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SCATTERING PROBLEM FOR DIRAC SYSTEM WITH NONLOCAL
POTENTIALS

P. A. COJUHARI AND L. P. NIZHNIK

Dedicated to the 70th anniversary of A. N. Kochubei

ABsTrRACT. For a Dirac system on the half-axis, we obtain an explicit expression for
the scattering operator in terms of a nonlocal potential.

1. INTRODUCTION

Scattering theory is a well-developed part of the spectral theory of operators [21, 7, 10].
A large number of particular problems have been worked out, and this makes an impor-
tant contribution to modern mathematical physics, see the encyclopedic monograph [20]).

Scattering problems consist in matching the two problems. One of which describes
free wave propagation, and the other one contains a perturbation that leads to wave
scattering. From the operator point of view, this leads to considering two operators.
One of the operators, Ay, describes the free propogation, and the other one, A, describes
the wave scattering. If the operators Ag and A are selfadjoint, then the scattering
problem corresponds to continuous spectrum of the operators. The are several approaches
to formulation of the scattering problem. These are a nonstationary and stationary
approaches [21, 7, 10], as well as the Lax-Phillips approach [14].

Inverse scattering problems are important for scattering problems. These problems
consist in constructing scattering data, a proof that the operator A can be uniquely
constructed from the scattering data, and finding an effective algorithm for determining
all unknown parameters that define the operator A. Inverse scattering problems (ISP) are
important for quantum mechanics, since they provide effective means to study patterns
of the microcosm. The ISP are also important in other applications including geophysics
exploration, radar technologies, tomography, as well as in other branches of mechanics,
engineering, biology, and medicine [20]. Important applications of the ISP are obtained
in soliton theory [1] for integration of nonlinear evolution equations. These applications
have significantly increased interest to the ISP, regardless of its physical origin, since the
algorithm used in its solution can be applied to study a more interesting problem in the
theory of solitons.

In this paper we deal with the scattering problem for a Dirac system on half-axis with
a nonlocal potential.

Models for quantum mechanics operators with nonlocal potentials were proposed in [3,
4]. These are exact solvable models that contain not only coupling constants, as opposed
to models with point interactions [2], but also nonlocal potentials. This leads to new
results concerning the spectrum and solution of inverse scattering problems [5, 8, 13, 17,
18, 19]. In this paper, we find all quantities for a Dirac system with nonlocal potential
that enter various approaches to the scattering problem in an explicit form, as this is
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done for an exact solvable model. In particular, we explicitly find the scattering matrix
in terms of the Fourier transform of the nonlocal potential. We discuss a number of new
problem statements for that ISP and ways to solve them. Let us remark that inverse
scattering problems for a one-dimensional Schrédinger system and a Dirac system with
usual potentials have been extensively studied [15, 16].

2. SCATTERING PROBLEM

Let us consider the following boundary-value problem for a Dirac system with nonlocal
potentials on the half-axis:

Jdy (x
P o (@i, = M (a).
(2.1) dz
i)y () _
i + vo () = Mpa(z), 0 <z < +4o0.
The constant ¥ in system (2.1) depends on the solution 1, 19,
1
(2.2) Yy = By [1h1(0) + 12(0)] .
A solution of system (2.1) should satisfy the nonlocal boundary-value condition
(2.3) 01(0) = v2(0) = [ [b1(2)or) + dale)eal@)] do =0,
0

In this section, we assume that the nonlocal potentials v; and vy are complex-valued
functions and belong to L4(0,00) and L(0, 00),

(2.4) v1, v € Ly ) L1

Lemma 2.1. Let the potentials v1 and vo satisfy (2.4). Then, for any real A and any ¥,
the solution 11,1y of system (2.1) are bounded functions on the half-axis, 0 < x < +o0,
and admit the representation

V1 (3 \) = ae” ™ — i/eii)‘(zfs)vl(s)ds Sy,
(2.5) N

(oo}

ValwiX) = b i [P Dun(s)ds

x

where the numbers a and b are positive.

