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SUBSCALARITY OF k-QUASI-CLASS A OPERATORS

M. H. M. RASHID

Abstract. In this paper, we show that every k-quasi-class A operator has a scalar

extension and give some spectral properties of the scalar extensions of k-quasi-class
A operators. As a corollary, we get that such an operator with rich spectrum has a
nontrivial invariant subspace.

1. Introduction

Let H and K be separable complex Hilbert spaces, and let B(H ,K ) denote the
algebra of all bounded linear operators from H to K . When H = K , we write B(H )
for B(H ,H ). Throughout this paper, the range and the null space of an operator T
will be denoted by R(T ) and ker(T ), we write σ(T ), σa(T ), and σe(T ) for the spectrum,
the approximate point spectrum, and the essential spectrum, respectively. An operator
T ∈ B(H ) is said to be p-hyponormal if (T ∗T )p ≥ (TT ∗)p, where 0 < p < ∞. In
particular, 1-hyponormal operator and 1

2 -hyponormal operators are called hyponormal
operator and semi-hyponormal operators, respectively.

An arbitrary operator T ∈ B(H ) has a unique polar decomposition T = U |T |, where
|T | = (T ∗T )1/2 and U is a partial isometry satisfying ker(U) = ker(|T |) = ker(T ) and
ker(U∗ = ker(T ∗). Associated with T is the operator |T |1/2U |T |1/2 called the Aluthge

transform of T , and denoted throughout this paper by T̂ . For every T ∈ B(H ), the

sequence {T̂ (n)} of Aluthge iterates of T is defined by T̂ (0) = T and T̂ (n+1) =
̂̂
T (n) for

every positive integer n (see [2] and [11]).

An operator T ∈ B(H ) is said to be w-hyponormal if |T̂ | ≥ |T | ≥ |T̂ ∗| (see [3]),

and paranormal if ‖Tx‖
2
≤

∥∥T 2x
∥∥ ‖x‖ for all x ∈ H . We say that T ∈ B(H ) is

normaloid if ‖T‖ = r(T ), where r(T ) is the spectral radius of T . It is well-known that
every p-hyponormal operator is w-hyponormal and that every w-hyponormal operator is
normaloid. Furuta et al. [7] introduced the following interesting class of Hilbert space
operators: We say that T ∈ B(H ) belongs to class A if |T 2| ≥ |T |2. It is known that

{Hyponormal} ⊂ {w-hyponormal} ⊂ {Class A} ⊂ {Paranormal}.

More recently, the authors of [9] have extended class A operators to quasi-class A ope-
rators. An operator T ∈ B(H ) is said to be quasi-class A if T ∗|T 2|T ≥ T ∗|T |2T , and

quasi-paranormal if ‖TTx‖
2
≤

∥∥T 3x
∥∥ ‖Tx‖ for all x ∈ H . Hence we have the following

inclusion:

{class A} ⊂ {quasi-class A} ⊂ {quasi-paranormal}.

As a further generalization, Tanahashi et al. [20] introduced the class of k-quasi-class A
operators. An operator T is said to be a k-quasi-class A operator if

T ∗k(|T 2| − |T |2)T k ≥ 0,

where k is a positive integer number.
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An operator T ∈ B(H ) is called scalar of orderm if it possesses a spectral distribution
of order m, i.e. a continuous unital morphism of topological algebras

ψ : Cm
0 (C) → B(H )

such that ψ(z) = T , where as usual z stands for the identity function on Cm
0 , the complex-

valued continuously differentiable functions of order m, 0 ≤ m ≤ ∞. An operator is said
to be subscalar of order m if it is similar to the restriction of a scalar operator of order
m to an invariant subspace.

In 1984, M. Putinar [16] showed that every hyponormal operator has a scalar extension.
In 1987, his theorem was used to show that hyponormal operators with thick spectra have
nontrivial invariant subspaces, a result due to S. Brown (see [5]). Recently, S. Jung et
al. [10] showed that every class A operator has a scalar extension. In particular, such
operators with rich spectra have nontrivial invariant subspaces. Also they give some
spectral properties of the scalar extension of a class A operator. In 2018, his theorem was
used to show that w-hyponormal operators with thick spectra have nontrivial invariant
subspaces, a result due to M. H. M. Rashid (see [18]). In this paper, we show that
every k-quasi-class A operator has a scalar extension and give some spectral properties
of the scalar extensions of k-quasi-class A operators. As a corollary, we get that such an
operator with rich spectrum has a nontrivial invariant subspace.

