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PROBLEM OF DETERMINING A MULTIDIMENSIONAL THERMAL

MEMORY IN A HEAT CONDUCTIVITY EQUATION

D. K. DURDIEV AND ZH. ZH. ZHUMAYEV

Abstract. We consider a multidimensional integro-differential equation of heat con-
ductivity with time-convolution integral in the right hand-side. The direct problem

is represented by the Cauchy problem of determining the temperature of the medium

for a known initial distribution of heat. We study the inverse problem of determin-
ing the kernel, in the integral part, that depends on time and spatial variables, if a

solution of the direct problem is known on the hyperplane xn = 0 for t > 0. With

a use of the resolvent of the kernel, this problem is reduced to a study of a more
convenient inverse problem. The later problem is replaced with an equivalent system

of integral equations with respect to the unknown functions and, using a contractive

mapping, we prove that the direct and the inverse problems have unique solutions.

1. Introduction. Formulation of the problem

Constitutive relations in the linear non-homogeneous diffusion processes with thermal
memory contain space-dependent memory kernel [1], [2]. Often, in practice, these kernels
are unknown functions. Inverse problems to determine time- and space-dependent kernels
in parabolic integro-differential equations with several additional conditions have been
studied by many authors [1]–[9]. In these papers there were proved existence, uniqueness
and stability theorems. In the works [10]–[15] the authors discussed the linear inverse
source and nonlinear inverse coefficient problems for parabolic integro-differential equa-
tions. Here also has been applied a numerical approach for solving such problems.

It should be noted that nowadays there are few publications where the problems of
determining multidimensional memory would be studied.

In the work [8] the inverse problem of determining of the kernel depending on the time
variable t and the (n − 1)-dimensional spatial variable x′ = (x1, . . . , xn−1) was studied.

While the main part of the considered integro-differential equation is n-dimensional heat
conduction operator and the integral term has the form of convolution for unknown
functions that are solutions of direct and inverse problems. However in applications it
is of great interest to study problems of the kernel determining when it is present in the
convolution with an elliptic operator of the solution to the direct problem. In this article
we consider one of these integro-differential equations for which the inverse problem is
posed.

More precisely, we study an inverse problem of determining the functions u(x, t),
K(x′, t), x = (x1, x2, . . . , xn−1, xn) = (x′, xn) ∈ Rn, t > 0 from the following equations:

(1.1) ut −4u =

∫ t

0

K(x′, t− τ)4u(x, τ)dτ, (x, t) ∈ RnT ,
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(1.2) u
∣∣∣
t=0

= ϕ(x), x ∈ Rn,

(1.3) u
∣∣∣
xn=0

= f(x′, t), 0 ≤ t ≤ T, f(x′, 0) = ϕ(x′, 0),

where 4 is the Laplace’s operator with respect to the variables x = (x1, . . . , xn) :

4 =
∑n
i=1

∂2

∂x2
i
, RnT = {(x, t)|x = (x′, xn) ∈ Rn, 0 < t < T} , T > 0 is an arbitrary fixed

number.
Everywhere in this article, we assume that

ϕ(x) ∈ H l+8 (Rn) , f(x′, t) ∈ H l+6,(l+6)/2
(
R̄n−1T

)
,

R̄n−1T =
{

(x′, t)
∣∣∣x′ ∈ Rn−1, 0 ≤ t ≤ T

}
, l ∈ (0, 1),

the spaces H l(Q), H l,l/2(QT ) and their norms are defined in [16, pp. 18–27]. In what
follows, for the norm of a function in the space H l,l/2(QT ) (in concrete cases QT = RnT
or QT = Rn−1T ) depending on spatial and time variables we use the notation | · |l,l/2T ,
while for functions depending only on spatial variables we use | · |l (in this case Q = Rn
or Q = Rn−1).

At the beginning we prove the following assertion.

