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SPACE OF CONFIGURATIONS

AND THE SPECIAL MEASURES ON IT

YU. M. BEREZANSKY

Abstract. The article is devoted to an exact account of initial results about config-

urations and measures on them, starting from the concept of a unique topologization
of the space of all configurations, including both finite and infinite cases (not as it is
made in the classical works).

1. Introduction

Configurations are the sets of points of a locally compact (but not compact) space X

and which are represented by sequences γ = [x1, x2, . . . ] of different points xn of the space
X and having the following property: in every compact set Λ of the space X, the number
of points from γ is finite. Configurations are used in many domains of mathematics, in
particular, in mathematical physics, functional analysis, probability theory, etc. (see, for
example, [9, 5, 6, 7, 10, 4, 8]).

By tradition, it is usual to consider the space Γ0(X) of finite configurations (i.e. finite
sets γ) and the space Γ(X) of all configurations with fixed X. In these spaces, different
topologies are introduced, different σ-algebras of Borel sets in Γ0(X) and Γ(X) \ Γ0(X)
are constructed, and different measures are investigated, etc.

The author, in a joint article with V. A. Tesko [2], which was devoted to the moment
problem related to Bogoliubov functionals, found that, in some questions (for example, in
some questions of spectral theory), it is necessary and convenient to introduce a unique
topology into Γ(X), namely the topology of weak convergence of linear functionals on
the space of finite continuous functions on X, and consider the corresponding relative
topology on Γ0(X).

The corresponding facts were stated in Section 2 of the article [2]. However the
traditional ”classical” point of view, which essentially distinguishes the spaces Γ0(X)
and Γ(X), was dominant in the paper [2]. It did not permit to give simple and clear
account of the results obtained by the authors. These results were correct, but their
presentation was somewhat cumbersome.

The article [1], devoted to a study and generalization of the classical Poisson measure,
was written in a more clear way, since the author by that time had a more precise
understanding of the differences between the two cases.

In this short article, we propose an account of initial results about configurations and
measures on them, starting from the proposed in [2] concept of introducing topology only
for the whole space Γ(X). This article, from my point of view, finalizes the discussion of
some results of the work [2].
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2. Topologization of the space of configurations and corresponding

Borel σ-algebras

1. Definition of configuration. Let X be a connected non-compact Riemannian
manifold, which is a union of its compact balls with some fixed center, ρ(x, y), x, y ∈ X,
is a corresponding metric.

Denote by Γ(X) all subsets γ of X, consisting of distinct points and such that

(2.1) Γ(X) =
{
γ ⊂ X

∣∣∣|γ ∩ Λ| < ∞ for every compact Λ ⊂ X
}
,

where | · | means the cardinality of the set.
Such a subset γ ∈ Γ(X) is called a configuration. So, each γ ∈ Γ(X) consists of

different points; the number of points from γ ∩ Λ, where Λ is an arbitrary compact
subset of X, is finite.

Understandably, two configurations γ1, γ2 by definition are different, if the sets γ1
and γ2 are different sets of points. Thus, if the sets γ1 ⊂ γ2 and γ2 \ γ1 are not empty,
then we have two different configurations. let us underline that configurations γ1 and γ2
are different, if the sets γ1 and γ2 are different. So, different configurations may have a
common finite or a countable subset of points from X.

For configurations γ1, γ2, regarded as subsets of the space X, it is possible to introduce
the usual operations, γ1 ∪ γ2, γ1 ∩ γ2, γ1 \ γ2. The same can be done for more than two
subsets. A countable or finite union γ of different configurations is also a configuration iff
this union γ consists of different points and set γ ∩Λ is finite (Λ is an arbitrary compact
set).

Of course, the simplest configuration consists of a single point x from X, therefore
X ⊂ Γ(X).

