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OPERATORS PRESERVING ORTHOGONALITY ON HILBERT

K(H)-MODULES

R. G. SANATI, E. ANSARI-PIRI, AND M. KARDEL

Abstract. In this paper, we study the class of orthogonality preserving operators

on a Hilbert K(H)-module W and show that an operator T on W is orthogonality
preserving if and only if it is orthogonality preserving on a special dense submodule
of W . Then we apply this fact to show that an orthogonality preserving operator T

is normal if and only if T ∗ is orthogonality preserving.

1. Introduction and preliminaries

The concept of orthogonality in an inner product space (H, 〈·, ·〉), as expected, is
defined by its inner product. Actually, x ⊥ y if and only if 〈x, y〉 = 0, where x, y belong
to H. Extending this definition to normed linear spaces has been studied by many
mathematicians since 1934. These studies lead to several versions of orthogonality such
as:
Roberts orthogonality(1934): ‖x− λy‖ = ‖x+ λy‖, for every λ ∈ R;
Birkhoff orthogonality(1935): ‖x‖ ≤ ‖x+ λy‖, for every λ ∈ R;
Isosceles orthogonality(1945): ‖x− y‖ = ‖x+ y‖ (due to James);
Singer orthogonality(1957): x = 0 or y = 0 or ‖ x

‖x‖ + y

‖y‖‖ = ‖ x
‖x‖ − y

‖y‖‖.

Also, there are some other versions of orthogonality. For more details, see [15] and
[1, 2] where Sikorska, Alonso, and Benitez listed and compared these orthogonalities and
investigated algebraic properties such as being homogenous, additive and symmetric.

The usual definition of orthogonality in a complex normed linear space (X, ‖.‖) is
Birkhoff-James orthogonality which says that x is orthogonal to y in X (and in this case,
we write x ⊥ y), if for each λ ∈ C, ‖x‖ ≤ ‖x+ λy‖.

An operator T : H → H is said to be orthogonality preserving (OP in short), if
Tx ⊥ Ty whenever x ⊥ y, and T is called strongly orthogonality preserving (SOP in
short) when Tx ⊥ Ty ⇔ x ⊥ y. Also, we say that T is a similarity if there exists a
positive scalar γ such that ‖Tx‖ = γ‖x‖ for all x ∈ H. Indeed, a similarity is a positive
scalar multiple of an isometry.

In general, an OP operator need not be linear or continuous (see [8, Examples 1.1
and 1.2]). Under the assumption of linearity, Koldobsky [10] for an OP operator T on
a real normed space, and then Chmieliński [8] for an OP mapping S between (real or
complex) inner product spaces have proved that T and S are not only continuous, but
also similarities. In the setting of complex normed spaces, Blanco and Turnšek [7] have
generalized the theorem with the orthogonality in the sense of B.J. Actually, they have
shown that if T : X −→ Y is a linear OP mapping between normed linear spaces, then T
is a similarity. Later, using the fact that a C∗-algebra A is a subalgebra of B(H) for some
Hilbert space H, Ilǐsević and Turnšek [9] have proved that every A-linear orthogonality
preserving operator on a Hilbert A-module is a similarity when A contains the C∗-algebra
K(H) of all compact operators on a Hilbert space H.
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In a more general aspect of orthogonality preserving property, considering the standard
definition of the angle between two elements of a real inner product space, Sal Mosle-
hian, Zamani, and Frank have obtained some interesting results about angle preserving
mappings (see [16]).

In this paper, we study orthogonality preserving operators acting on Hilbert K(H)-
modules and prove that an operator T on a Hilbert K(H)-module W is OP if and only
if the restriction of T to WHS (a dense submodule of W ) is an OP operator. Applying
this fact, we confirm the similarity of an OP operator on a Hilbert A-module (see [9,
Proposition 2.3]) when A = K(H) with a completely different approach. Finally, we
prove that T ∈ BK(W ) is a normal operator if and only if its adjoint T ∗ is OP, where
BK(W ) denotes all bounded K(H)-linear operators on W .

