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UNBOUNDED TRANSLATION INVARIANT OPERATORS ON

COMMUTATIVE HYPERGROUPS

VISHVESH KUMAR, N. SHRAVAN KUMAR, AND RITUMONI SARMA

Abstract. Let K be a commutative hypergroup. In this article, we study the un-
bounded translation invariant operators on Lp(K), 1 ≤ p ≤ ∞. For p ∈ {1, 2},
we characterize translation invariant operators on Lp(K) in terms of the Fourier

transform. We prove an interpolation theorem for translation invariant operators on
Lp(K) and we also discuss the uniqueness of the closed extension of such an operator

on Lp(K). Finally, for p ∈ {1, 2}, we prove that the space of all closed translation

invariant operators on Lp(K) forms a commutative algebra over the field of complex
numbers. We also prove Wendel’s theorem for densely defined closed linear operators

on L1(K).

1. Introduction

Gelfand pairs and the theory of spherical functions associated to them play an im-
portant role in the theory of Lie groups, and they have been studied in that context.
However people have become interested in studying the properties in a wider context
of hypergroups without a differential structure on them. Jewett introduced in [10] the
notion of hypergroup (convo), and showed that many of the properties of the group alge-
bras still continue hold in this context. Many researchers have contributed to the theory
of hypergroups showing that the classical methods of locally compact groups extend to
the context of hypergroups.

This article will contribute to the theory of multipliers on commutative hypergroups.
In particular, we deal with closed translation invariant operators (also known as un-
bounded multipliers) on Lp-spaces on hypergroups. A good amount of results has been
observed in the last few decades. It started with the works of Lasser [14], in which
he characterized the bounded translation invariant operators in terms of the Fourier
transform and proved the well-known Wendel’s theorem for L1-spaces on commutative
hypergroups. In 2007, Pavel studied multipliers on the Lp-spaces on hypergroups [16]. In
2012, Degenfeld-Schonburg studied bounded multipliers on commutative hypergroups [6]
(see also [7]). Recently, the authors, of this paper have studied the vector-valued version
of Wendel’s theorem on commutative hypergroups and compact hypergroups [13, 17].

It is obvious from the above discussion that the theory of bounded translation invari-
ant operators on hypergroups got enough attention. Also, it is worth noting that the
class of unbounded translation invariant operators contains very important operators like
Pseudo differential operators. Therefore, it becomes natural and important to consider
unbounded translation invariant operators on hypergroups.

One of the most celebrated theorems of the last century is the Wendel’s theorem on
the characterization of multipliers on locally compact abelian groups. In section 3 of
this paper, we prove the Wendel’s theorem for densely defined closed linear operators
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on L1(K). Theorem 3.2 and Corollary 3.3 presents the Wendel’s theorem analogue for
unbounded multipliers on hypergroups.

In Section 4, we deal with unbounded multipliers on L1(K) and L2(K). We first
prove that the domain of a translation invariant operator on L1(K) is a dense ideal of
L1(K). After that, we characterize such operators in terms of the Fourier multiplication
operators.

In Section 5, we consider translation invariant operators on Lp(K), where we prove a
kind of an interpolation result. We go on further, to prove that the space of all closed
translation invariant operators on Lp(K), p ∈ {1, 2} forms a commutative algebra over
the field of complex numbers.

We begin with some of the required preliminaries in the next section.

2. Preliminaries

In this section, we present some notations and concepts of commutative hypergroups
and unbounded operators that need in the sequel.

For a locally compact Hausdorff space Ω, the space of continuous functions on Ω will be
denoted by C(Ω). The subspace of C(Ω) consisting of all compactly supported functions
on Ω will be denoted by Cc(Ω).

We first give some basics of commutative hypergroups. One can refer to [5, 10] for
more details. In [10], Jewett refers to hypergroups as convos.

Definition 2.1. [5, 10] A nonempty locally compact Hausdorff space K is said to be a
hypergroup if there exists a binary operation ∗ on M(K), the space of all complex valued
bounded regular measures on K, satisfying the following conditions.

