕
⊕

λ∈Λj
n

Sλ(Hu,j)

is invariant with respect to the operators of π.

Suppose that the conditions of Proposition 3 are satisfied, and denote by T̃ and Vj
the restrictions of T and Sj respectively to Hu,j .

Proposition 4. Let π : Eq
1,n → B(H) and 1 ≤ j ≤ n be such that π(sj) has a non-

trivial unitary part, and H = H̃ introduced above. Then π is irreducible iff the family

{T̃ , T̃ ∗, Vj} is irreducible on Hu,j.

Proof. Suppose that G ⊂ Hu,j is invariant with respect to T , T ∗ and Vj . Then Proposi-
tion 3 and Remark 3 imply that the subspace

G⊕
⊕

λ∈Λj
n

Sλ(G)

is non-trivial and invariant with respect to the operators of π. �

Proposition 5. Let πk : E
q
1,n → Hk, k = 1, 2, be irreducible representations such that

πk(sj) have non-trivial unitary parts. Then π1 is unitary equivalent to π2 iff the corre-

sponding families Fk = {T̃k, T̃
∗
k , Vj,k}, k = 1, 2, acting on H

(k)
u,j, are unitary equivalent.
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Proof. Suppose that π1 is unitary equivalent to π2. Let U : H1 → H2 be a unitary

operator intertwining π1 and π2. It is easy to deduce that U : H
(1)
u,j → H

(2)
u,j . Indeed, for

any m ∈ N one has

U((S
(1)
j )m(H1)) ⊂ (S

(2)
j )m(U(H1)) = (S

(2)
j )m(H2).

Hence U intertwines the families F1 and F2.

Conversely, let the families F1 and F2 be unitarily equivalent and Ũ : H
(1)
u,j → H2

u,j be
a unitary operator intertwining them. Construct an operator U : H1 → H2 by the rule

U(x) = Ũ(x), U(S
(1)
λ x) = S

(2)
λ (Ũx), x ∈ H

(1)
u,j .

Then Proposition 3 and Remark 3 imply that U is a unitary operator intertwining the
representations π1 and π2. �

Combining the results of Propositions 4, 5, we get the following statement.

Theorem 7. Let π be an irreducible representation of E
q
1,n on the space H such that

for a fixed 1 ≤ j ≤ n the isometry Sj = π(sj) has a non-trivial unitary part in its

Wold decomposition. Then π is determined uniquely, up to a unitary equivalence, by the

irreducible family of operators {T̃ , T̃ ∗, Vj} on the Hilbert space G, satisfying the relations

T̃ ∗T̃ = 1, V ∗
j Vj = VjV

∗
j = 1, T̃ ∗Vj = qVj T̃

∗, Vj T̃ = qT̃Vj .

Namely, let f (i), i ∈ I be an orthonormal basis of SkG. Then the orthonormal basis of

H has the form

f (i) ⊗ f∅, f (i) ⊗ fλ, i ∈ I, λ ∈ Λj
n,

and i ∈ I,

Sjf
(i) ⊗ f∅ = (Vjf

(i))⊗ f∅, T f (i) ⊗ f∅ = (T̃ f (i))⊗ f∅,

Skf
(i) ⊗ f∅ = f (i) ⊗ f(k), k 6= j, Skf

(i) ⊗ fλ = f (i) ⊗ fσk(λ), k = 1, n, i ∈ I,

S∗
kf

(i) ⊗ f∅ = 0, k 6= j, S∗
kf

(i) ⊗ fλ = δkλ1
f (i) ⊗ fσ(λ), k = 1, n, i ∈ I,

T f (i) ⊗ fλ = q−|λ|(T̃ f (i))⊗ fλ, T ∗f (i) ⊗ fλ = q|λ|(T̃ ∗f (i))⊗ fλ, λ ∈ Λj
n,

where σk(λ) = (kλ), σ((λ1)) = ∅, σ((λ1, . . . , λm)) = (λ2, . . . , λm).