Recall that, a left A-moduleW is called an inner product C∗-module when there exists
an A-valued inner product 〈·, ·〉 :W ×W −→ A satisfying the following conditions:

(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0,
(ii) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉,
(iii) 〈ax, y〉 = a〈x, y〉,
(iv) 〈x, y〉∗ = 〈y, x〉

for all x, y, z ∈W, a ∈ A, λ, µ ∈ C.
The norm defined by ‖x‖ = ‖〈x, x〉‖

1

2 makes W into a normed space and W is called
a Hilbert C∗-module when (W, ‖.‖) is complete.

An H∗-algebra A is a Banach ∗-algebra whose underlying space is a Hilbert space.
For instance, HS the space of all Hilbert-Schmidt operators on a Hilbert space H is
an H∗-algebra. There exists a continuous linear form tr on τ(A) := {ab : a, b ∈ A}
satisfying tr(ab) = tr(ba) = 〈a, b∗〉 for all a, b ∈ A. An inner product H∗-module is an
A-module W equipped with the τ(A)-valued inner product [·, ·] :W ×W −→ τ(A) such
that:

(i) [λx+ y, z] = λ[x, z] + [y, z];
(ii) [x, y]∗ = [y, x];
(iii) [x, x] = aa∗, for some a ∈ A;
(iv) (W, (·, ·)) is an inner product space where (x, y) := tr([x, y]).

W is a Hilbert H∗-module when it is complete with the norm ‖x‖ = (x, x)
1

2 .
Now, one can extract a Hilbert H∗-module from every Hilbert K(H)-module W as

follows:
Let W 0

HS be the linear span of the set HSW . The submodule W 0
HS of W can be

made into a pre-Hilbert H∗-module over the H∗-algebra HS with the inner product
(x, y) = tr(〈x, y〉). Let us denote by ‖.‖hs the resulting norm ‖x‖hs =

√
tr〈x, x〉 for

every x ∈ W 0
HS . The completion of W 0

HS in the norm ‖.‖hs is a Hilbert H∗-module
denoted by WHS which is a dense submodule in W with respect to the original norm
(for more details see [5]).

2. Orthogonality preserving maps on Hilbert K(H)-modules

Theorem 2.2 in [3] shows that every OP operator T ∈ B(H) is normal if and only if
T ∗ is OP. We are going to express this theorem for bounded K(H)-linear operators on
Hilbert K(H)-modules. To achieve it, we prove Theorem 2.4 as the main of this section
which plays a key role in the proof of our aim. At first, we recall some useful lemmas.

Lemma 2.1. Let W be a Hilbert K(H)-module. Then, the new norm ‖.‖hs dominates

the original one i.e., ‖x‖ ≤ ‖x‖hs for all x ∈WHS .

Proof. See [4]. �

Note that, a Hilbert K(H)-module has two norms ‖.‖ and ‖.‖hs. In fact, ‖.‖ comes
from the K(H)-valued inner product 〈·, ·〉 and ‖.‖hs from the C-valued inner product
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(·, ·). Actually, ‖x‖ = ‖〈x, x〉‖
1

2 and ‖x‖hs = (x, x)
1

2 . It is known that every H∗-algebra
has a minimal projection e, that means e is self-adjoint, e2 = e and eAe = Ce. Moreover:

Lemma 2.2. Let W be a Hilbert K(H)-module and e be a minimal projection in K(H).
Then

(i) (WHS)e := {ew : w ∈ WHS} is a closed subspace of the Hilbert space (WHS , (·, ·))

and also a dense submodule of WHS i.e., (WHS)e =WHS with respect to the norm ‖.‖hs.
(ii) ‖ew‖ = ‖ew‖hs for all w ∈WHS .

Proof. See [5, Lemma 2] and [4, Proposition 2]. �

Remember that from the structure of a Hilbert H∗-module, we have a τ(A)-valued
function [·, ·] and then a C-valued inner product (·, ·). There is a good relation between
these two maps among the minimal projections which plays an essential role in the proof
of the main theorem of this section. The next lemma expresses this relation.

Lemma 2.3. Let W be a Hilbert K(H)-module and e be a minimal projection in K(H).
Then, [x, y] = 1

‖e‖2 (x, y)e for all x, y ∈ (WHS)e.