2. Preliminaries

Let z be the coordinate in C, and let dµ(z), or simply dµ, denote the planar Lebesgue
measure. Let U be a bounded open subset of C. We shall denote by L2(U,H ) the
Hilbert space of measurable functions f : U → H such that

‖f‖2,U =

(∫

U

‖f(z)‖
2
dµ

) 1
2

<∞.

We denote the space L2(U,H )∩H(U,H ) by A2(U,H ) where H(U,H ) is the Fréechet
space of analytic (holomorphic) H -valued functions on U . Then A2(U,H ) is a closed
subspace of the L2(U,H ), and the orthogonal projection of L2(U,H ) onto this space
will be denoted by P .

Now, we introduce a special Sobolev type space. Let U be a bounded open subset of C
and m be a fixed nonnegative integer. Then the Sobolev spaceWm(U,H ) is the space of

functions f ∈ L2(U,H ) whose derivatives ∂f, ∂
2
f, . . . , ∂

m
f in the sense of distributions

still belong to L2(U,H ). Endowed with the norm

‖f‖
2
Wm =

m∑

i=0

∥∥∥∂if
∥∥∥
2

2,U
,

Wm(U,H ) becomes a Hilbert space contained continuously in L2(U,H ). The linear
operator M of multiplication by z on Wm(U,H ) is continuous and it has a spectral
distribution ψ of order m defined by the following relation: for φ ∈ Cm

0 (C) and f ∈
Wm(U,H ), ψ(φ)f = φf . Hence M is a scalar operator of order m.

An operator T ∈ B(H ) is said to have the single-valued extension property at z0 if for
every neighborhood D of z0 and any analytic function f : D → H with (T − z)f(z) = 0,
we have f(z) ≡ 0. An operator T ∈ B(H ) is said to have the single-valued extension
property (or SVEP) if it has the single-valued extension property at every z in C. For an
operator T ∈ B(H ) with SVEP and for x ∈ H we can consider the set ρT (x) of elements
z0 in C such that there exists an analytic function f(z) defined in a neighborhood of z0,
with values in H , which satisfies (T − z)f(z) ≡ x. We denote σT (x) = C \ ρT (x) and
HT (F ) = {x ∈ H : σT (x) ⊂ F}, where F is a subset of C . An operator T ∈ B(H ) is
said to have Dunford’s property (C) if HT (F ) is closed for each closed subset F of C.
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An operator T ∈ B(H ) is said to have property (δ) if for every open covering (U, V ) of
C, H = HT (U) + HT (V ). It is well known that that the adjoint of a bounded linear
operator on a Hilbert space with the property (β) has the property (δ) (see [1]). An
operator T ∈ B(H ) is said to have the property (β) if for every open subset G of C
and every sequence fn : G→ H of H -valued analytic functions such that (T − z)fn(z)
converges uniformly to 0 in norm on compact subsets of G, fn(z) converges uniformly to
0 in norm on compact subsets of G. It is well-known that

Property (β) ⇒ Dunford’s property (C) ⇒ SVEP.

The SVEP of operators was first introduced by N. Dunford to investigate a class
of spectral operators; this is another important generalization of normal operators (see
[15]). In local spectral theory, for a given operator T on a complex Banach space X and
a vector x ∈ X , one is often interested in the existence and uniqueness of an analytic
solution f(.) : U → X of the local resolvent equation

(T − z)f(z) = x

on a suitable open subset U of C. Clearly, if T has the SVEP, then the existence of an
analytic solution to any local resolvent equation (related to T ) implies the uniqueness
of its analytic solution. The SVEP is possessed by many important classes of operators
such as hyponormal operators and decomposable operators.

The most satisfactory generalization of normal operators on a Hilbert space to a
general Banach space is the concept of decomposable operators. These operators possess
a spectral theorem and rich lattice structure for which it is possible to develop what is
called local spectral theory, i.e., a local spectral analysis. Decomposability can be defined
in several ways, for instance, by the concept of a local spectral subspace.

Definition 2.1. An operator T ∈ B(H ) is said to be decomposable if T has both the
Dunford property (C) and property (δ).

Standard examples of decomposable operators are normal operators on Hilbert spaces
and operators that have totally disconnected spectra. Recall that an operator X ∈
B(H ,K ) is quasiaffinity if it has a trivial kernel and dense range. An operator S ∈
B(H ) is said to be a quasiaffine transform of T ∈ B(K ) if there is a quasiaffinity
X ∈ B(H ,K ) such that XS = TX. Furthermore, S and T are quasisimilar if there
are quasiaffinities X and Y such that XS = TX and SY = Y T .

