LIMITED AND DUNFORD-PETTIS OPERATORS ON BANACH LATTICES

KHALID BOURAS, ABDENNABI EL ALOUI, AND AZIZ ELBOUR

ABSTRACT. This paper is devoted to investigation of conditions on a pair of Banach lattices E; F under which every positive Dunford-Pettis operator $T: E \to F$ is limited. Mainly, it is proved that if every positive Dunford-Pettis operator $T: E \to F$ is limited, then the norm on E' is order continuous or F is finite dimensional. Also, it is proved that every positive Dunford-Pettis operator $T: E \to F$ is limited, if one of the following statements is valid:

- (1) The norm on E' is order continuous, and F' has weak^{*} sequentially continuous lattice operations.
- (2) The topological dual E' is discrete and its norm is order continuous.
- (3) The norm of E' is order continuous and the lattice operations in E' are weak* sequentially continuous.
- (4) The norms of E and of E' are order continuous.

1. INTRODUCTION

Throughout this paper X, Y will denote Banach spaces, and E, F will denote Banach lattices. B_X is the closed unit ball of X. We will use the term operator between two Banach spaces to mean a bounded linear mapping. We refer to [1] for unexplained terminology of Banach lattice theory and positive operators. Let us recall that an operator $T: X \longrightarrow Y$ is said to be:

- a Dunford-Pettis operator if T carries weakly convergent sequences to norm convergent sequences;
- a limited operator if T' carries weakly^{*} convergent sequences in Y' to norm convergent sequences in X'.

Note that a Dunford-Pettis operator is not neccessarily limited and a limited operator is not neccessarily Dunford-Pettis. In fact, the identity operator $Id_{\ell^1}: \ell^1 \to \ell^1$ is Dunford-Pettis but not limited and the inclusion operator $i: c_0 \to \ell^{\infty}$ is limited but not Dunford-Pettis.

Recall from [9] that an operator T from a Banach lattice E to a Banach space Y is said to be almost Dunford-Pettis if the sequence $(||T(x_n)||)$ converges to 0 for every weakly null sequence (x_n) consisting of pairewise disjoint elements of E.

Also, we recall from [6] that an operator T from a Banach space X into a Banach lattice E is called almost limited if $T(B_X)$ is an almost limited set in E, equivalently, $||T'(f_n)|| \to 0$ for every disjoint weak^{*} null sequence (f_n) in E'.

In this paper, we investigate conditions under which Dunford-Pettis operators must be limited and conversely. We prove that if every positive Dunford-Pettis operator $T: E \to F$ is limited, then, at least, one of the following statements is valid:

(1) the norm on E' is order continuous;

²⁰¹⁰ Mathematics Subject Classification. Primary 46B07; Secondary 46B42, 47B50.

Key words and phrases. Limited operator, Dunford-Pettis operator, Banach lattice, order continuous norm.

(2) F is finite dimensional.

Also, it is proved that each positive Dunford-Pettis operator T from E into F is limited if one of the following assertions is valid:

- (1) the norm on E' is order continuous, and F' has weak^{*} sequentially continuous lattice operations;
- (2) the topological dual E' is discrete, and its norm is order continuous;
- (3) the norm of E' is order continuous and the lattice operations in E' are weak* sequentially continuous;
- (4) the norms of E and of E' are order continuous.

As a consequence, we give a characterization of a Banach lattice E for which every Dunford-Pettis operator $T: E \to c_0$ is limited (Corollary 2.4).

For the converse, we give some necessary conditions under which a positive limited operator must be Dunford-Pettis (Theorem 2.5).

2. Main results

To obtain our principal result, we need the following lemma:

Lemma 2.1. Let F be an infinite dimensional Banach lattice. Then there exist a sequence (f_n) in F' converging weakly^{*} to zero, a sequence (y_n) in B_F^+ and some $\varepsilon > 0$ such that $|f_n(y_n)| \ge \varepsilon$ for all n.