Proof. See [5, Lemma 3]. �

According to Lemma 2.1, boundedness in the norm ‖.‖hs implies boundedness in the
original norm ‖.‖.

Theorem 2.4. Let W be a Hilbert K(H)-module, T ∈ BK(W ) and T̂ be the restriction

of T to WHS . Then, the following are equivalent:

(i) T : (W, 〈·, ·〉) −→ (W, 〈·, ·〉) is SOP.

(ii) T̂ : (WHS , (·, ·)) −→ (WHS , (·, ·)) is SOP.

Proof. (i) ⇒ (ii) : Let x, y ∈ E := WHS and (x, y) = 0. We have to show that

(T̂ x, T̂ y) = 0. Since Ee

‖.‖hs

= E, there are sequences (xn) and (yn) in Ee such
that xn −→ x and yn −→ y in the norm ‖.‖hs. Therefore (xn, yn) −→ (x, y) = 0.
Using Lemma 2.3, 〈xn, yn〉 = 1

‖e‖2 (xn, yn)e, where e is a minimal projection of W .

So, 〈xn, yn〉 −→ 0. At the same time, 〈xn, yn〉 −→ 〈x, y〉. Thus 〈x, y〉 = 0 and so
〈Tx, Ty〉 = 0. From the continuity of T and by Lemma 2.1, we can write

〈Txn, T yn〉 −→ 〈Tx, Ty〉 = 0.

Hence, (Txn, T yn) −→ 0. But we have

(Txn, T yn) = (T̂ xn, T̂ yn) −→ (T̂ x, T̂ y),

which means that (T̂ x, T̂ y) = 0.
Conversely, (ii) ⇒ (i) : Let x, y ∈W and 〈x, y〉 = 0. We must show that 〈Tx, Ty〉 = 0.

Since E = W in the original norm ‖.‖, there are sequences (xn), (yn) in E such that
xn −→ x and yn −→ y. But Ee = E in the norm ‖.‖hs, and xn, yn ∈ E (∀n ∈ N).
Therefore, ∀n ∈ N, ∃(xmn ) ⊆ Ee, ∃(y

m
n ) ⊆ Ee such that (xmn ) −→ xn and (ymn ) −→ yn,

when m −→ +∞.
Actually, in the norm ‖.‖ :

x1, x2, x3, . . . , xn, . . . −→ x and y1, y2, y3, . . . , yn, . . . −→ y

and in the norm ‖.‖hs :

x11, x
2
1, x

3
1, . . . , x

m
1 , . . . −→ x1 , y11 , y

2
1 , y

3
1 , . . . , y

m
1 , . . . −→ y1

x12, x
2
2, x

3
2, . . . , x

m
2 , . . . −→ x2 , y12 , y

2
2 , y

3
2 , . . . , y

m
2 , . . . −→ y2

· · ·

x1n, x
2
n, x

3
n, . . . , x

m
n , . . . −→ xn , y1n, y

2
n, y

3
n . . . , y

m
n , . . . −→ yn.
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But T̂ is SOP on (WHS , ‖.‖hs) equivalently on (WHS , (·, ·)), and so it is a scalar multiple
of an isometry. So, there exists γ > 0 such that

〈xmn , y
m
n 〉 =

1

‖e‖2
(xmn , y

m
n )e =

γ2

‖e‖2
(T̂ xmn , T̂ y

m
n )e = γ2〈Txmn , T y

m
n 〉.

On the other hand, limm→+∞〈xmn , y
m
n 〉 = 〈xn, yn〉 in (W, ‖.‖) because xmn −→ xn in the

norm ‖.‖hs and ‖.‖ ≤ ‖.‖hs. Therefore,

lim
n→+∞

( lim
m→+∞

〈xmn , y
m
n 〉) = lim

n→+∞
〈xn, yn〉 = 〈x, y〉 = 0.

Hence, limn→+∞ γ2〈Txn, T yn〉 = 0. Since γ 6= 0, we have limn→+∞〈Txn, T yn〉 = 0.
Thus 〈Tx, Ty〉 = 0. In the same way, 〈Tx, Ty〉 = 0 implies 〈x, y〉 = 0. �

In [9], it has been proved that if A is a C∗-algebra such that A ⊇ K(H), then every
A-linear orthogonality preserving operator on a Hilbert A-Module is a scalar multiple of
an isometry. Now, as a result of Theorem 2.4, we confirm this fact for SOP operators
when A = K(H), with a completely different approach.