Two important subspaces in local spectral theory and Fredholm theory are HT ({λ}),
which is associated with the singleton {λ}, andHT (C\{λ}). Note thatHT ({λ}) coincides
with the quasi-nilpotent part of an operator λ− T , defined by

H0(λ− T ) = {x ∈ H : lim
n−→∞

‖(λ− T )nx‖
1
n = 0}.

Clearly, ker(λ − T )n ⊆ H0(λ − T ) for every n ∈ N. Also, we note that HT (C \ {λ})
coincides with the analytic core K(λ− T ) which is defined by the set of all x ∈ H such
that there exists a constant c > 0 and a sequence of elements xn ∈ H such that x0 = x,
Txn = xn−1, and ‖xn‖ ≤ cn ‖x‖ for all n ∈ N. In general, H0(λ− T ) and K(λ− T ) are
not closed. Furthermore,

the closdness of H0(λ− T ) ⇒ T has the SVEP at λ.

Definition 2.2. An operator T ∈ B(H ) is said to have property (Q) if H0(λ − T ) is
closed for all λ ∈ C.

It follows that

Property (β) ⇒ Dunford’s property (C) ⇒ Property (Q) ⇒ SVEP.
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3. Main Results

In this section, we will show that every k-quasi-class A operator has a scalar extension.
For this, we begin with the following lemmas.

Lemma 3.1. [16, Proposition 2.1] For a bounded open disk D in the complex plane C,
there is a constant CD such that for an arbitrary operator f ∈ B(H ) and f ∈W k(D,H )
we have

∥∥∥(I − P )∂
i
f
∥∥∥
2,D

≤ CD

(∥∥∥(T − z)∗∂
i+1

f
∥∥∥
2,D

+
∥∥∥(T − z)∗∂

i+2
f
∥∥∥
2,D

)

for i = 0, 1, . . . , k − 2, where P denotes the orthogonal projection of L2(D,H ) onto the
Bergman space A2(D,H ).

Lemma 3.2. Let T be a class A operator and let D be a bounded disc in C. If {fn} is
a sequence in Wm(D,H ) (m ≥ 3) such that

lim
n→∞

∥∥∥(T − z)∂
i
fn

∥∥∥
2,D

= 0

for i = 1, 2, . . . ,m, then limn→∞

∥∥∥∂ifn
∥∥∥
2,D0

= 0 for i = 1, 2, . . . ,m − 2, where D0 is a

disc strictly contained in D and P denotes the orthogonal projection of L2(D,H ) onto
the Bergman space A2(D,H ).

Proof. Since T belongs to class A, by Lemma 3.1, there exists a constant CD such that

(3.1)
∥∥∥(I − P )∂

i
fn

∥∥∥
2,D

≤ CD

(∥∥∥(T − z)∗∂
i+1

fn

∥∥∥
2,D

+
∥∥∥(T − z)∗∂

i+2
fn

∥∥∥
2,D

)

for i = 0, 1, 2, . . . ,m− 2. From (3.1), we have

(3.2) lim
n→∞

∥∥∥(I − P )∂
i
fn

∥∥∥
2,D

= 0

for i = 0, 1, 2, . . . ,m− 2. So, it holds that

lim
n→∞

∥∥∥(T − z)∂
i
fn

∥∥∥
2,D

= 0

for i = 0, 1, 2, . . . ,m− 2. Since T has the property (β), we have

(3.3) lim
n→∞

∥∥∥P∂ifn
∥∥∥
2,D0

= 0

for i = 0, 1, 2, . . . ,m − 2, where D0 denotes a disc with D0 ⊂ D. From (3.2) and (3.3),
we have

lim
n→∞

∥∥∥∂ifn
∥∥∥
2,D0

= 0

for i = 0, 1, 2, . . . ,m− 2. �

Next lemma is the important result for the proof of our main theorem.

Lemma 3.3. Let T =

(
T1 T2
0 T3

)
be an operator defined on H ⊕K , where T1 is class A

and T3 is nilpotent of order k and let D be a bounded disc in C containing σ(T ). Define
the map F : H ⊕ K → H(D) by

Fh = 1̃⊗ h(≡ 1⊗ h+ (T − z)W 12+2k(D,H )⊕W 12+2k(D,K ),

where

H(D) :=W 12+2k(D,H )⊕W 12+2k(D,K )/(T − z)W 12+2k(D,H )⊕W 12+2k(D,K )

and 1 ⊗ h denotes the constant function sending any z ∈ D to h. Then F is injective
and has closed range.
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Proof. Let fn = (f1n, f
2
n)

t ∈ W 12+2k(D,H ) ⊕ W 12+2k(D,K ) and hn = (h1n, h
2
n)

t ∈
H ⊕ K be sequences such that

(3.4) lim
n→∞

‖(T − z)fn + 1⊗ hn‖W 12+2k(D,H )⊕W 12+2k(D,K ) = 0.

