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LIMITED AND DUNFORD-PETTIS OPERATORS ON BANACH LATTICES

KHALID BOURAS, ABDENNABI EL ALOUI, AND AZIZ ELBOUR

Abstract. This paper is devoted to investigation of conditions on a pair of Banach lattices E;F
under which every positive Dunford-Pettis operator T : E → F is limited. Mainly, it is proved

that if every positive Dunford-Pettis operator T : E → F is limited, then the norm on E
′ is

order continuous or F is finite dimensional. Also, it is proved that every positive Dunford-Pettis
operator T : E → F is limited, if one of the following statements is valid:

(1) The norm on E
′ is order continuous, and F

′ has weak∗ sequentially continuous lattice
operations.

(2) The topological dual E′is discrete and its norm is order continuous.

(3) The norm of E′ is order continuous and the lattice operations in E
′

are weak∗ sequentially

continuous.
(4) The norms of E and of E′ are order continuous.

1. Introduction

Throughout this paper X, Y will denote Banach spaces, and E, F will denote Banach lattices.
BX is the closed unit ball of X. We will use the term operator between two Banach spaces to mean
a bounded linear mapping. We refer to [1] for unexplained terminology of Banach lattice theory
and positive operators. Let us recall that an operator T : X −→ Y is said to be:

• a Dunford-Pettis operator if T carries weakly convergent sequences to norm convergent
sequences;

• a limited operator if T ′ carries weakly∗ convergent sequences in Y ′ to norm convergent
sequences in X ′.

Note that a Dunford-Pettis operator is not neccessarily limited and a limited operator is not
neccessarily Dunford-Pettis. In fact, the identity operator Idℓ1 : ℓ1 → ℓ1 is Dunford-Pettis but not
limited and the inclusion operator i : c0 → ℓ∞ is limited but not Dunford-Pettis.

Recall from [9] that an operator T from a Banach lattice E to a Banach space Y is said to be
almost Dunford-Pettis if the sequence (‖T (xn)‖) converges to 0 for every weakly null sequence (xn)
consisting of pairewise disjoint elements of E.

Also, we recall from [6] that an operator T from a Banach space X into a Banach lattice E is
called almost limited if T (BX) is an almost limited set in E, equivalently, ‖T ′(fn)‖ → 0 for every
disjoint weak∗ null sequence (fn) in E′.

In this paper, we investigate conditions under which Dunford-Pettis operators must be limited
and conversely. We prove that if every positive Dunford-Pettis operator T : E → F is limited, then,
at least, one of the following statements is valid:

(1) the norm on E′ is order continuous;
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(2) F is finite dimensional.

Also, it is proved that each positive Dunford-Pettis operator T from E into F is limited if one of
the following assertions is valid:

(1) the norm on E′ is order continuous, and F ′ has weak∗ sequentially continuous lattice
operations;

(2) the topological dual E′ is discrete, and its norm is order continuous;

(3) the norm of E′ is order continuous and the lattice operations in E
′

are weak∗ sequentially
continuous;

(4) the norms of E and of E′ are order continuous.

As a consequence, we give a characterization of a Banach lattice E for which every Dunford-Pettis
operator T : E → c0 is limited (Corollary 2.4).

For the converse, we give some necessary conditions under which a positive limited operator must
be Dunford-Pettis (Theorem 2.5).

2. Main results

To obtain our principal result, we need the following lemma:

Lemma 2.1. Let F be an infinite dimentional Banach lattice. Then there exist a sequence (fn) in
F ′ converging weakly∗ to zero, a sequence (yn) in B+

F and some ε > 0 such that |fn(yn)| ≥ ε for

all n.

Proof. Assume that F is infinite dimensional. So by Josefson-Nissenzweig Theorem [3, Chapter
XII], there exists a sequence (fn) in F ′ converge weakly∗ to zero such that ‖fn‖ 9 0. We may
assume that ‖fn‖ > 2ε > 0 for some ε > 0 and for all n. For each n, there exists some yn ∈ F

such that ‖yn‖ ≤ 1 and |fn(yn)| > 2ε. We know that yn = y+n − y−n . Note that |fn(y
+
n )| > ε or

|fn(y
−
n )| > ε, otherwise we can have: |fn(yn)| = |fn(y

+
n ) − fn(y

−
n )| ≤ |fn(y

+
n )| + |fn(y

−
n )| ≤ 2ε,

which contradicts |fn(yn)| > 2ε. By replacing yn with y+n or y−n , we may assume that for all n,
there exists yn ∈ B+

F such that |fn(yn)| > ε, and the proof of the lemma is finished. �

We are now in a position to establish our first major result, it gives necessary conditions under
which a positive Dunford-Pettis operator between Banach lattices must be limited.