Proof. Assume that F is infinite dimensional. So by Josefson-Nissenzweig Theorem [3, Chapter XII], there exists a sequence (f_n) in F' converge weakly^{*} to zero such that $||f_n|| \rightarrow 0$. We may assume that $||f_n|| > 2\varepsilon > 0$ for some $\varepsilon > 0$ and for all n. For each n, there exists some $y_n \in F$ such that $||y_n|| \leq 1$ and $|f_n(y_n)| > 2\varepsilon$. We know that $y_n = y_n^+ - y_n^-$. Note that $||f_n(y_n^+)| > \varepsilon$ or $|f_n(y_n^-)| > \varepsilon$, otherwise we can have: $|f_n(y_n)| = |f_n(y_n^+) - f_n(y_n^-)| \leq |f_n(y_n^+)| + |f_n(y_n^-)| \leq 2\varepsilon$, which contradicts $|f_n(y_n)| > 2\varepsilon$. By replacing y_n with y_n^+ or y_n^- , we may assume that for all n, there exists $y_n \in B_F^+$ such that $|f_n(y_n)| > \varepsilon$, and the proof of the lemma is finished.

We are now in a position to establish our first major result, it gives necessary conditions under which a positive Dunford-Pettis operator between Banach lattices must be limited.

Theorem 2.2. Let E and F be Banach lattices. If every positive Dunford-Pettis operator $T : E \to F$ is limited, then one of the following statements is valid:

- 1. The norm on E' is order continuous.
- 2. F is finite dimensional.

Proof. Assume by way of contradiction that E' does not have an order continuous norm and F is infinite dimensional. We must then build a positive Dunford-Pettis operator $T: E \to F$ that is not limited. Since E' does not have an order continuous norm, it follows from theorem 4.14 of [1] that there exists an order bounded disjoint sequence (x'_n) in $(E')^+$ satisfying $||x'_n|| = 1$ for all n. Pick some $0 \le x' \in E'$ such that $x'_n \in [0; x']$ for all n. Moreover, since F is finite dimensional, according to the previous lemma, there are a sequence (f_n) in F' converges weakly^{*} to zero, a sequence (y_n) in B_F^+ and some $\varepsilon > 0$ satisfying $||f_n(y_n)| \ge \varepsilon$ for all n.

Now define two positive operators $P: E \to \ell^1$ and $S: \ell^1 \to F$ by

$$P(x) = (x'_{n}(x))_{n=1}^{\infty}$$

$$S((\lambda_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \lambda_n y_n.$$

Since $\sum_{n=1}^{\infty} (|x'_n(x)|) \leq \sum_{n=1}^{\infty} (x'_n(|x|)) \leq x'(|x|)$ holds for all $x \in E$, the operator P is well defined and positive. Similarly, as $\sum_{n=1}^{\infty} |\lambda_n y_n|| \leq \sum_{n=1}^{\infty} |\lambda_n| < \infty$ for all $(\lambda_n)_{n=1}^{\infty} \in \ell^1$, the operator S is well defined and is positive.

Now, we consider the operator $T = S \circ P : E \to \ell^1 \to F$ defined by

$$T(x) = \sum_{n=1}^{\infty} x'_n(x) y_n.$$

We claim that T is a Dunford-Pettis operator. Indeed, if (x_n) converges weakly to zero in E, then $(P(x_n))$ converges weakly to zero in ℓ^1 and since ℓ^1 has the Schur property, we deduce $||P(x_n)||_{\ell^1} \to 0$, from which it follows that $||T(x_n)|| = ||S(P(x_n))|| \to 0$, as desired. However T is not limited. Assume that (f_n) converges weakly* to zero in F'. Then

$$|T'(f_n)| = |\sum_{i=1}^{\infty} f_n(y_i)x'_i| = \sum_{i=1}^{\infty} |f_n(y_i)| \ x'_i \ge |f_n(y_n)|x'_n$$

(as (x_n) is a positive disjoint sequence), and hence

$$||T'(f_n)|| \ge ||f_n(y_n)x'_n|| = |f_n(y_n)| \ge \varepsilon_1$$

So, $||T'(f_n)|| \not\rightarrow 0$, which proves that T is not limited.

Recall that the lattice operations in E (resp. in E') are called weak (resp. weak^{*}) sequentially continuous if for every sequence (x_n) in E (resp. (f_n) in E'), the sequence $(|x_n|)$ (resp. $(|f_n|)$) converges to 0 in the weak (resp. weak^{*}) topology, whenever the sequence (x_n) (resp. (f_n)) converges weakly (resp. weak^{*}) to 0 in E (resp. in E').