Lemma 1.1. Let be K(x′, t) ∈ H l+2,(l+2)/2
(
R̄n−1T

)
. Then problem (1.1)–(1.3) is equiv-

alent to the problem of finding the functions u(x, t), R(x′, t) from the equation

(1.4) ut = 4u−
∫ t

0

R(x′, t− τ)uτ (x, τ)dτ,

with the initial and additional conditions (1.2), (1,3), respectively, where R(x′, t) is the
resolvent of the kernel K(x′, t).

Proof. Let u(x, t) be a solution of Cauchy problem (1.1), (1.2). We note that the equation
(1.1), for x fixed, can be considered as a Volterra integral equation of the second kind
with the kernel K(x′, t) with respect to the function 4u(x, t)

4u = −
∫ t

0

K(x′, t− τ)4u(x, τ)dτ + ut.

It follows from the general theory of integral equations (see e.g. [18, pp. 39–44]) that
a solution of this equation is given by

4u =

∫ t

0

R(x′, t− τ)uτ (x, τ)dτ + ut.

This leads to (1.4). In (1.4), the kernels K(x′, t) and R(x′, t) are connected with the
relation

(1.5) K(x′, t) = −R(x′, t) +

∫ t

0

R(x′, t− τ)K(x′, τ)dτ.

Thus, if it is possible to define the solution u(x, t), R(x′, t) to the problem (1.4), (1.2),
(1.3), then the function K(x′, t) is as the solution to integral equation (1.5). The lemma
is proved. �
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2. An auxiliary problem

For simplicity, we denote by h(x′, t) the function Rt(x
′, t), i.e., h(x′, t) = Rt(x

′, t).

Lemma 2.1. Problem (1.6), (1.4), (1.5) is equivalent to the following auxiliary problem
of determining the functions ϑ(x, t), h(x′, t) :

(2.1)

ϑt −4ϑ =−R(x′, 0)ϑ

− h(x′, t)4ϕxnxn
(x)−

∫ t

0

h(x′, τ)ϑ(x, t− τ)dτ, (x, t) ∈ RnT ,

(2.2) ϑ|t=0 = 42ϕxnxn
(x)−R(x′, 0)4ϕxnxn

(x), x ∈ Rn,

(2.3)

ϑ|xn=0 = fttt(x
′, t)−4x′ftt(x′, t) +R(x′, 0)ftt(x

′, t) + h(x′, t)4ϕ(x′, 0)

−
∫ t

0

h(x′, τ)ftt(x
′, t− τ)dτ, (x′, t) ∈ Rn−1T ,

where ϑ(x, t) = uttxnxn(x, t), 4x′ =
∑n−1
i=1

∂2

∂x2
i
,

(2.4) R(x′, 0) =
42ϕ(x′, 0)− ftt(x′, 0)

4ϕ(x′, 0)
.

Proof. Introducing new function ϑ(1)(x, t) = ut(x, t), we differentiate the equalities (1.4)
and (1.3) with respect to t. As a result, one has the problem of finding the functions
ϑ(1)(x, t), h(x′, t) from the following equations:

(2.5) ϑ
(1)
t = 4ϑ(1) −R(x′, 0)ϑ(1) −

∫ t

0

h(x′, t− τ)ϑ(1)(x, τ)dτ, (x, t) ∈ RnT ,

(2.6) ϑ(1)|t=0 = 4ϕ(x), x ∈ Rn,

(2.7) ϑ(1)|xn=0 = ft(x
′, t), (x′, t) ∈ Rn−1T , 4ϕ(x′, 0) = ft(x

′, 0).

Here, the initial condition (2.6) were obtained from equality (1.4) by setting t = 0.
The next problem will be obtained from (2.5)–(2.7) for the functions ϑ2(x, t) = ϑ1t (x, t),
h(x′, t) in an analogous way,

(2.8)

ϑ
(2)
t = 4ϑ(2) −R(x′, 0)ϑ(2)

− h(x′, t)4ϕ(x)−
∫ t

0

h(x′, τ)ϑ(2)(x, t− τ)dτ, (x, t) ∈ RnT ,

(2.9) ϑ(2)|t=0 = 42ϕ(x)−R(x′, 0)4ϕ(x), x ∈ Rn,

(2.10) ϑ(2)|xn=0 = ftt(x
′, t), (x′, t) ∈ Rn−1T , 4ϕ(x′, 0) = ft(x

′, 0).