Theorem 2.2. Let E and F be Banach lattices. If every positive Dunford-Pettis operator T : E →
F is limited, then one of the following statements is valid:

1. The norm on E
′

is order continuous.

2. F is finite dimensional.

Proof. Assume by way of contradiction that E′ does not have an order continuous norm and F is
infinite dimensional. We must then build a positive Dunford-Pettis operator T : E → F that is not
limited. Since E

′

does not have an order continuous norm, it follows from theorem 4.14 of [1] that
there exists an order bounded disjoint sequence (x′

n) in (E′)+ satisfying ‖x′
n‖ = 1 for all n. Pick

some 0 ≤ x′ ∈ E′ such that x′
n ∈ [0;x′] for all n. Moreover, since F is finite dimensional, according

to the previous lemma, there are a sequence (fn) in F ′ converges weakly∗ to zero, a sequence (yn)
in B+

F and some ε > 0 satisfying |fn(yn)| ≥ ε for all n.
Now define two positive operators P : E → ℓ1 and S : ℓ1 → F by

P (x) = (x
′

n(x))
∞
n=1,
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S((λn)
∞
n=1) =

∞
∑

n=1

λnyn.

Since
∑∞

n=1(|x
′
n(x)|) ≤

∑∞
n=1(x

′
n(|x|)) ≤ x′(|x|) holds for all x ∈ E, the operator P is well defined

and positive. Similarly, as
∞
∑

n=1
‖λnyn‖ ≤

∞
∑

n=1
|λn| < ∞ for all (λn)

∞
n=1 ∈ ℓ1, the operator S is well

defined and is positive.
Now, we consider the operator T = S ◦ P : E → ℓ1 → F defined by

T (x) =
∞
∑

n=1

x′
n(x)yn.

We claim that T is a Dunford-Pettis operator. Indeed, if (xn) converges weakly to zero in
E, then (P (xn)) converges weakly to zero in ℓ1 and since ℓ1 has the Schur property, we deduce
‖P (xn)‖ℓ1 → 0, from which it follows that ‖T (xn)‖ = ‖S(P (xn))‖ → 0, as desired. However T is

not limited. Assume that (fn) converges weakly
∗ to zero in F

′

. Then

|T ′(fn)| = |
∞
∑

i=1

fn(yi)x
′
i| =

∞
∑

i=1

|fn(yi)| x
′
i ≥ |fn(yn)|x

′
n

(as (x
′

n) is a positive disjoint sequence), and hence

‖T ′(fn)‖ ≥ ‖fn(yn)x
′
n‖ = |fn(yn)| ≥ ε.

So, ‖T ′(fn)‖ 9 0, which proves that T is not limited. �

Recall that the lattice operations in E (resp. in E′) are called weak (resp. weak∗) sequentially
continuous if for every sequence (xn) in E (resp. (fn) in E′ ), the sequence (|xn|) (resp. (|fn|))
converges to 0 in the weak (resp. weak∗) topology, whenever the sequence (xn) (resp. (fn))
converges weakly (resp. weak∗) to 0 in E (resp. in E′).

The following result gives some sufficient conditions under which every Dunford-Pettis operator
T : E → F is limited.

Theorem 2.3. Let E and F be two Banach lattices. Then every positive Dunford-Pettis operator

T : E → F is limited, if one of the following statements is valid:

(1) The norm on E′ is order continuous, and F ′ has weak∗ sequentially continuous lattice

operations.

(2) The topological dual E′is discrete and its norm is order continuous.

(3) The norm of E′ is order continuous and the lattice operations in E
′

are weak∗ sequentially

continuous.

(4) The norms of E and of E′ are order continuous.

Proof. Let T : E → F be a positive Dunford-Pettis operator.
(1) Suppose that the norm of E is continuous for the order and the lattice operations in F ′ are

sequentially weak∗ continuous.
We show that T is limited, that is: for any sequence (fn) in F ′ that converges weakly∗ to zero,

we have ‖T ′(fn)‖ → 0. According to ([4], Corollary 2.7), it suffices to show that:

i) |T ′(fn)| → 0 for σ(E
′

, E).
ii) (T ′(fn))(xn) → 0 for any disjoint norm-bounded sequence (xn) in E+.
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Let x ∈ E+. Then

|T ′(fn)|(x) = sup{|T ′(fn)(z)|; |z| ≤ x} = sup{|fn(T (z))|; |z| ≤ x} ≤ |fn|(T (x)).