(i) (M(K), ∗) is a complex associative algebra.
(ii) For every x, y ∈ K, δx ∗ δy is a probability measure with compact support and the

mapping (x, y) 7→ δx ∗ δy is continuous from K×K to M(K), where δx is the point
mass measure at x.

(iii) There exists a unique element e ∈ K such that for all x ∈ K, δx ∗ δe = δe ∗ δx = δx.
(iv) There exists a unique homeomorphism x 7→ x̌ of K such that

(a) ˇ̌x = x for all x ∈ K,
(b) if µ̌ is defined by

∫
K
f(x) dµ̌(x) =

∫
K
f(x̌) dµ(x) for all f ∈ Cc(K), then

(δx ∗ δy )̌ = δy̌ ∗ δx̌ for all x, y ∈ K,
(c) e ∈ spt(δx ∗ δy) if and only if y = x̌.

(v) The mapping (x, y) 7→ spt(δx ∗ δy) is continuous from K ×K to C(K), where C(K)
denotes the space of all nonempty compact subsets of K equipped with the Michael
topology.

We say that a hypergroups (K, ∗) is commutative if δx ∗ δy = δy ∗ δx for all x, y ∈ K.
If f is a Borel function on K and x, y ∈ K, the left translate fy (also denoted Ly(f))

is defined by

fy(x) = Ly(f)(x) =

∫
K

f d(δy ∗ δx).

Similarly, the right translate fy of f is defined. If K is commutative, then there is no
distinction between left and right translate and so we simply call fy or fy by translate of
f. We shall also denote this by f(y ∗ x), although y ∗ x may not represent a point in K.

Let f be a Borel function on K. We define the function f̌ as f̌(x) = f(x̌). At times,
κ will denote the map f 7→ f̌ , i.e., κ(f) = f̌ .

A Haar measure on a commutative hypergroup K is a non zero regular Borel measure
m such that δx ∗ λ = λ ∗ δx = λ for all x ∈ K. It well-known that a commutative
hypergroup always possesses a Haar measure which is unique up to a scalar multiple
[10].
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From now onward, K will denote a commutative hypergroup with λ the Haar measure.
For 1 ≤ p ≤ ∞, Lp(K,λ) will denote the usual Lp-space defined on the hypergroup K

with respect to the Haar measure λ. We write Lp(K) for Lp(K,λ) if no confusion arises.
If f and g are Borel functions, then their convolution f ∗ g is defined by

f ∗ g(x) =

∫
K

f(x ∗ y)g(y̌) dλ(y) =

∫
K

f(x ∗ y) (κg)(y) dλ(y)

whenever it makes sense.
For a commutative hypergroup K, L1(K) is a commutative Banach algebra with

respect to convolution of functions.
Denote the space of all continuous bounded complex-valued functions defined on K

by Cb(K). The dual of K, denoted K̂, is defined by

K̂ = {χ ∈ Cb(K) : χ(x ∗ y) = χ(x)χ(y), χ(x̌) = χ(x) and χ(e) = 1 ∀ x, y ∈ K}.

Equip K̂ with the compact-open topology so that K̂ is a locally compact Hausdorff space.

The structure space on L1(K) can be identified with K̂. In general, K̂ may not have a
naturally defined hypergroup structure. The Fourier transform of f ∈ L1(K) is defined
as

(Ff)(χ) = f̂(χ) =

∫
K

f(x)χ(x) dλ(x), ∀ χ ∈ K̂.

There exists a unique positive Borel measure πK on K̂, called Plancherel measure, such
that ∫

K

|f(x)|2 dx =

∫
K̂

|f̂(χ)|2 dπK(χ), ∀ f ∈ L2(K) ∩ L1(K).

Note that the support S of πK , unlike the group case, need not be the whole of K̂
[5, Example 2.2.49]. The extension of the Fourier transform from L1(K) ∩ L2(K) to
L2(K) is called as the Plancherel transform. The Fourier transform is an isometric
isomorphism from L2(K,λ) onto L2(S, πK). A commutative hypergroup is said to be

a strong hypergroup if K̂ is also a commutative hypergroup and in this case S = K̂.