Proof. By substituting (2.5) into (2.1) we see that the functions in (2.5) give a solution
of system (2.1). Uniqueness of this solutions follows from the fact that, if ¥4 = 0, then
only the functions ¥ = de~* and s = be**® make a solution of system (2.1) with
arbitrary constants @ and b. O

It follows from (2.5) that any solution of system (2.1) satisfying conditions (2.4) is a
pair of uniformly bounded functions 11, ¥s that have the asymptotics

(2.6) Vr(z;N) = ae” ™ L o(1),  ha(x;)) = be™® +o(1), - oo.

The functions ae~** and be'’® have the physical meaning of an incoming and a scat-

tered (reflected) waves. The numbers a and b are amplitudes of these waves. The
relation 3 = S(A) is called a scattering matrix. In this particular case, S(A) is the scat-
tering coefficient. The scattering problem for system (2.1) with conditions (2.2) and (2.3)
consists in constructing solution (2.5) of problem (2.1) — (2.3) from a given amplitude a

of the incoming wave ae™ "7,
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Theorem 2.1. Let the potentials vi and ve in problem (2.1) — (2.3) satisfy condi-
tion (2.4). Then there exists a solution of the scattering problem (2.1) — (2.3) with a
giwen amplitude a of the incoming wave. It is unique if and only if the real number \ is
not a zero of two functions p(A) and x(\) of the form

i (.
p(A) =14 01(A) — 502(=N),

(2.7) 2 2 .
X(A) =1 +01(A) +03(=A) = ST1(A) - 02 (=A) + w (),

oo

where U;(\) = [ e$v;(s)ds is the Fourier transform of the potentials, j = 1,2, and
0

1 oo o0 ' o0 x v
w(A) = 3 /vl(x) /e_"’\(m_s)vl(s)ds d.Z‘+/U2(.’L‘) /e”(g”_s)vg(s)ds dx

0 z 0 0

In the case where p(A) # 0 and x(\) # 0, the scattering operator S(\) can be represented

X'\
(2.8) S ="

Proof. For solution (2.5) of system (2.1) to be a solution of the scattering problem (2.1)
— (2.4), it is necessary and sufficient that solution (2.5) would satisfy conditions (2.2)
and (2.3). This leads to a linear system for ¢} and b with the amplitude a of the incoming
wave being given,

. T 1 1
) [ 5700 = $3a(-0)] v = 50 = 0
[0 () + 03 () + K] s+ [1+ (-] b = [1 - 5 (V)] a,
where
K(}\) _ W e—iA(;c—s) dsdx _ 1}2 ei>\(9c—s)v2 (S)dsdac.
[ /=]

The determinant of system (2.9) is the function x(\) given by (2.7). Hence, system (2.9)
has a solution for any a if and only if x(A) # 0 for the considered .

Uniqueness of the solution ¢ and b can be reduced to the condition that a = 0 and b =
0 would imply that ¢, = 0. The first equation of system (2.9) yields that p(A) # 0 for
the considered A. System (2.9) implies that b = Sa, where S()), can be represented as
n (2.8). O

3. ASSOCIATED OPERATORS

Equation (2.1) can be associated with a maximal operator Ap.x on the
space Ly((0,00); C?) of two-component vector-valued functions that are square inte-
grable on the half-axis (0, +00). The domain of the operator A,y is the whole Sobolev
space W3 ((0,00); C?) C L2((0,00); C?). The action of the operator Ay is given by the
left hand-side of equation (2.1),

_ o) _ (R 4 o) 5(1(0) +42(0))
6 A= (1) - < e o 0) + 1)

The main operator A that corresponds to problem (2.1) — (2.3) is the restriction of the
operator Ay to the set of functions satisfying the boundary-value condition (2.3),

(3.2) D(A) = {¢ : ¢ € WJ((0,00); C?),91(0) — 1b2(0) — i(¥,v) = 0} .
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Theorem 3.1. Let the nonlocal potential v = col(vy,vs) satisfy conditions (2.4). Then
the operator A is selfadjoint on the space L2((0,00); C?).