Then from (3.4) we have the following equations:

(3.5)
lim
n→∞

∥∥(T1 − z)f1n + T2f
2
n + 1⊗ h1n

∥∥
W 12+2k = 0,

lim
n→∞

∥∥(T3 − z)f2n + 1⊗ h2n
∥∥
W 12+2k = 0.

The definition of the norm for the Sobolev space and (3.5) implies that

(3.6)

lim
n→∞

∥∥∥(T1 − z)∂
i
f1n + T2∂

i
f2n

∥∥∥
2,D

= 0,

lim
n→∞

∥∥∥(T3 − z)∂
i
f2n

∥∥∥
2,D

= 0

for i = 1, 2, . . . , 12 + 2k.
We claim that the following equation holds for every j = 0, 1, . . . , k

(3.7) lim
n→∞

∥∥∥T k−j
3 ∂

i
f2n

∥∥∥
2,Dj

= 0

for i = 1, 2, . . . , 2k − 2j + 12, where σ(T ) ⊂ Dk ⊂ Dk−1 ⊂ D1 ⊂ D0 = D.
To prove our claim, we will apply the induction on j. Since T k

3 = 0. The equation
(3.7) holds obviously when j = 0. Suppose that the claim is true for j = s < k. Then

(3.8) lim
n→∞

∥∥∥T k−s
3 ∂

i
f2n

∥∥∥
2,Ds

= 0

for i = 1, 2, . . . , 2k − 2s+ 12. By the second equation of (3.6) and (3.8), we get that

lim
n→∞

∥∥∥zT k−s−1
3 ∂

i
f2n

∥∥∥
2,Ds

= 0

for i = 1, 2, . . . , 2k − 2s+ 12. By applications of Lemma 3.2, we obtain

lim
n→∞

∥∥∥T k−s−1
3 ∂

i
f2n

∥∥∥
2,Ds+1

= 0

for i = 1, 2, . . . , 2k− 2s+10, where σ(T ) ⊂ Ds+1 ⊂ Dr. Hence we complete the proof of
our claim. From our claim with j = k, we have

(3.9) lim
n→∞

∥∥∥∂if2n
∥∥∥
2,Dk

= 0

for i = 1, 2, . . . , 12, which implies that

(3.10) lim
n→∞

∥∥∥z∗∂if2n
∥∥∥
2,Dk

= 0

for i = 1, 2, . . . , 12. By using Lemma 3.1 with the zero operator, we get from (3.10) that

(3.11) lim
n→∞

∥∥(I − PK )f2n
∥∥
2,Dk

= 0,

where PK denotes the orthogonal projection of L2(Dk,K ) onto A2(Dk,K ). By (3.9),
it holds that

(3.12) lim
n→∞

∥∥∥T2∂
i
f2n

∥∥∥
2,Dk

= 0

for i = 1, 2, . . . , 12. By combining (3.12) with the first equation of (3.6), we obtain that

lim
n→∞

∥∥∥(T1 − z)∂
i
f1n

∥∥∥
2,Dk

= 0

for i = 1, 2, . . . , 12. Thus

(3.13) lim
n→∞

∥∥∥(T 2
1 − z2)∂

i
f1n

∥∥∥
2,Dk

= 0
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for i = 1, 2, . . . , 12. Let T 2
1 = U |T 2

1 | and T̂
2
1 = V |T̂ 2

1 | be the polar decomposition of T 2
1

and T̂ 2
1 , respectively. Since T̂

2
1 |T

2
1 |

1
2 = |T 2

1 |
1
2T 2

1 and T̂ 2
1

(2)
|T̂ 2

1 |
1
2 = |T̂ 2

1 |
1
2 T̂ 2

1 , we have

(3.14)

lim
n→∞

∥∥∥(T̂ 2
1 − z2)∂

i
|T 2

1 |
1
2 f1n

∥∥∥
2,Dk

= 0,

lim
n→∞

∥∥∥∥(T̂ 2
1

(2)
− z2)∂

i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥∥
2,Dk

= 0

for i = 1, 2, . . . , 12. Since T1 belongs to class A, it follows from [8] that T 2
1 is w-

hyponormal operator, and so T̂ 2
1 is semi-hyponormal and T̂ 2

1

(2)
is hyponormal by the

definition of a w-hyponormal operator and [3]. Hence, it follows from (3.14) that