Corollary 2.5. Let W be a Hilbert K(H)-module. Then, for a bounded K(H)-linear
operator T on W , the following are equivalent:

(i) T : (W, 〈·, ·〉) −→ (W, 〈·, ·〉) is SOP.

(ii) ‖Tx‖ = γ‖x‖ , for some γ > 0 and every x ∈W .

Proof. Every scalar multiple of an isometry is obviously SOP. So, (ii) ⇒ (i) is clear.
Conversely, let T be a bounded K(H)-linear SOP operator on W and let (eα) be a

bounded approximate identity of minimal projections in K(H). By Theorem 2.4, T̂ is

SOP on (WHS , (·, ·)) and since (·, ·) is a C-valued inner product, we have ‖T̂ x‖hs =
γ‖x‖hs, for some γ > 0 and every x ∈WHS .

Now, let w ∈ W . Since WHS = W in the original norm, there exists (xn) ⊆ WHS

such that xn −→ w. Since ‖eαx‖ = ‖eαx‖hs for all x ∈WHS we can write

T (eαw)‖ = ‖T (eα(limxn))‖ = lim ‖T (eαxn)

= lim ‖eαT (xn)‖ = lim ‖eαT (xn)‖hs

= ‖eαT (limxn)‖hs = ‖eαT (w)‖hs.

Thus,

‖T (eαw)‖ = ‖eαT (w)‖ = ‖eαT (w)‖hs = ‖T (eαw)‖hs = γ‖eαw‖hs = γ‖eαw‖.

Therefore,
lim

α→+∞
‖T (eαw)‖ = lim

α→+∞
γ‖eαw‖,

which implies that ‖Tw‖ = γ‖w‖. �

Unlike in Hilbert spaces, it is not necessary that every bounded A-linear operator
has an adjoint on a Hilbert A-module. But, in the case A = K(H), we will see that
every bounded K(H)-linear operator on a Hilbert K(H)-module is adjointable. Then,
applying this fact we prove the main theorem (Theorem 2.9) of this section. The proof
of Proposition 2.8, is a mix of the following lemma and the theorem proved by Bakić and
Saworotnow in [5] and [12], respectively. In what follows, we mean by BHS(WHS) the
set of all bounded HS-linear operators on WHS .

Lemma 2.6. Let W be a Hilbert K(H)-module. For each T ∈ BHS(WHS), there exists

a unique operator T̃ ∈ BK(W ) which extends T .

Proof. See [5, Lemma 3]. �

Theorem 2.7. Let T ∈ BHS(WHS). Then T is adjointable and T ∗ ∈ BHS(WHS).
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Proof. See [12, Theorem 4]. �

Proposition 2.8. Every bounded K(H)-linear operator on W is adjointable.

Proof. Let T ∈ BK(W ) and e be a minimal projection in K(H). We claim that T is

continuous on (WHS , ‖.‖hs). The map ψ : BHS(WHS) −→ B((WHS)e) by ψ(R) = R̃ is
an isomorphism of C∗-algebras (see [4, Theorem 1]). Thus, it is enough to show that
˜̂
T is continuous. Let (exn) ⊆ (WHS)e and exn −→ 0 in the norm ‖.‖hs. Therefore,
by Lemma 2.1, exn −→ 0 in the norm ‖.‖. Since T is continuous on (W, ‖.‖), we have
‖T (exn)‖ −→ 0. Thus ‖eT (xn)‖ −→ 0. Note that xn ∈ WHS implies eT (xn) ∈ (WHS)e.
We have, by Lemma 2.2,

‖
˜̂
T (exn)‖hs = ‖T (exn)‖hs = ‖eT (xn)‖hs = ‖eT (xn)‖ −→ 0,

that means T̂ is continuous and therefore there exists (T̂ )∗ ∈ BHS(WHS). Applying

Theorem 2.7, there is (̃T̂ )∗ ∈ BK(W ) which extends (T̂ )∗. Now, define T ∗ := (̃T̂ )∗. It is
straightforward to check that

〈Tx, y〉 = 〈x, T ∗y〉.