Proof. For the operator A, .x, we have

(33) <Amax¢a <P> - <¢a Amax‘P> =1 [Fl'(/) : F1<P - F2¢ m s

on its domain D(Apax) = W4 ((0,00); C?), where I'11p = 11 (0) — %(@/}, v), Tot) = 15(0) +
%(w’ U)' (1/)7 U) = (7/}13 vl)Lz + (7/)23 vQ)LQ'

One can show in the same way as for a Dirac system with nonlocal potential on a
bounded interval [8] that the minimal operator Ay, which is a restriction of the opera-
tor Amax to D(Ag) = {¢ : ¢ € D(Amax), 19 = 0,T2¢) = 0}, is a densely defined sym-
metric operator on the space La((0,00); C?), and that A} = Apax.

Moreover, the operator (I'1,T) maps D(Apax) onto the whole space C2.
Thus (C?,T4,T3) is a boundary triple for the operator Ap.x = Aj. It follows from
a general theorem [9, 11, 12] that the restriction of the operator Ap.x onto the
set D% = {zp s € D(A), Ty = emng/J}, where « is a real number, is a selfadjoint
operator A(®) . If a = 0, then the operator A(®) coincides with the operator A. Another
proof that the operator A is selfadjoint is given in Theorem 4.1. O

Let us consider the structure of eigenvalues and eigenfunctions of the operators A .x
and A.

Theorem 3.2. Let the nonlocal potential v = col(vi,ve) satisfy the conditions vi,ve €

L3(0,00) N L1(0,00) and [ |vj(s)|ds € La(0,00). Then a real number g is an eigenvalue
x

of the operator Amax if and only if \g is a zero of the function p(\),

(3.4) p(A)=1- %/e“‘svl (s)ds + % /eii)‘svg(s)ds.
0 0

A real number \g is an eigenvalue of the operator A if and only if

where the function x(\) is given by (2.7).

Proof. Functions of the form (2.5) will be eigenfunctions corresponding to an eigenvalue A
for the operator Anax if and only if @ = 0, b = 0 and ¥y = 2 [1)1(0) 4 ¥2(0)] # 0
in (2.5). This is possible for A = A¢ if and only if p(Ag) = 0. Since the operator A is
a restriction of the operator An.x, eigenfunctions of the operator A are eigenfunctions
of the operator An.x and, hence, satisfy the boundary-value conditioin (2.3). This gives
conditions (3.5). O

Together with the operators Apax and A associated with problem (2.1) — (2.3), let
us also consider two unperturbed operators A4 for the potentials being zero. The op-
erators Ay are given on the space Lo((0,00); C?), defined on the functions from the
Sobolev space W3 ((0,00); C?), which satisfy the conditions 1 (0) + 12(0) = 0 for the
operator A, and the conditions 1 (0) — ¥2(0) = 0 for the operator A_. The action
of the operators AL on functions ¥ (x) = col(¢1(x),¥2(x)) is given by the unperturbed
Dirac operator ALy = col(i%, —i%ﬂgac)). It is well known that the operators A4 are
selfadjoint on the space L((0,00); C?), have absolutely continuous spectrum that fills
the whole real axis. Eigenfunctions of the operators A4 corresponding to an eigenvalue A
are the functions

(3 N) = col(e™ A% Feirr),
Expansions with respect to these generalized functions and the Parseval identity are the
same as for the usual Fourier transform [6].
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4. RESOLVENT OF THE MAIN OPERATOR

Let us represent problem (2.1) — (2.3) for the Dirac problem on half-axis as an equiva-
lent problem for the moment operator on the whole axis with one point nonlocal potential.
Instead of the two functions 11 and 1), defined on the positive half-axis, let us consider
one function ¥(x) = 0(z)y1 () + 0(—x)1p2(—z) defined on the whole axis. Instead of the
two potentials vy and vq, let us consider one potential v(z) = 0(x)vy(z) + 0(—x)va(—2).
Then there is the problem

(4.1) i oy, - @) =h@), 20
where
(4.2) by = = [(+0) +(~0)],

2

and a solution ¢ (z) satisfies the nonlocal boundary-value condition
(4.3) P(+0) —P(—0) — i / Y(z)v(z)dx = 0.