(3.15) lim
n→∞

∥∥∥∥(T̂ 2
1

(2)
− z2)∗∂

i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥∥
2,Dk,1

= 0

for i = 1, 2, . . . , 12. By Theorem 3.1 of [13], there exists a constant CDk,1
such that

(3.16)

∥∥∥(I − PH )∂
i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥
2,Dk,1

≤

CD

4+i∑

j=2+i

∥∥∥∥(T̂ 2
1

(2)
− z2)∗∂

i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥∥
2,Dk,1

for i = 0, 1, . . . , 8, where PH denotes the orthogonal projection of L2(Dk,1,H ) onto
A2(Dk,1,H ). From (3.15) and (3.16), we obtain

(3.17) lim
n→∞

∥∥∥(I − PH )∂
i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥
2,Dk,1

= 0

for i = 1, . . . , 8. Thus, by (3.14) and (3.17),

(3.18) lim
n→∞

∥∥∥∥(T̂ 2
1

(2)
− z2)P∂

i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥∥
2,Dk,1

= 0

for i = 1, . . . , 8. Since T̂ 2
1

(2)
is hyponormal, it has the property (β). Hence

(3.19) lim
n→∞

∥∥∥PH ∂
i
|T̂ 2

1 |
1
2 |T 2

1 |
1
2 f1n

∥∥∥
2,Dk,1

= 0

for i = 1, . . . , 8, where σ(T ) ( Dk,1 ( D. From (3.17) and (3.19), we get

(3.20) lim
n→∞

∥∥∥|T̂ 2
1 |

1
2 |T 2

1 |
1
2 ∂

i
f1n

∥∥∥
2,Dk,1

for i = 1, . . . , 8. Since T̂ 2
1 |T

2
1 |

1
2 = |T 2

1 |
1
2T 2

1 , from (3.14) and (3.20) we obtain

(3.21) lim
n→∞

∥∥∥z4∂if1n
∥∥∥
2,Dk,1

= 0

for i = 1, . . . , 8. By Theorem 3.1 of [13], there exists a constant CDk,1
such that

(3.22)
∥∥(I − PH )f1n

∥∥
2,Dk,1

≤ CDk,1

8∑

i=4

∥∥∥z4∂if1n
∥∥∥
2,Dk,1

,

where PH denotes the orthogonal projection of L2(Dk,1,H ) onto the Bergman space
A2(Dk,1,H ). By (3.21) and (3.22), it follows that

(3.23) lim
n→∞

∥∥(I − PH )f1n
∥∥
2,Dk,1

= 0.

Combining (3.23) with (3.11), we have

(3.24) lim
n→∞

∥∥(I − PH )f1n
∥∥
2,Dk,1

= lim
n→∞

∥∥(I − PK )f2n
∥∥
2,Dk,1

= 0.
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Set Pfn =

(
PH f1n
PK f2n

)
. Combining (3.24) with (3.4)

lim
n→∞

‖(T − z)Pfn + 1⊗ hn‖2,Dk,1
= 0.

Let Γ be a curve in Dk,1 surrounding σ(T ). Then

lim
n→∞

∥∥Pfn(z) + (T − z)−1(1⊗ hn)(z)
∥∥ = 0

uniformly for all z ∈ Γ. Applying the Riesz-Dunford functional calculus, we obtain that

lim
n→∞

∥∥∥∥
1

2πi

∫

Γ

Pfn(z)dz + hn

∥∥∥∥ = 0.

But by Cauchy’s theorem, 1
2πi

∫
Γ
Pfn(z)dz = 0 and so

lim
n→∞

‖hn‖ = 0.

Hence F is injective and has closed range. �

Now we are ready to show that every k-quasi-class A operator has a scalar extension.

Theorem 3.4. Every k-quasi-class A operator is subscalar of order 2k + 12.

Proof. Suppose that T ∈ B(H ) is a k-quasi-class A operator. If R(T k) is dense in H ,
then T is class A, and so T is subscalar of order 12 by [10]. Now assume that R(T k) is
not dense in H . By [20], we have the following matrix representation of T with respect

to the decomposition H = R(T k) ⊕ ker(T ∗k): T =

(
T1 T2
0 T3

)
, where T1 belongs to

class A on R(T k) and T3 is nilpotent of order k. Let D be a bounded open disk in C
containing σ(T ). Define an operator F : H → H(D) by Fh = 1̃⊗ h as in Lemma 3.3,
where

H(D) :=W 12+2k(D,R(T k))

⊕W 12+2k(D, ker(T ∗k))/(T − z)W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)).