Since fn → 0 for σ(E′, E) and F ′ has weak∗ sequentially continuous lattice operations, so |fn| → 0
for σ(E′, E), which gives |fn|(T (x)) → 0. Therefore |T ′(fn)| → 0 for σ(E′, E).

On the other hand, let (xn) be a norm-bounded disjoint sequence of E+. Since the norm of E′

is order continuous, then according to ([4], Corollary 2.9), we have xn → 0 for σ(E,E′), and as T
is Dunford-pettis, so ‖T (xn)‖ → 0. Pick some k > 0 such that ‖fn‖ ≤ k for all n. From

|(T ′(fn))(xn)| = |fn(T (xn))| ≤ k‖T (xn)‖ → 0

we conclude that (T ′(fn))(xn) → 0. Therefore, T is limited.
For (2), (3) and (4), since the operator T is Dunford-Pettis, by ([2], Theorem 3.8) it can be

deduced that T is compact and therefore it is limited. �

Since c0 has weak∗ sequentially continuous lattice operations, the following result is a conse-
quences of Theorem 2.3.

Corollary 2.4. Let E be a Banach lattice. Then the following assertions are equivalent:

(1) Each Dunford-Pettis operator T : E → c0 is limited.

(2) The norm of E′ is order continuous.

Now, we study the converse situation. We give some necessary conditions under which a positive
limited operator must be Dunford-Pettis.

Theorem 2.5. Let E and F be Banach lattices and F ′ has weak∗ sequentially continuous lattice

operations. If every positive limited operator T : E → F is Dunford-Pettis, then, at least, one of

the following statements is verified:

(1) The norm on F is order continuous.

(2) E has weak sequentially continuous lattice operations.

Proof. Suppose that neither (l) not (2) holds. Since the lattice operations of E are not weakly
sequentially continuous, using arguments from the proof of ([8], Theorem 2), one can obtain that
there exist a weakly null sequence (xn) of E, f ∈ (E′)+, g, gn ∈ [−f, f ] satisfying gn → g (weak∗)
and gn(xn) ≥ ε for all n ∈ N.

Since F does not have an order continuous norm, we know (Theorem 4.14 in [1] or Corollary 2.4.2
in [7]) that there is an order bounded disjoint positive sequence in F which does not converge to
zero in norm. By extracting a subsequence, we obtain a disjoint positive sequence (yn), which is
bounded away from 0 in norm and which is bounded from above by y ∈ F+ and ‖yn‖ = 1.

Now define two operators R : E → c0 and S : c0 → F by:

R(x) = (fn(x))n,

S((λn)) =
∞
∑

n=1

λnyn,

where fn(x) = gn(x) − g(x). Using arguments from the proof of ([10], Theorem 117.1), one can
obtain that the positive operator S is well defined and S(Bc0) ⊆ [−y, y].

Now, we consider the operator T = S ◦R : E → F defined by

T (x) =
∞
∑

n=1

fn(x)yn
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for all x ∈ E. We have to show that T is limited. To this end, note that for every x ∈ BE we have

‖R (x)‖∞ = sup
n

|fn(x)| ≤ 2 ‖f‖ .

So R(x)
2‖f‖ ∈ Bc0 and hence S

(

R(x)
2‖f‖

)

∈ [−y, y] (as S(Bc0) ⊆ [−y, y]). Therefore,

T (BE) = S(R(BE)) ⊆ α[−y, y]

(where α = 2 ‖f‖).
On the other hand, it follows from Proposition 3.1 of [5] that the order interval [−y, y] is limited.

So T (BE) is limited and hence that T is limited, as desired. But T is not Dunford-Pettis since
although xn → 0 (weakly) we have

‖T (xn)‖ = ‖

∞
∑

k=1

fk(xn)yk‖ > |fn(xn)|‖yn‖ = |gn(xn)− g(xn)|‖yn‖.

The right-hand side of the latter expression certainly does not converge to 0 as ‖yn‖, |gn(xn)−
g(xn)| are both eventually bounded away from zero (in the latter case because g(xn) → 0 whilst
gn(xn) > ε > 0) and the proof is complete. �
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