Demanding equality of (2.9), (2.10) at t = 0 and xn = 0 we get a relation from which
(2.4) follows. Further, the function R(x′, 0) will be considered as known.

Now let us denote by ϑ(x, t) the function ϑ
(2)
xnxn(x, t). Differentiating (2.8) and (2.9)

twice with respect to xn we obtain the equations (2.1) and (2.2). To derive an additional

condition for ϑ(x, t) at xn = 0 we allocate the function ϑ
(2)
xnxn(x, t) in 4ϑ(2)(x, t) of

(2.8), i.e., 4ϑ(2)(x, t) = ϑ
(2)
xnxn(x, t) + 4x′ϑ(2)(x, t). Taking into account this fact and

substituting xn = 0 in (2.8), after some calculations we have (2.3). Thus, problem (1.4),
(1.2), (1.3) is reduced to problem (2.1)–(2.3). It is not difficult to show that inverse
transformations take place [8]. The lemma is proved. �
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3. Existence and uniqueness

In this section, existence and uniqueness for problem (2.1)–(2.3) is proved using the
contraction mapping principle [17, pp. 87–97]. The idea is to write the integral equations
for the unknown functions ϑ(x, t), h(x′, t) as a system with a nonlinear operator, and
prove that this operator is a contraction mapping operator. The existence and uniqueness
then follow immediately.

Definition. Let F be an operator defined on a closed set Ω which is a subset of a Banach
space. F is called a contraction mapping operator in Ω if it satisfies the following two
properties:

1) if y ∈ Ω, then Fx ∈ Ω (i.e. F maps Ω into itself);
2) if y, z ∈ Ω, then ‖Fy − Fz‖ ≤ ρ ‖y − z‖ with ρ < 1 (ρ - is a constant independent

of y and z ).

Lemma (contraction mapping principle [17, pp. 87–97]). If F is a contraction mapping
operator from Ω to Ω, then the equation

y = Fy

has a unique solution y0 ∈ Ω.

Now we reduce the Cauchy problem (2.1) and (2.2) to an integral equation with respect
to the function ϑ(x, t). For this purpose in accordance with Poisson’s formula we have
(3.1)

ϑ(x, t)=

∫
Rn

G(x− ξ; t)
[
42ϕξnξn(ξ)−R(ξ′, 0)4ϕξnξn(ξ)

]
dξ

−
∫ t

0

dτ

∫
Rn

G(x− ξ; t− τ)h(ξ′, τ)4ϕξnξn(ξ)dξ

−
∫ t

0

dτ

∫
Rn

G(x− ξ, t− τ)

[
−R(ξ′, 0)ϑ(ξ, τ)−

∫ t

0

h(ξ′, α)ϑ(ξ, τ − α)dα

]
dξ,

where G(x; t) = 1
(2
√
πt)n

e
−|x|2

4t is a fundamental solution of the heat operator ∂
∂t −4, ξ =

(ξ1, . . . , ξn), ξ′ = (ξ1, . . . , ξn−1), dξ = dξ1 · · · dξn, |x|2 = x21 + · · ·+ x2n.
The integral equation for h(x′, t) is obtained from (3.1) considering it at xn = 0 and

using equality (2.3),

(3.2)

h(x′, t) =
1

4ϕ(x′, 0)

{
−fttt(x′, t) +4x′ftt(x′, t)−R(x′, 0)ftt(x

′, t)

+

∫
Rn

G(x′ − ξ′, ξn; t)
[
42ϕξnξn(ξ)−R(ξ′, 0)4ϕξnξn(ξ)

]
dξ
}

+
1

4ϕ(x′, 0)

{∫ t

0

h(x′, τ)ftt(x
′, t− τ)dτ

+

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)h(ξ′, τ)4ϕξnξn(ξ)dξ
}

+
1

4ϕx′, 0)

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)

×
[
−R(ξ′, 0)ϑ(ξ, τ)−

∫ τ

0

h(ξ′, α)ϑ(ξ, τ − α)dα

]
dξ,

where G(x′ − ξ′, ξn; t− τ) = G(x− ξ; t− τ)
∣∣∣
xn=0

.