Then F is injective and has closed range. The class of a vector f or an operator S on

H(D) will be denoted by f̃ , respectively S̃. Let M be the operator of multiplication by

z on W 12+2k(D,R(T k)) ⊕W 12+2k(D, ker(T ∗k)). Then M is a scalar operator of order
12+2k and has a spectral distribution φ. Since the range of T − z is invariant under M ,

M̃ can be well-defined. Moreover, consider the spectral distribution φ : C2k+12
0 (C) →

B(W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))) defined by the following relation: for φ ∈

C2k+12
0 (C) and f ∈ W 12+2k(D,R(T k)) ⊕W 12+2k(D, ker(T ∗k)), ψ(φ)f = φf . Then the

spectral distribution φ of M commutes with T − z, and so M̃ is still a scalar operator of

order 2k + 12 with ψ̃ as a spectral distribution. Since

FTh = 1̃⊗ Th = z̃ ⊗ h = M̃ ˜(1⊗ h) = M̃Fh

for all h ∈ H = R(T k) ⊕ ker(T ∗k), FT = M̃F . In particular, R(F ) is invariant under

M̃ . Since R(F ) is closed, it is closed invariant subspace of the scalar operator M̃ . Since

T is similar to the restriction M̃ |R(F ) is scalar of order 2k+12, T is a subscalar operator
of order 2k + 12. �

Next we give some applications of our main theorem.

Corollary 3.5. Let T ∈ B(H ) be a k-quasi-class A operator. If σ(T ) has nonempty
interior in C, then T has a nontrivial invariant subspace.

Proof. The proof follows from Theorem 3.4 and [6]. �
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Recall from [4] that an operator T ∈ B(H ) is said to be power regular if lim
n→∞

‖Tnh‖
1/n

exists for every h ∈ H .

Corollary 3.6. Let T ∈ B(H ). then the following assertions hold:

(a) If T is a k-quasi-class A operator, then T has the property (β), the Dunford’s
property (C), the property (Q), and the single-valued extension property.

(b) If T is a k-quasi-class A operator, then T is power regular.

Proof. (a) Let T ∈ B(H ) be a k-quasi-class A operator. It suffices to prove that T
has the property (β). Since the property (β) is transmitted from an operator to its
restrictions to closed invariant subspaces, we are reduced by Theorem 3.4 to the case of
a scalar operator of order 2k + 12. Since every scalar operator has the property (β) (see
[16] ), T has the property (β).
(b) Let T ∈ B(H ) be a k-quasi-class A operator. Since T is subscalar of order 2k + 12
from Theorem 3.4, it is the restriction of a scalar operator of order 2k + 12 to one of its
closed invariant subspaces. Since a scalar operator is power regular and all restrictions
of power regular operators to their invariant subspaces clearly remain power regular, T
is power regular. �

Example 3.7. Denote by ω := {ωn}n∈N a bounded sequence of positive real numbers.
The corresponding unilateral weighted right shift operator on ℓq(N) for some 1 ≤ q <∞
with the canonical orthogonal basis {en}

∞
n=0 is defined by

Tx :=

∞∑

n=0

ωnxnen for all x = {xn}n∈N ∈ ℓq(N).

Then T belongs to k-quasi-class A if and only if ωk ≤ ωk+1 ≤ · · · (see [12]). Then it
follows from Theorem 3.4 that T is a subscalar of order 2k + 12.

The following lemma is useful in the sequel

Lemma 3.8. [17] If both T and S have Bishop’s property (β) and if they are quasisimilar,
then σ(T ) = σ(S) and σe(T ) = σe(S) hold.

Corollary 3.9. Let T, S ∈ B(H ) be k-quasi-class A operators. If T and S are qua-
sisimilar, then σ(T ) = σ(S) and σe(T ) = σe(S).

Proof. The proof follows immediately from Corollary 3.6 and Lemma 3.8. �

Example 3.10. Let H =

∞⊕

n=0

C2 and define an operator T on H by

T (· · · ⊕ x−2 ⊕ x−1 ⊕ x
(0)
0 ⊕ x1 ⊕ · · · ) = · · · ⊕Ax−2 ⊕Ax−1 ⊕Bx0 ⊕Bx1 ⊕ · · · ,

where A = 1
4

(
1
2

1
2

1
2

1
2

)
and B =

(
1 0
0 0

)
. Then T is of k-quasi-class A. In fact,

〈
T ∗k

(
(T ∗|T |2T )1/(2) − |T |2

)
T kx, x

〉
=

〈
Ak

(
(ABA)1/2 −A2

)
Akx−1, x−1

〉

=

(
1

16

)k
{(

1

32

)1/2

−

(
1

16

)}∥∥∥∥
(

1
2

1
2

1
2

1
2

)
x−1

∥∥∥∥
2

≥ 0

for each x ∈ H (see [19]). Hence it follows from Theorem 3.4 that T is a subscalar of
order 2k + 12.