To problem (4.1) — (4.3) on the Hilbert space La(—00, 00), associate the main operator A,
domain of which, D(A), consists of all functions 9 of the Sobolev space Wy ((—00, ) \
{0}) satisfying the boundary-value condition (4.3). The action of the operator A — zI is
given by the left hand-side of (4.1). Problem (4.1) — (4.3) has a solution for an arbitrary
right hand-side h € Ly if and only if the operator (A—zI)~! exists on the space L and is
bounded. In the case where v = 0, the operator A is the free moment operator L = i%,
which is selfadjoint on the space Lo(—00,00) and has absolutely continuous spectrum
filling the entire axis. The resolvent (L — 2I)~1, if Im z # 0, is the integral operator

where the kernel of the integral operator is Green’s function
(4.5) g.(z) = isign(Im 2)0(— Im zz)e 7.
Note that

1

1
|Im2|’ ng()HLz - 2|Imz|’

[9:(+0) + ¢-(—0)] = isign(Im 2), 9:(+0) — g.(—0) = —i.

e

Represent a solution of system (4.1) as

(4.7) Y= (L — 27" [M(x) = v(2)¥+] + By: ()

with two constants 1, and .

For a function (4.7) to be a solution of problem (4.1) — (4.3) it is necessary and
sufficient that this function would satisfy two equations (4.2) and (4.3). This leads to
the following linear system for the numbers 4 and S:

(48) (1+ (v, 92)) ¥+ — 5 sign(Im 2)8 = (h, g)
' —((@ =20 v 0) ey + (L (g o) B= = (h (L =20 0).

The determinant of system (4.8) is

(49) X = (14 {v,02) (1+ (g2, v)) — & sign(im2) (L — =) .0}
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Let us mention important properties of the function x(z),

_ 3
(4.10) X(z) =x(@),  Ix(z)| 2 g for [Imz] > 8vllZ,-

Theorem 4.1. Let the nonlocal potential satisfy v € Lo(—00,00). Then the main oper-
ator A is selfadjoint on the space Lo(—00,00) and its spectrum fills the entire axis. The
resolvent (A — 2I)™1, for Im z # 0, is an integral operator,

1 2

x(2) 4=

(4.11) (A=z)"'*h=(L—2)"'h+ a;i(2)ej(x; z) (h,ex(,2)),

where e1(z;z) = g:(x), ea(w; 2) = [ g-(z—s)v(s)ds, a11(z) = <(L — 27! 11,11>, axn(z) =

_i

5 sign(Im 2), a12(2) = — (1 +(v,9z)), a21(z) = — (1 +(g.,v)), and the function x(z)
is defined by (4.9).
In other words, the resolvent of the main operator A differs from the resolvent

of the selfadjoint free moment operator L = i% by a bounded rank 2 operator,

and [(A— zI)_l]* = (A —zI)7Y, which is equivalent to the operator A being selfad-
joint.