Theorem (existence and uniqueness). If the conditions ϕ(x) ∈ H l+8 (Rn) , |4ϕ(x′, 0)| ≥
const > 0, f(x′, t) ∈ H l+6,(l+6)/2

(
R̄n−1T

)
, l ∈ (0, 1), f(x′, 0) = ϕ(x′, 0), ft(x

′, 0) =
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4ϕ(x′, 0) are met, then there exists a sufficiently small number T > 0 such that a solution
to the integral equations (3.1), (3.2) in the class of functions ϑ(x, t) ∈ H l+2,(l+2)/2

(
R̄nT
)
,

h(x′, t) ∈ H l,l/2
(
R̄nT
)

exists and is unique. Thus, there is a unique classical solution to
the problem (2.1)–(2.3).

Proof. The system of equations (3.1), (3.2) is a closed system for the unknown functions
ϑ(x, t), h(x′, t) in the domain RnT . It can be rewritten as a nonlinear operator equation,

(3.3) ψ = Aψ,

where ψ = (ψ1, ψ2)
∗

= (ϑ(x, t), h(x′, t))
∗
, ∗ is the symbol of transposition, and accord-

ing to the equations (3.1), (3.2), the operator Aψ = [(Aψ)1, (Aψ)2] has the form
(3.4)

(Aψ)1 = ψ01(x, t)−
∫ t

0

dτ

∫
Rn

G(x− ξ; t− τ)ψ2(ξ′, τ)4ϕξnξn(ξ)dξ

−
∫ t

0

dτ

∫
Rn

G(x− ξ, t− τ)

[
−R(ξ′, 0)ψ1(ξ, τ)−

∫ t

0

ψ2(ξ′, α)ψ1(ξ, τ − α)dα

]
dξ,

(3.5)

(Aψ)2 = ψ02(x′, t) +
1

4ϕ(x′, 0)

{∫ t

0

ψ2(x′, τ)ftt(x
′, t− τ)dτ

+

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)ψ2(ξ′, τ)4ϕξnξn(ξ)dξ
}

+
1

4ϕ(x, 0)

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)×

×
[
−R(ξ′, 0)ψ1(ξ, τ)−

∫ τ

0

ψ2(ξ′, α)ψ1(ξ, τ − α)dα

]
dξ.

In (3.4) and (3.5) we introduced the notations

ψ01(x, t) =

∫
Rn

G(x− ξ; t)
[
42ϕξnξn(ξ)−R(ξ′, 0)4ϕξnξn(ξ)

]
dξ,

ψ02(x′, t) =
1

4ϕ(x′, 0)

{
−fttt(x′, t) +4x′ftt(x′, t)−R(x′, 0)ftt(x

′, t)

+

∫
Rn

G(x′ − ξ′, ξn; t)
[
42ϕξnξn(ξ)−R(ξ′, 0)4ϕξnξn(ξ)

]
dξ
}
.

Denote |ψ|lT = max
(
|ψ1|lT0

, |ψ2|lT0

)
, T < T0 and consider in the space H l,l/2 (RnT )

the set S(T ) of functions ψ(x, t), which obey the inequality

(3.6) |ψ − ψ0|lT ≤ |ψ0|lT0
,

where ψ0 = (ψ01, ψ02) and |ψ0|lT0
= max

(
|ψ01|lT0

, |ψ02|lT0

)
.