Next we study several spectral properties of the scalar extension of a k-quasi-class A
operator.
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Theorem 3.11. Let T ∈ B(H ) be a k-quasi-class A operator. Let T =

(
T1 T2
0 T3

)
with

respect to the decomposition H = R(T k)⊕ker(T ∗k). Then the following assertions hold:

(a) σT3
(x2) ⊂ σT (x1 ⊕ x2) and σT1

(x1) = σT (x1 ⊕ 0), where x1 ⊕ x2 ∈ H .

(b) RT1
(F) ⊕ 0 ⊂ HT (F), where RT1

(F) := {y ∈ R(T k) : σT1
(y) ⊂ F} for any set

F ⊂ C.

Proof. Suppose that T ∈ B(H ) is a k-quasi-class A operator. By [20], we have the

following matrix representation of T with respect to the decomposition H = R(T k) ⊕

ker(T ∗k): T =

(
T1 T2
0 T3

)
, where T1 belongs to class A on R(T k) and T3 is nilpotent of

order k.

(a) Let x1 ⊕ x2 ∈ H = R(T k) ⊕ ker(T ∗k). If µ0 ∈ ρT (x1 ⊕ x2), then there is
an H -valued analytic function f defined on a neighborhood U of µ0 such that (T −

µ)f(µ) = x1 ⊕ x2 for all µ ∈ U . We can write f = f1 ⊕ f2 where f1 ∈ O(U,R(T k)) and
f2 ∈ O(U, ker(T ∗k)). Then we have

(
T1 − µ T2

0 T3 − µ

)(
f1(µ)
f2(µ)

)
=

(
x1
x2

)
.

Thus (T3 − µ)f2(µ) ≡ x2. Hence µ0 ∈ ρT3
(x2).

On the other hand, if µ0 ∈ ρT (x1 ⊕ 0, then there is an H -valued analytic function g
defined on a neighborhood U of µ0 such that (T − µ)g(µ) = x1 ⊕ 0 for all µ ∈ U . If we

set g = g1 ⊕ g2 where g1 ∈ O(U,R(T k)) and g2 ∈ O(U, ker(T ∗k)), then we have
(
T1 − µ T2

0 T3 − µ

)(
g1(µ)
g2(µ)

)
=

(
x1
0

)
.

Thus (T1 − µ)g1(µ) + T2g2(µ) ≡ x1 and (T3 − µ)g2(µ) ≡ 0. Since T3 is nilpotent of
order k, it has the single-valued extension property, which implies that g2(µ) ≡ 0. Thus
(T1−µ))g1(µ) ≡ x1, and so µ0 ∈ ρT1

(x1). Conversely, let µ0 ∈ ρT1
(x1). Then there exists

a function g1 ∈ O(U,R(T k)) for some neighborhood U of µ0 such that (T1−µ)g1(µ) ≡ x1.
Then

(T − µ)(g1(µ)⊕ 0) ≡ x1 ⊕ 0.

Therefore µ0 ∈ ρT (x1 ⊕ 0).
(b) If x1 ∈ RT1

(F), then σT1
(x1) ⊂ F . Since σT1

(x1) = σT (x1⊕0) by (a), σT (x1⊕0) ⊂
F . Thus x1 ⊕ 0 ∈ HT (F), and hence RT1

(F)⊕ 0 ⊂ HT (F). �

Theorem 3.12. Let T ∈ B(H ) be a k-quasi-class A operator. With the same notations
as in Theorem 3.4, the equality σ

M̃
(Fh) = σT (h) holds for every h ∈ H .

Proof. Since T is similar to M̃ |
R(F )

= M̃ |R(F ), it is clear that

σT (h) = σ
M̃ |R(F )

(Fh) ⊃ σ
M̃
(Fh).

Let µ0 ∈ ρ
M̃
(Fh). Then there exist a neighborhood U of µ0 and anH(D)-valued analytic

function f̃ : U ∋ µ→ f̃(µ) ∈ H(D) such that (M̃ − µ)f̃(µ) = Fh for µ ∈ U , where

H(D) =W 12+2k(D,R(T k))

⊕W 12+2k(D, ker(T ∗k))/(T − z)W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)).