3.3. Commutative model for representations. The generalized Wold decomposi-
tion for representations of Eq

1,n, Theorem 6, implies in particular, that any irreducible

representation of Eq
1,n contains only one component Hi, j = 1, 2, 3, 4. In H1, H2, H3 all

representations are described either explicitly or in terms of representations of On. Here,
we give a general form of representations in H4 (commutative model with respect to a
commutative subalgebra).

The defining relations in E
q
1,n imply that in H = H4, the operator T is unitary, and

the operators Pλ = SλS
∗
λ form a commutative family of projections, all of them commute

with T , and
∑

|λ|=k

Pλ = I, k = 1, 2, . . . .

Following [11], we write the joint spectral decomposition of the commuting family (T, Pλ |
λ ∈ {1, . . . , n}∞0 ) as

T =

∫

T×{1,...,n}∞

t dE(t, λ), T× {1, . . . , n}∞ ∋ (t, λ) = (t, λ1, λ2, . . . ),

Pλ =

∫

T×{1,...,n}∞

χλ×{1,...,n}∞(λ) dµ(t, λ) = E(T× µ× {1, . . . , n}∞).
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For each j = 1, . . . , n, we have

TSj = q̄SjT, PλSj = δλ1,jSjPσ(λ),

and applying general commutative model formalism of [11] we obtain the following real-
ization of representations of Eq

1,n.

Theorem 8. For any representation of E
q
1,n in the component H4 of the generalized

Wold decomposition, the following holds. The space H = H4 decomposes into a direct

integral

H =

∫ ⊕

T×{1,...,n}∞

Ht,λ dµ(t, λ) (t, λ) = (t, λ1, λ2, . . . ),

and the operators act by the following formula:

(Uf)(t, λ) = tf(t, λ),

(Sjf)(t, λ) = δj,λ1
Uj(q̄t, σ(λ))

(dδj(λ1)⊗ µ(q̄t, σ(λ))

dµ(t, λ)

)1/2

f(q̄t, σ(λ)),

(S∗
j f)(t, λ) = U∗

j (qt, λ)
(dµ(qt, σj(λ))

dµ(t, λ)

)1/2

f(qt, σj(λ)).

Here, µ is a probability measure defined on the cylinder σ-algebra, quasi-invariant with

respect to the transformations µ(t, λ) 7→ (qt, σj(λ)), j = 1, . . . , n; Ht,λ is a measurable

field of Hilbert spaces such that dimHt,λ = dimHqt,σj(λ) µ-a.e.; Uj(t, λ), j = 1, . . . , n,
are measurable unitary operator-valued functions.

Conversely, any quasi-invariant measure µ, measurable field Ht,λ with dimHt,λ =
dimHqt,σj(λ) µ-a.e., and a collection of measurable unitary Uj(t, λ), j = 1, . . . , n, give

rise to a representation of E
q
1,n in the component H4 of the generalized Wold decomposi-

tion.

The simplest class of representations arise as follows. Take any point (t0, λ0) ∈ T ×
{1, . . . , n}∞ and consider its orbit Ot0,λ0

under the mappings (t, λ) 7→ (q̄t, σ(λ)), (t, λ) 7→
(qt, σj(λ)), j = 1, . . . , n. Let µ be the atomic measure uniformly distributed over the
points of Ot0,λ0

, Ht,λ = C, Uj(t, λ) = 1, j = 1, . . . , n. Then the basis of H is et,λ,
(t, λ) ∈ Ot0,λ0

, and

Tet,λ = tet,λ, Sjet,λ = eqt,σj(λ), S∗
j et,λ = δj,λ1

eq̄t,σ(λ),

j = 1, . . . , n. All such representations are irreducible, and the representations correspond-
ing to (t0, λ0) and (t′0, λ

′
0) are unitarily equivalent if and only if these points belong to

the same orbit. Notice that the representations corresponding to the points (t, (j, j, . . . )),
j = 1, . . . , n, fall in, but does not cover the class of representations studied in the previous
section.
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