Denote by Γ0(X) the set of all configurations consisting of a finite number of points
(finite configurations) and by Γ(n)(X), n ∈ N = {1, 2, . . . }, the set of all configurations
from Γ0(X) consisting of n points. Obviously, we have

(2.2) Γ0(X) =

∞⊔

n=0

Γ(n)(X) ⊂ Γ(X), Γ(0)(X) := ∅.

Let Y ⊂ X be some subspace of X endowed with relative topology. Then Γ(Y ) ⊂
Γ(X). In particular, Y = Λ can be some compact subset of X. Then Γ(Λ) consists only
of finite configurations. Therefore we have, instead of (2.2), the equality

(2.3) Γ(Λ) = Γ0(Λ) =

∞⊔

n=0

Γ(n)(Λ), Γ(0)(Λ) = ∅.

2. Introducing topology into the set Γ(X). At first, denote by Cfin(X) the
linear set of real-valued continuous functions X ∋ x 7→ f(x) ∈ R which are finite, i. e.
are equal to zero, if x is outside of some compact subset of X. This space with uniform
convergence on compact sets is a linear topological space.

Recall that uniformly finite convergence means the following: Cfin(X) ∋ fm → f ∈
Cfin(X), m → ∞, where fm → f uniformly on X and fm(x) = 0 for x ∈ X \ Λ, where
Λ is some compact set.

Let µ be a fixed locally finite non-negative measure on the space X, defined on σ-
algebra B(X) of Borel subsets α of X.

So, the integral

(2.4) lµ(f) :=

∫

X

f(x) dµ(x)
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exists for every f ∈ Cfin(X) and is a linear continuous functional lµ ∈ (Cfin(X))′ =:
C ′

fin(X).
We interpret the δ-function δx0

in a point x0 ∈ X as the corresponding measure
µx0

∈ B(X) and by lµx0
the corresponding functional. So, in our case the equality (2.4)

means that

(2.5) lµx0
(f) = f(x0) = δx0

(f) := lx0
, f ∈ Cfin(X).

Every configuration γ ∈ Γ(X), i. e., the set γ = [x1, x2, . . . ], consists of a finite or
infinite number of different points. For γ we introduce the measure on B(X) ∋ α as
follows: µγ(α) =

∑
xj∈α

µxj
.

Using (2.5) we can write

γ ↔ [x1, x2, . . . ] ↔ {δx1
, δx2

, . . . } ↔ {lx1
, lx2

, . . . }

or

(2.6) γ ↔ δγ ↔ µγ ↔ lγ , γ ∈ Γ(X).

We have (2.6) Γ(X) ∋ γ ↔ lγ ∈ C ′

fin(X), and therefore it is possible to introduce into

Γ(X) the corresponding weak topology, Γ(X) ∋ γ(m) −−−−→
m→∞

γ ∈ Γ(X), m = 1, 2, . . . , if

and only if C ′

fin(X) ∋ lγ(m) → lγ ∈ C ′

fin(X).

This weak topology in Γ(X) is also called the ”vague topology”. The vague topology
can also be understood as a relative topology on Γ(X), using the weak topology of
C ′

fin(X) and including (see (2.6))

(2.7) Γ(X) ⊂ C ′

fin(X).

The relations (2.6) and (2.7) are essential for us, — we introduce a topology on Γ(X)
with the help of the weak topology on C ′

fin(X).

The set of finite configurations Γ0(X), as a part of Γ(X), can also be endowed with
the vague topology, but now we consider the classical ordinary topology on Γ0(X).

3. Ordinary topologization of the set Γ0(X). The n-point configuration is, by
definition, a non-ordered set γ = [x1, . . . , xn] of points x1, . . . , xn ∈ X, xj 6= xk if j 6= k.

The set of all such finite configurations is denoted by Γ(n)(X). It is clear that

Γ(n)(X) =
{
γ ⊂ X

∣∣∣|γ| = n
}
.

The topology into Γ(n)(X) is introduced as the image of topology in the space

X̂n :=
{
(x1, . . . , xn) ∈ Xn

∣∣∣xj 6= xk, if j 6= k
}

under the mapping

X̂n ∋ (x1, . . . , xn) 7→ [x1, . . . , xn] = γ ∈ Γ(n)(X).