Hence there exists an analytic function

f : U ∋ µ→ f(µ) ∈W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))
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such that

f̃(µ) = f̃(µ) = f(µ) + (T − z)W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))

for µ ∈ U . Since f(µ) ∈W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)), we set

f(µ, z) = (f(µ))(z) ∈ R(T k)⊕ ker(T ∗k)

for µ ∈ U and z ∈ D. Let M ∈ B(D,W 12+2k(D,R(T k)) ⊕W 12+2k(D, ker(T ∗k))) be

the multiplication operator by z, i.e., Mg(z) = zg(z) for g ∈ W 12+2k(D,R(T k)) ⊕
W 12+2k(D, ker(T ∗k)) and z ∈ D. Let ξ ∈ U be fixed. Then we have

Mf(ξ)− ξf(ξ)− 1⊗ h ∈ (T − z)W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)).

This means that the function

D ∋ z → z(f(ξ))(z)− ξ(f(ξ))(z)− h ∈ R(T k)⊕ ker(T ∗k)

belongs to (T − z)W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)). Note that

O(U)⊗̂
(
W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))

)

= O(U,W 12+2k(D,W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)))

by Grothendiecks theorem in [14], where O(U) denotes the Fréchet space of all complex-
valued analytic functions on U . Since the dense range property of a Hilbert space operator
is preserved by the topological tensor product with a nuclear space, there is a sequence

{gn} ⊂ O(U,W 12+2k(D,W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k)))

such that

(3.25) lim
n→∞

(h− (z − ξ)f(ξ, z)− (T − z)gn(ξ, z)) = 0

with respect to the Fréhet topology of the space

O(U,W 12+2k(D,W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))),

where gn(ξ) : D → R(T k)⊕ ker(T ∗k) for ξ ∈ U and gn(ξ, z) := (gn(ξ))(z) for z ∈ D. Let
U0 be any open neighborhood of µ0 which is relatively compact in U , and let

m : O(U)⊗̂
(
W 12+2k(D,R(T k))⊕W 12+2k(D, ker(T ∗k))

)

→W 12+2k(U0,R(T k))⊕W 12+2k(U0, ker(T
∗k))

denote the unique continuous linear extension of the map φ ⊗ ψ → (φ.ψ)|U0
. Then we

get that

(3.26) m(h− (z − ξ)f(ξ, z)− (T − z)gn(ξ, z) = h− (T − z)fn(z),

where fn(z) := gn(z, z) for z ∈ U0. Hence from (3.25) and (3.26) we obtain that

lim
n→∞

‖h− (T − z)fn‖W 12+2k(U0,R(Tk))⊕W 12+2k(U0,ker(T∗k))
= 0.

From some applications of the proof in Lemma 3.3, we have

lim
n→∞

‖(I − P )fn‖2,U1
= 0,

where U1 is a neighborhood of µ0 which is relatively compact in U0, and so

lim
n→∞

‖h− (T − z)Pfn‖2,U1
= 0.

This implies

h ∈ (T − z)O(U2,R(T k))⊕O(U2, ker(T ∗k)),



SUBSCALARITY OF k-QUASI-CLASS A OPERATORS 187

where U2 is a neighborhood of µ0 which is relatively compact in U1. Since T has the

property (β) from Corollary 3.6, the operator T − z has closed range on O(U2,R(T k))⊕
O(U2, ker(T

∗k)). Thus it follows that

h ∈ (T − z)O(U2,R(T k))⊕O(U2, ker(T
∗k)),

that is, µ0 ∈ ρT (h). �

Corollary 3.13. Let T ∈ B(H ) be a k-quasiclass A operator. With the same notations

as in Theorem 3.4, σ(T ) = σ(M̃). In particular, if σ(M̃) = {0}, then T is nilpotent.

Proof. Since σT (h) ⊂ σ
M̃
(Fh) for all h ∈ H by Theorem 3.12, σT (h) ⊂ σ(M̃) for all

h ∈ H . Hence
⋃
{σT (h) : h ∈ H }. Since T has the single-valued extension property by

Corollary 3.6, σ(T ) =
⋃
{σT (h) : h ∈ H }. Conversely, note that if U ⊂ C is any open

disk containing σ(T ) and M is the multiplication operator by z on W 12+2k(U,R(T k))⊕

W 12+2k(U, ker(T ∗k)) , then σ(M̃) ⊂ σ(M) ⊂ U holds. From this property, if µ ∈ ρ(T ),

then we can choose an open disk D so that M̃ − µ is invertible. Since this algebraic

property is independent of the choice of D, we get σ(M̃) ⊂ σ(T ).

If σ(M̃) = {0}, then σ(T ) = {0}. Since σ(T ) = σ(T1) ∪ {0} from [20], σ(T1) = {0}.
Since T1 belongs to class A, it holds that ‖T1‖ = sup{|µ| : µ ∈ σ(T1)} = 0, and so T1 = 0.
Hence T is nilpotent. �
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