The following result gives some sufficient conditions under which every Dunford-Pettis operator $T: E \to F$ is limited.

Theorem 2.3. Let E and F be two Banach lattices. Then every positive Dunford-Pettis operator $T: E \to F$ is limited, if one of the following statements is valid:

- (1) The norm on E' is order continuous, and F' has weak^{*} sequentially continuous lattice operations.
- (2) The topological dual E' is discrete and its norm is order continuous.
- (3) The norm of E' is order continuous and the lattice operations in E' are weak^{*} sequentially continuous.
- (4) The norms of E and of E' are order continuous.

Proof. Let $T: E \to F$ be a positive Dunford-Pettis operator.

(1) Suppose that the norm of E is continuous for the order and the lattice operations in F' are sequentially weak^{*} continuous.

We show that T is limited, that is: for any sequence (f_n) in F' that converges weakly^{*} to zero, we have $||T'(f_n)|| \to 0$. According to ([4], Corollary 2.7), it suffices to show that:

- i) $|T'(f_n)| \to 0$ for $\sigma(E', E)$.
- ii) $(T'(f_n))(x_n) \to 0$ for any disjoint norm-bounded sequence (x_n) in E^+ .

207

Let $x \in E^+$. Then

$$|T'(f_n)|(x) = \sup\{|T'(f_n)(z)|; |z| \le x\} = \sup\{|f_n(T(z))|; |z| \le x\} \le |f_n|(T(x)).$$

Since $f_n \to 0$ for $\sigma(E', E)$ and F' has weak^{*} sequentially continuous lattice operations, so $|f_n| \to 0$ for $\sigma(E', E)$, which gives $|f_n|(T(x)) \to 0$. Therefore $|T'(f_n)| \to 0$ for $\sigma(E', E)$.

On the other hand, let (x_n) be a norm-bounded disjoint sequence of E^+ . Since the norm of E' is order continuous, then according to ([4], Corollary 2.9), we have $x_n \to 0$ for $\sigma(E, E')$, and as T is Dunford-pettis, so $||T(x_n)|| \to 0$. Pick some k > 0 such that $||f_n|| \leq k$ for all n. From

$$|(T'(f_n))(x_n)| = |f_n(T(x_n))| \le k ||T(x_n)|| \to 0$$

we conclude that $(T'(f_n))(x_n) \to 0$. Therefore, T is limited.

For (2), (3) and (4), since the operator T is Dunford-Pettis, by ([2], Theorem 3.8) it can be deduced that T is compact and therefore it is limited.

Since c_0 has weak^{*} sequentially continuous lattice operations, the following result is a consequences of Theorem 2.3.

Corollary 2.4. Let E be a Banach lattice. Then the following assertions are equivalent:

- (1) Each Dunford-Pettis operator $T: E \to c_0$ is limited.
- (2) The norm of E' is order continuous.

Now, we study the converse situation. We give some necessary conditions under which a positive limited operator must be Dunford-Pettis.

Theorem 2.5. Let E and F be Banach lattices and F' has weak^{*} sequentially continuous lattice operations. If every positive limited operator $T : E \to F$ is Dunford-Pettis, then, at least, one of the following statements is verified:

- (1) The norm on F is order continuous.
- (2) E has weak sequentially continuous lattice operations.

Proof. Suppose that neither (1) not (2) holds. Since the lattice operations of E are not weakly sequentially continuous, using arguments from the proof of ([8], Theorem 2), one can obtain that there exist a weakly null sequence (x_n) of E, $f \in (E')^+$, $g, g_n \in [-f, f]$ satisfying $g_n \to g$ (weak^{*}) and $g_n(x_n) \ge \varepsilon$ for all $n \in \mathbb{N}$.

Since F does not have an order continuous norm, we know (Theorem 4.14 in [1] or Corollary 2.4.2 in [7]) that there is an order bounded disjoint positive sequence in F which does not converge to zero in norm. By extracting a subsequence, we obtain a disjoint positive sequence (y_n) , which is bounded away from 0 in norm and which is bounded from above by $y \in F^+$ and $||y_n|| = 1$.