Thus, a sequence γ(m) = [x
(m)
1 , . . . , x

(m)
n ] converges to γ = [x1, . . . , xn] as m → ∞ in

the topology of Γ(n)(X) if and only if x
(m)
1 → x1, . . . , x

(m)
n → xn as m → ∞ (the

coordinate-wise convergence).
Let us stress that the space Γ0(X) of finite configurations satisfies (2.2). The or-

dinary topology in Γ0(X) is introduced in the following way. By (2.2) this space is
represented as a disjoint sum of Γ(n)(X) ⊂ Xn, endowed with the relative topology
from Xn, Γ(0)(X) = ∅. So, convergence in the space (2.2) is uniformly finiteness and
coordinate-wise convergence for every coordinate fn ∈ Γ(n)(X) of the vector

f = (f0, f1, . . . ) ∈
∞⊔

n=0

Γ(n)(X).
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4. A study of Borel σ-algebra on the space C ′

fin(X). Denote this σ-algebra by

B(C ′

fin(X)) and investigate properties of some of its subsets. The following theorem is

a consequence of results from [3].

Theorem 2.1. Let Λ ⊂ X be a compact set. Then we have that

(2.8) Γ(Λ) ∈ B(C ′

fin(X)).

5. A further study of Γ(X) and B(C ′

fin(X)). Since X is a separable locally
compact space, there exists a sequence of its compact subspaces Λn, n ∈ N, such that

(2.9) Λ1 ⊂ Λ2 ⊂ . . . and X =

∞⋃

n=1

Λn.

We have the following decomposition of the space X:

(2.10)
X = Λ1 ∪ (Λ2 \ Λ1) ∪ (Λ3 \ Λ2) ∪ · · · = K1 ∪K2 ∪K3 ∪ · · · ,=

∞⊔

n=1

Kn

Kn = Λn \ Λn−1 ⊂ Λn, n ∈ N (Λ0 := ∅),

where the sets K1,K2,K3, . . . are pairwise disjoint and have compact closures. Let
γ ∈ Γ(X) be an arbitrary configuration, i. e., some subset of points from X. Then
representation (2.10) gives that

(2.11)

γ = (γ ∩ Λ1) ∪ (γ ∩ (Λ2 \ Λ1)) ∪ (γ ∩ (Λ3 \ Λ2)) ∪ . . .

= (γ∩K1) ∪ (γ ∩K2) ∪ (γ ∩K3) ∪ . . .

= γ1 ∪ γ2 ∪ γ3 ∪ . . . , γn = γ ∩Kn, n ∈ N,

i. e., we have the following equality for the subspaces γ, γn of the space X:

(2.12) Γ(X) ∋ γ =
∞⋃

n=0

(γ ∩Kn) =
∞⋃

n=0

γn, γn = γ ∩Kn ∈ Γ(Kn), n ∈ N.

Moreover, (2.11) gives, that if γn is an arbitrary configuration from Γ(Kn), n ∈ N, then

∞⋃

n=0

γn =: γ

belongs to Γ(X) (see Subsection 1 of this section).
To be more specific, we prove the following result.

Lemma 2.1. We have the following decomposition of the set Γ(X):

(2.13) Γ(X) = {γ : γ =

∞⋃

n=1

γn, (γ1, γ2, ...) ∈
∞∏

n=1

Γ(Kn)} ≡
∞∑

n=1

•Γ(Kn),

where Γ(Kn), as usual, denotes the set of all configurations constructed from the space

Kn, and
∞∑

n=1

• denotes the direct sum of commutative semigroups Γ(Kn) where the alge-

braic operation is the union of configurations, which are subsets of the space X.

Proof. Denote by A(X) the collection of all subsets of X, including X and the empty
set. If Y ⊂ X is some subspace of X, with the relative topology, then A(Y ) ⊂ A(X).