It can be shown that for a sufficiently small T the operator A is a contraction mapping
operator in S(T ). The theorem of existence and uniqueness then follows immediately from
the contraction mapping principle.

First it is shown that A has the first property of a contraction mapping operator. Let
ψ ∈ S(T ), T < T0. Then from the inequality (3.6), we have

|ψi|lT ≤ 2 |ψ0|lT0
, i = 1, 2.
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It is easy to see that

|(Aψ)1 − ψ01|lT =

∣∣∣∣∣−
∫ t

0

dτ

∫
Rn

G(x− ξ; t− τ)ψ2(ξ′, τ)4ϕξnξn(ξ)dξ

−
∫ t

0

dτ

∫
Rn

G(x− ξ, t− τ)
[
−R(ξ′, 0)ψ1(ξ, τ)

−
∫ τ

0

ψ2(ξ′, α)ψ1(ξ, τ − α)dα
]
dξ

∣∣∣∣∣
l

T

≤ 2α0(T )
[∣∣42ϕ

∣∣l + |R(x′, 0)|l
]
|ϕ0|lT + 4α1(T )

(
|ϕ0|lT

)2
,

|(Aψ)2 − ψ02|lT =

∣∣∣∣∣ 1

4ϕ(x′, 0)

{∫ t

0

ψ2(x′, τ)ftt(x
′, t− τ)dτ

+

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)ψ2(ξ′, τ)4ϕξnξn(ξ)dξ

}

+
1

4ϕ(x′, 0)

∫ t

0

dτ

∫
Rn

G(x′ − ξ′, ξn; t− τ)

×
[
−R(ξ′, 0)ψ1(ξ, τ)−

∫ τ

0

ψ2(ξ′, α)ψ1(ξ, τ − α)dα
]
dξ

∣∣∣∣∣
l

T

≤
∣∣∣(4ϕ(x′, 0))

−1
∣∣∣l

×
[
2α0(T )

(
|ftt|lT +

∣∣42ϕ
∣∣l + |R(x′, 0)) |ϕ0|lT

∣∣∣l + 4α1(T )
(
|ϕ0|lT

)2]
,

where αi(T ) → 0 at T → 0, i = 0, 1. Therefore, if we choose T (T < T0) so that the
following inequalities will be satisfied:

(3.7)
2α0(T )

(∣∣42ϕ
∣∣l + |R(x′, 0)|l

)
+ 4α1(T )

(
|ϕ0|lT

)
≤ 1,

2
∣∣∣(4ϕ(x′, 0))

−1
∣∣∣l [α0(T )

(
|ftt|lT +

∣∣42ϕ
∣∣l + |R(x′, 0)|

)
+ 2α1(T )

(
|ϕ0|lT

)]
≤ 1,

then the operator A has the first property of a contraction mapping operator, i.e., Aψ ∈
S(T ).

Consider next the second property of a contraction mapping operator for A. Let ψ(1) =(
ψ
(1)
1 , ψ

(1)
2

)
∈ S(T ), ψ(2) =

(
ψ
(2)
1 , ψ

(2)
2

)
∈ S(T ). Then we have

∣∣∣(Aψ(1) −Aψ(2)
)
1

∣∣∣l
T

=

∣∣∣∣∣−
∫ t

0

dτ

∫
Rn

G(x− ξ; t− τ)
[
ψ
(1)
2 (ξ′, τ)− ψ(2)

2 (ξ′, τ)
]
42ϕ(ξ)dξ

−
∫ t

0

dτ

∫
Rn

G(x− ξ, t− τ)
{
−R(ξ′, 0)

[
ψ
(1)
1 (ξ, τ)− ψ(2)

1 (ξ, τ)
]

−
∫ τ

0

[
ψ
(1)
2 (ξ′, α)ψ

(1)
1 (ξ, τ − α)− ψ(2)

2 (ξ′, α)ψ
(2)
1 (ξ, τ − α)

]
dα
}
dξ

∣∣∣∣∣
l

T

.
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Here the integrand in the last integral can be estimated as follows:∣∣∣ψ(1)
2 ψ