Now define two operators $R: E \to c_0$ and $S: c_0 \to F$ by:

$$R(x) = (f_n(x))_n,$$
$$S((\lambda_n)) = \sum_{n=1}^{\infty} \lambda_n y_n,$$

where $f_n(x) = g_n(x) - g(x)$. Using arguments from the proof of ([10], Theorem 117.1), one can obtain that the positive operator S is well defined and $S(B_{c_0}) \subseteq [-y, y]$.

Now, we consider the operator $T = S \circ R : E \to F$ defined by

$$T(x) = \sum_{n=1}^{\infty} f_n(x) y_n$$

for all $x \in E$. We have to show that T is limited. To this end, note that for every $x \in B_E$ we have

$$||R(x)||_{\infty} = \sup_{n} |f_n(x)| \le 2 ||f||.$$

So $\frac{R(x)}{2\|f\|} \in B_{c_0}$ and hence $S\left(\frac{R(x)}{2\|f\|}\right) \in [-y, y]$ (as $S(B_{c_0}) \subseteq [-y, y]$). Therefore,

$$T(B_E) = S(R(B_E)) \subseteq \alpha[-y, y]$$

(where $\alpha = 2 \|f\|$).

On the other hand, it follows from Proposition 3.1 of [5] that the order interval [-y, y] is limited. So $T(B_E)$ is limited and hence that T is limited, as desired. But T is not Dunford-Pettis since although $x_n \to 0$ (weakly) we have

$$||T(x_n)|| = ||\sum_{k=1}^{\infty} f_k(x_n)y_k|| \ge |f_n(x_n)|||y_n|| = |g_n(x_n) - g(x_n)|||y_n||.$$

The right-hand side of the latter expression certainly does not converge to 0 as $||y_n||$, $|g_n(x_n) - g(x_n)|$ are both eventually bounded away from zero (in the latter case because $g(x_n) \to 0$ whilst $g_n(x_n) \ge \varepsilon > 0$) and the proof is complete.

Acknowledgments. The authors would like to thank the referee(s) for helpful comments and suggestions on the first version of the paper.

References

- 1. C. D. Aliprantis and O. Burkinshaw, *Positive Operators*. Reprint of the 1985 original. Springer, Dordrecht, 2006.
- B. Aqzzouz, K. Bouras, Dunford-Pettis sets in Banach lattices, Acta Math. Univ. Comenianae LXXXI (2012), no. 2, 185–196.
- J. Diestel, Sequences and Series in Banach Spaces, Graduate Text in Mathematics, vol. 91, Springer-Verlag, Berlin—Heidelberg—New York, 1984.
- 4. P. G. Dodds, D. H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34 (1979), 287-320.
- A. El Kaddouri, M. Moussa, About the class of ordered limited operators, Acta Universitatis Carolinae. Mathematica et Physica 54 (2013), no. 1, 37–43.
- N. Machrafi, A. Elbour, M. Moussa, Some characterizations of almost limited sets and applications. arXiv preprint arXiv:1312.2770, 2013.
- 7. P. Meyer-Nieberg, Banach Lattices. Universitext. Springer-Verlag, Berlin, 1991.
- A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Camb. Phil. Soc. 120 (1996), 175–179.
- W. Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236.
- 10. A. C. Zaanen, Riesz Spaces II. North Holland Publishing Co., Amsterdam, 1983.

DEPARTMENT OF MATHEMATICS, FACULTY POLYDISCIPLINARY OF LARACHE, ABDELMALEK ESSAADI UNIVERSITY, P.O. Box 745, LARACHE 92004, MOROCCO

 $E\text{-}mail \ address: \texttt{k.bouras@uae.ac.ma}$

DEPARTMENT OF MATHEMATICS, FACULTY POLYDISCIPLINARY OF LARACHE, ABDELMALEK ESSAADI UNIVERSITY, P.O. BOX 745, LARACHE 92004, MOROCCO

 $E\text{-}mail \ address: \texttt{dehmanabdennabi}\texttt{@gmail.com}$

Department of Mathematics, Faculty of Science and Technology, Moulay Ismail University, P.O. Box 509, Boutalamine 52000, Errachidia, Morocco

E-mail address: azizelbour@hotmail.com

Received 12/02/2019; Revised 04/04/2019