If (2.10) holds, then

(2.14) A(X) =
∞∑

n=1

•A(Kn).
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Let us prove (2.14). Let α be some set from X, then αn = α ∩ Kn belongs to A(Kn),

n ∈ N, and α =
∞⋃

n=1
αn. Conversely, if for every n ∈ N βn ∈ A(Kn), then

∞⋃
n=1

βn =: β

belongs to
∞∑

n=1

•A(Kn). For every n A(Kn) ⊂ A(X), therefore the transition from β to

βn is such that for α to αn: βn = β ∩Kn. Hence (2.14) takes place.
After this general formula (2.14) consider the case where, instead of A(X), we consider

the set Γ(X) of all configurations on this space X.
By definition (2.1), the set γ from X is a configuration, if γ satisfies the two conditions:

1) γ consists of different points from X and 2) for every compact subset Λ of the space
X, the number of points in γ ∩ Λ is finite.

Therefore (2.13) follows from (2.14) if we prove that if γ =
∞⋃

n=1
γn is an expansion of

the set γ ⊂ X into sets γn ⊂ Kn, then γ satisfies conditions 1), 2) if and only if every
γn, n ∈ N, satisfies these conditions.

So, let every γn satisfy conditions 1), 2). Then γ consists of different points from X,
because points of γ from Kn are different since γn ∈ Γ(Kn).

Verify condition 2) for γ. Let Λ be some compact subset of X. Then from (2.9)
it follows that Λ ⊂ Λm with some fixed m = m(Λ). Therefore Λ ∩ Kn = ∅, when

n = m+ 1,m+ 2, . . ., and γ =
m⋃

n=1
γn. Every γn consists, by (2.1), of a finite number of

points from Kn; therefore the number of points from our α, which belong to Λ, is also
finite.

Conversely, let γ satisfy conditions 1) and 2). Then γn, as a part of the set γ, also
satisfies these conditions. �

Now we prove a simple supplement to the equalities (2.11) and (2.12).

Lemma 2.2. Let Λ1 and Λ2 be some compact subsets of X, Λ1 ⊂ Λ2. Then

(2.15) Γ(Λ2) = Γ(Λ1)+̇Γ(Λ2 \ Λ1),

where +̇ denotes the direct sum.

Proof. Denote K1 = Λ2 \ Λ1, then we have Λ2 = Λ1 ∪K1 and for every γ ∈ Γ(Λ2),

γ = (γ ∩ Λ1) ∪ (γ ∩K1) = γ1 ∪ γ2,

where

γ1 = γ ∩ Λ1 ∈ Γ(Λ1), γ2 = γ ∩K1 ∈ Γ(K1).

Conversely, if γ1 ∈ Γ(Λ1) and γ2 ∈ Γ(K1), then γ1 ∪ γ2 =: γ belongs to Λ2. As in the
proof of Lemma 2.1, from these conclusions we have that the equality (2.15) is true. �

Example. Let the set Λ1 contain one point x1 and Λ2 \ Λ1 contain one point x2. Then
Γ(Λ1) = (∅, {x1}), Γ(Λ2 \ Λ1) = (∅, {x2}). The equality (2.15) gives

Γ(Λ2) = Γ(Λ1)+̇Γ(Λ2 \ Λ1) = (∅, {x1})+̇(∅, {x2})

= (∅ ∪ ∅, ∅ ∪ {x2}, {x1} ∪ ∅, {x1} ∪ {x1})

= (∅, {x1}, {x2}, {x1, x2}).

Our nearest aim is to extend the number of sets from Γ(X), which belong to
B(C ′

fin(X)).