Proof. An explicit form of a solution of system (4.8) with respect to ¢4 and f, af-
ter being substituted into (4.7), yields (4.11) and gives an explicit form of the func-
tions a;;(2) given in (4.11). Since (4.10) are satisfied, for |Im z|[ > 8||v||7,, the resol-
vent (A — zI)~! exists and is a bounded operator, whereas the properties (4.9) lead to
the identity [(4 — 21)7!] " = (A—7ZI)~'. This means that the operator A is selfadjoint,
hence problem (4.1) — (4.3) has a solution for any z, Imz # 0. The latter holds if and
only if x(A) # 0 for Im z # 0. Hence, identity (4.10) is true for all Im z # 0. Spectrum
of the operator A, since it is a rank 2 perturbation of the operator L, coincides with the
whole axis. ]

5. INVERSE SCATTERING PROBLEM

The inverse scattering problem (ISP) consists in constructing scattering data sufficient
for a description of the diffuser, and also in constructing an effective algorithm for recov-
ering unknown parameters of the diffuser. For the ISP for a Schrédinger operator with
the usual potential, the condition for the operator to be selfadjoint implies that the po-
tential is real. This facilitates the search for a solution. If the potentials are nonlocal, it
could happen that they take complex values even if the main operator is selfadjoint. This
leads to some difficulties in solving the ISP. Since the scattering problem with nonlocal
potential for a Dirac system on half-axis is equivalent to a rank 2 perturbation of the
free moment operator L = id%, let us look at the difficulties that appear in the ISP by
considering a scattering problem with rank 1 perturbation of the operator L. Consider
the scattering problem for the equation

di

(5.1) za +v(z) (Y, v)p, = M, —00 < T < 00.

We assume that v € Ly(—00,00) () L1(—00,00). Then any bounded solution of equa-
tion (5.1) has the form ¥ (z) = ae™™* + o(1) for z — +o0, ¥(x) = be™ ™ + o(1)
as * — —oo, where a is the amplitude of the incoming harmonic wave and the num-
ber b is the amplitude of the scattered wave. By repeating the calculations performed in
Sections 2 and 4, we get the following result for the scattering problem (5.1).

Theorem 5.1. Let the function v in equation (5.1) belong to the space La(—00,00).
Then, for any real \ there exists a unique solution of the scattering problem (5.1) for any
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value of the amplitude a of the incoming wave. This solution can be represented as

(5.2) V(23 \) = ae” T — i/e_i/\(‘”_s)u(s)ds (P, ), -

For x — —oo, the asymptotics of this solution is v (x; \) = be ™ + o(1). We also have
that b = S(\)a, where

(5.9 sw=L8 s =1- g [ g S,

and o(x) = [ e*v(s)ds and the integral f/ in (5.3) is understood as its principal value.
— o0

Hence, identity (5.3) for the function S(A) shows that the ISP, considered as a problem
of determining the function v(z) in (5.1) from S(A), can not have unique solutions. The
function S()) only depends on |v()\)|?. Thus, for small v, the first order approximation
gives S(\) = 1.

One encounters similar problems in ISP for the Dirac system (2.1) — (2.4) with nonlo-
cal potential. Indeed, if the nonlocal are small, then for the first order approximation we
have S(A) =1 —2iRev1(A) —2i Rev2(—A). If Rev1(A) + Reva(—A) =0, then S(A) =1,
and the first order approximations of the potentials v1 and vs can not be determined. To
overcome this difficulty, one can supplement the scattering data F for the ISP with other
observables, e.g., ¥4 (A) = 1 (11(0; A) + 2 (0; A) £ Sy (\)a and/or 41 (05 X) — 1o (0; A) 2
S_(A)a. Then, having supplemented S(A), Sy()A), and S_(A), the first order approx-
imations become S} (A) = 1 — iRe®1(A) — iReTa(—A) — 201 (A) + 202(=A), S_(A) =
i [05(A) +v5(=A)]. Thus, by giving S(A) and Si(\), or only S_(A), for the first order
approximation of v1(z) and va(x) we get

1 7 . 1 T .
Ul(x)z% / el)“r@i()\)d)\, vg(x):q:% / e’)‘zgpi()\)d)\,

where @ (A) =7 [254(A) — S(A) — 1], and p_(\) = iS* ().
The problem of a correct setting for the ISP for a Dirac system o half-axis with
nonlocal potential needs a detailed special study.
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