This completes the proof. �

Now, we are ready to characterize the bounded orthogonality preserving K(H)-linear
operators whose adjoint is also orthogonality preserving.

Theorem 2.9. Let T ∈ BK(W ) and T be OP. Then, T ∗ is OP if and only if T is a

normal operator.

Proof. Let T, T ∗ ∈ BK(W ) and both are OP.

By Theorem 2.4, T̂ ,T̂ ∗ : (WHS , (·, ·)) −→ (WHS , (·, ·)) are OP. (WHS , (·, ·)) is a Hilbert

space, So T̂ is normal in B(WHS) i.e. T̂ (T̂ )
∗ = (T̂ )∗T̂ . But (T̂ )∗ = T̂ ∗ on WHS , because

for every x ∈ WHS : T̂ ∗(x) = T ∗(x) = (T̂ )∗(x). The first equality comes from the

fact that T̂ ∗ is a restriction of T ∗. For the second equality, note that T ∗ = (̃T̂ )∗, where

(̃T̂ )∗|WHS
= (T̂ )∗. So, T̂ T̂ ∗ = T̂ ∗T̂ . But T̂ T̂ ∗ = T̂ T ∗ on WHS , because

T̂ T̂ ∗(x) = T̂ (T̂ ∗x) = T̂ (T ∗x) = TT ∗(x) = T̂ T ∗(x).

Therefore, T̂ T ∗ = T̂ ∗T , which implies that T ∗T is the extension of T̂ T ∗ and T̂ ∗T . It is

clear that TT ∗ is an extension of T̂ T ∗. According to Theorem 2.7, by the uniqueness of
such extension, we have TT ∗ = T ∗T .

Conversely, let T be a normal OP operator in BK(W ), x, y ∈ W and 〈x, y〉 = 0. We
have

〈T ∗x, T ∗y〉 = 〈TT ∗x, y〉 = 〈T ∗Tx, y〉 = 〈Tx, Ty〉 = 0,

which means that T ∗ is also OP. �

As we mentioned, Ilǐsević and Turnšek [9] have proved that every OP operator T
on a Hilbert C∗-module W is a similarity, where the C∗-algebra contains K(H). More
exactly, there is a positive scalar γ such that ‖Tx‖ = γ‖x‖ for all x ∈ W . We are
going to determine the value of γ exactly. Note that, If T ∈ BK(W ) and T is an OP
operator, then T ∗T and |T | are also OP. Because if x, y ∈ W and 〈x, y〉 = 0, then
〈x, T ∗Ty〉 = 〈Tx, Ty〉 = 0 and so 〈T ∗Tx, T ∗Ty〉 = 〈Tx, TT ∗Ty〉 = 0. Therefore, T ∗T is
OP.

Again, it follows from 〈x, T ∗Ty〉 = 0 that

〈|T |x, |T |y〉 = 〈|T |∗x, |T |y〉 = 〈x, |T |2y〉 = 〈x, T ∗Ty〉 = 0.

Which means |T | is also OP. Moreover, T and |T | have the same γ as two similarities.
Now, it is easy to calculate the positive scalar γ appearing for a K(H)-linear OP

operator T in BK(W ).

Corollary 2.10. Let T ∈ BK(W ) and T ,T ∗ are both OP. Then γ = r(T ).
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Proof. From Theorem 2.9, T is normal. Since BK(W ) is a C∗-algebra, ‖T‖ = r(T ). Now
we have

r(T ) = ‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1} = sup{γ‖x‖ : ‖x‖ ≤ 1} = γ.

�

In a more general aspect, for an arbitrary OP operator T ∈ BK(W ), we can obtain γ
as r(|T |):

Corollary 2.11. Let T ∈ BK(W ) and T be OP. Then γ = r(|T |).

Proof. The operator |T | is OP, because T is OP. Note that ‖|T |‖ = ‖T‖. Now applying
Corollary 2.10, we have

r(|T |) = ‖|T |‖ = γ = ‖T‖.

�
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