Conclusion 2.1. Let Λ, Λ1, Λ2 be some compact subsets of X; Λ1 ⊂ Λ2. Then

(2.16) Γ(Λ), Γ(Λ2 \ Λ1), Γ(X), Γ(n)(Λ), Γ(Kn), n ∈ N (Kn have the form (2.10)),

belong to B(C ′

fin(X)).
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This conclusion follows from Theorem 2.1, Lemmas 2.1, 2.2.
It is possible to investigate, instead of the σ-algebra B(C ′

fin(X)), another σ-algebra

B(Γ(X)), where Γ(X) is endowed with the relative topology as a set from C ′

fin(X),

topologized with the weak topology (i. e. Γ(X) is topologized with the vague topology).
It is interesting to know what is the collections of sets from B(Γ(X)), what are their
properties, etc. But we will not investigate these questions in detail and consider only
the vague topologization of the set of finite configurations Γ0(X).

6. Vague topologization of the set Γ0(X). We give some details of such a
topologization of Γ0(X) as a subset of Γ(X).

As follows from (2.4), (2.5) and (2.6), a sequence
(
γ(m)

)∞
m=1

of finite configurations

γ(m) = [xm,1, . . . , xm,nm
], where xm,1, . . . , xm,nm

are different points from X, tends to
an n-points configuration γ = [x1, . . . , xn] ∈ Γ0(X) if and only if for every f ∈ Cfin(X)

(2.17) lγ(m)(f) =

∫

X

f(x)dµl
γ(m)

(x) =

nm∑

j=1

f(xm,j) −−−−→
m→∞

n∑

j=1

f(xj).

Thus, it is necessary that the set [xm,1, . . . , xm,nm
] ⊂ X ”tends” to the set [x1, . . . , xn] ⊂

X of different points. Therefore it is possible that two (or more than two) points xm,j

”paste together” into one point, and the initial amount of nm points xm,1, . . . , xm,nm

are reduced. Thus, the reduction of the number of points is possible.
The second purpose of such a reduction is a departure of a point ”to infinity”: see

(2.17), every f ∈ Cfin(X) is a finite function. But we consider only γ from Γ0(X),
therefore such a cause is impossible.

3. The measure on the space of configurations

We have the space of configurations Γ(X) topologized with the vague topology, i. e.,
the the weak topology of the space C ′

fin(X). The space Γ(X) belongs to the σ-algebra

B(C ′

fin(X)) (see Conclusion 2.1). This conclusion gives that sufficiently many sets from

Γ(X) are sets from B(C ′

fin(X)).

Suppose we have a positive finite measure σ on the σ-algebra B(C ′

fin(X)), i. e.,

(3.1) B(C ′

fin(X)) ∋ α 7→ σ(α) ≥ 0.

Starting from representation (2.13) we can consider a special class of measures on the
space of configurations Γ(X).

Definition 3.1. We say that a measure σ on the space of configurations Γ(X) is special,

if there exists a decomposition, X =
∞⋃

n=1
Kn of the form (2.10) and a constant C ≥ 1

such that the inequality

(3.2) σ(Γ(X)) ≤ C

∞∑

n=1

σ(Γ(Kn))

is true.

Theorem 3.1. Let σ be a nontrivial measure on Γ(X), i.e., σ(Γ(X)) > 0. This measure

is special if and only if there exist n ∈ N and a compact set Λ ⊂ X such that

σ(Γ(n)(Λ)) > 0, (3.3)

where Γ(n)(Λ) is the corresponding set of finite configurations.

Proof. Since σ(Γ(X)) > 0 and the measure σ satisfy (3.2), there exists n0 ∈ N such that
σ(Γ(Kn0

)) > 0. Taking into account the inclusion Kn0
⊂ Λn0

(see (2.10)), we conclude
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that Γ(Kn0
) ⊂ Γ(Λn0

), whence σ(Γ(Λn0
)) > 0. Using the latter inequality, the equality

Γ(Λ) = Γ0(Λ) for any compact set Λ ⊂ X, and (2.3), we obtain the following relation:

0 < σ(Γ(Kn0
)) ≤ σ(Γ(Λn0

)) = σ(Γ0(Λn0
))

= σ

(
∞⋃

n=1

Γ(n)(Λn0
)

)
=

∞∑

n=1

σ(Γ(n)(Λn0
)).