(1)
1 − ψ

(2)
2 ψ

(2)
1

∣∣∣l
T

=
∣∣∣(ψ(1)

2 − ψ
(2)
2

)
ψ
(1)
1 + ψ

(2)
2

(
ψ
(1)
1 − ψ

(2)
1

)∣∣∣l
T

≤ 2
∣∣∣ψ(1) − ψ(2)

∣∣∣l
T

max

(∣∣∣ψ(1)
1

∣∣∣l
T
,
∣∣∣ψ(2)

2

∣∣∣l
T

)
≤ 4 |ϕ0|lT

∣∣∣ψ(1) − ψ(2)
∣∣∣l
T
.

Therefore∣∣∣(Aψ(1) −Aψ(2)
)
1

∣∣∣l
T

≤
[
2α0(T )

(∣∣42ϕ
∣∣l + |R(x′, 0)|l

)
+ 8α1(T ) |ϕ0|lT

] ∣∣∣ψ(1) − ψ(2)
∣∣∣l
T
.

The second component Aψ can be estimated in an analogous way,∣∣∣(Aψ(1) −Aψ(2)
)
2

∣∣∣l
T
≤
∣∣∣(4ϕ(x′, 0))

−1
∣∣∣l

×
[
2α0(T )

(
|ftt|lT +

∣∣42ϕ
∣∣l + |R(x′, 0)|

)
+ 8α1(T ) |ϕ0|lT

] ∣∣∣ψ(1) − ψ(2)
∣∣∣l
T
.

Hence,
∣∣(Aψ(1) −Aψ(2)

)∣∣l
T
< ρ
∣∣∣ψ(1) − ψ(2)

∣∣∣l
T
, where ρ < 1, if T satisfies the conditions

(3.8)

2α0(T )
(∣∣42ϕ

∣∣l + |R(x′, 0)|l
)

+ 8α1(T ) |ϕ0|lT ≤ ρ < 1,∣∣∣(4ϕ(x′, 0))
−1
∣∣∣l [2α0(T )

(
|ftt|lT +

∣∣42ϕ
∣∣l + |R(x′, 0)|

)
+ 8α1(T ) |ϕ0|lT

]
≤ ρ < 1,

T < T0.

It is not difficult to see that from fulfilling the inequalities (3.8) it follows that inequalities
(3.7) hold true. This indicates that at any T satisfying conditions (3.8), A satisfies both
properties of a contraction mapping operator, i.e., A realizes a contracted mapping of the
set S(T ) onto itself. Then, according to Banach theorem (see, for instance, [17, pp. 87–
97]), in the set S(T ) there exists only one fixed point of transformations, i.e., there
exists only one solution to (3.3). Hence, solving system of (3.1), (3.2), for example, by
the method of successive approximations, we uniquely find the functions ϑ(x, t), h(x′, t)
which belong to H l,l/2 (RnT ) and H l,l/2

(
Rn−1T

)
, respectively. Moreover, it follows from

the general theory of parabolic equations [19, pp. 380–384] (see also [8]), under the
conditions of the theorem, the function ϑ(x, t), as a solution to integral equation (3.1),
belongs to H l+2,(l+2)/2 (RnT ) . The theorem is proved. �

Since h(x′, t) = Rt(x
′, t), the obtained function h(x′, t) will be used to determine the

function R(x′, t) using the formula

R(x′, t) = R(x′, 0)−
∫ t

0

h(x′, τ)dτ, (x′, t) ∈ Rn−1T ,

where R(x′, 0) is the known function determined by (2.4). Then solving, at every fixed
x′, the integral equation (1.5) we uniquely find K(x′, t). Due to the proved theorem
we conclude that the problem (1.1)–(1.3) has a unique solution such that ϑ(x, t) ∈
H l+6,(l+6)/2 (RnT ) , K(x′, t) ∈ H l+2,(l+2)/2

(
R(n−1)
T

)
.
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