So, σ(Γ(n)(Λn0
)) > 0 at least for one n ∈ N. Putting in the formulation of the theorem

Λ = Λn0
, we arrive at (3.3), which confirms the validity of the necessary condition.

Let us pass now to the proof of the sufficient condition (3.2) for a measure σ to be
special. Assume that there exist Λ and n ∈ N such that (3.2) holds true, and choose a

decomposition X = σ

(
∞⋃

n=1
Kn

)
so that K1 = Λ. We set C = σ(Γ(X))

σ(Γ(n)(Λ))
. Then, in view

of the relation Γ(K1) = Γ(Λ) ⊃ Γ(n)(Λ), we have

σ(Γ(X)) = Cσ(Γ(n)(Λ)) ≤ C

∞∑

n=1

σ(Γ(Kn)).

Thus, σ(Γ(K1)) ≥ σ(Γ(n)(Λ)). This means, by Definition 3.1, that the measure σ is
special. �

Theorem 3.2. In order that a nontrivial measure σ on the space of configurations

Γ(X) be special in accordance with Definition 3.1, it is necessary and sufficient that

σ(Γ0(X)) > 0.

Proof. If a measure σ is special, then, by Theorem 3.1, inequality (3.2) is fulfilled and
so, we have

σ(Γ0(X)) ≥ σ(Γ(n)(Λ)) > 0.

Assume now that σ(Γ0(X)) ≥ σ(Γ(n)(Λ)) > 0 and consider the decomposition X =
∞⋃

n=1
Kn, Kn = Λn \Λn−1 of the form (2.2), where 0 < σ(Γ0(X)) ≤

∞∑
n=1

σ(Γ0(Λn)). Since

the sum is positive, at least one of its summands is positive. Suppose σ(Γ0(Λn0
)) > 0.

Then 0 < σ(Γ0(Λn)) ≤
∞∑
k=1

σ(Γ(k)(Λn0
)) and, hence, one of the summands is positive.

Let, for example, σ(Γ(k0)(Λn0
)) > 0. It follows from Theorem 3.1 that the measure σ is

special. �

Let us give some examples of special measures supported on the set Γ(2)(X) of all
two-point configurations.

Example 3.1. Let X = [0,∞) be the right semi-axis with the natural topology. Every
two-point configuration γ ∈ Γ(2)(X) is determined uniquely by two real numbers x and
y (0 ≤ x ≤ ∞, 0 < y < ∞), if we set γ(x, y) = {x, x + y}. If A ⊂ Γ(2)(X) is some
set of two-point configurations, then we obtain on the plane (x, y) a set of the points
A(x, y) = {(x, y) : γ(x, y) ∈ A}. Let us assume that A is a measurable set, and define on
it a measure σ by the equality

σ(A) =

∫∫
χA(x, y)e

−(x+y) dxdy, (3.4)

where χA(x, y) is the characteristic function of the above set A(x, y). It is clear that
σ(Γ(2)(X)) = 1, and the measure σ is special according to Definition 3.1. The inequality
(3.2) holds for any decomposition of X = [0,∞) with a constant C > 1 depending on
the choice of the decomposition.
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Example 3.2. Let X = N be the set of all natural numbers. In this case, every two-
point configuration is determined uniquely by two natural numbers n and m: γ(n,m) =
{n, n+m}. Define a measure on Γ(2)(N), by the equality

σ(γ(n,m)) = 2−(n+m), (3.5)

Then σ(Γ(2)(N)) = 1. This measure is special. The inequality (3.2) holds for each

decomposition of X = N except for the single-point one, where X =
∞⋃

n=1
Kn,Kn = {n}.

Let us remark in conclusion that every finite measure σ on the space of configurations
Γ(X) admits a unique representation as a sum of two measures σ0 and σ∞:

σ(A) = σ0(A) + σ∞(A),

where σ0(A) = σ(A
⋂

Γ0(X)) is a special measure supported on Γ0(X)), while
σ∞(Γ0(X)) = 0.
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