Further,
̂̂
K and K are isomorphic as hypergroups.

Definition 2.2.

(i) Let 1 ≤ p < ∞. A densely defined operator T : D(T ) ⊂ Lp(K) → Lp(K) is
said to be commute with translation if the domain D(T ) of T is invariant under
translations, i.e., Lx(D(T )) ⊂ D(T ) for all x ∈ K and T commutes with every
translations, i.e., (Tf)x = T (fx) for x ∈ K and f ∈ D(T ).

(ii) An operator T is called translation invariant if T is closable and commute with
translations.

Denote the set of all translation invariant operator on Lp(K) by M(Lp(K)). A sub-
set of M(Lp(K)) consisting of all closed translation invariant operator is denoted by
Mc(L

p(K)).
Throughout this paper, K will denote a commutative hypergroup with a fixed Haar

measure λ. Also K̂ will denote the dual of K and let S will be the support of the
Plancherel measure πK . For an operator T, we will write D(T ) for its domain.

3. Wendel’s theorem for closed linear operators on L1(K)

In this section, we prove Wendel’s theorem for densely defined closed linear operators
on L1(K). We begin this section with a Lemma which gives conditions under which the
domain D(T ) of a closed linear operator T on L1(K) to be a right Banach L1(K)-module.
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Lemma 3.1. Let T : D(T ) ⊂ L1(K)→ L1(K) be a closed linear operator. Suppose that,
for f ∈ D(T ) and g ∈ L1(K), we have

(i) f ∗ g ∈ D(T ),
(ii) (Tf) ∗ g = T (f ∗ g).

Then D(T ) is right Banach L1(K)-module under the usual convolution of functions and
the norm ‖ · ‖T defined by ‖f‖T := ‖Tf‖ + ‖f‖, f ∈ D(T ). Moreover, we have D(T ) ∗
L1(K) = D(T ).

Proof. Since L1(K) is a Banach algebra with respect to convolution, it is clear from (i)
that D(T ) ∗L1(K) ⊂ D(T ), i.e., D(T ) is a right ideal of L1(K). Now, it is easy to check
that D(T ) becomes a right L1(K)-module with respect to the norm ‖ · ‖T . Since L1(K)
has a bounded right approximate identity and D(T )∗L1(K) is a closed subspace of D(T )
[9, Theorem 32.22], we have D(T ) ∗ L1(K) = D(T ). �

Here is the promised characterization of a closed linear operator (need not be densely
defined) to be a translation invariant operator.

Theorem 3.2. Let T : D(T ) ⊂ L1(K) → L1(K) be a closed linear operator. Then the
following statements are equivalent:

(i) (Tf)x = T (fx), for all f ∈ D(T ), x ∈ K.
(ii) (Tf) ∗ ν = T (f ∗ ν), for all f ∈ D(T ), ν ∈M(K).
(iii) (Tf) ∗ g = T (f ∗ g), for all f ∈ D(T ), g ∈ L1(K).

Proof. (i) ⇒ (ii). Let µ ∈ M(K). Then, by [6, Theorem 3.3.2], there exists a net
{Tα} ⊂ span{Lx : x ∈ K} such that

lim
α
‖Tαf − f ∗ µ‖ = 0, ∀f ∈ L1(K).

Now, by assumption, T is a translation invariant operator and therefore D(T ) is trans-
lation invariant and Tα(Tf) = T (Tαf) for all α. Thus, we get

lim
α
‖T (Tαf)− (Tf) ∗ µ‖ = lim

α
‖Tα(Tf)− (Tf) ∗ µ‖ = 0.

As T is a closed operator, we get f ∗ µ ∈ D(T ) and T (f ∗ µ) = (Tf) ∗ µ.
(ii) ⇒ (iii). This is clear from the fact L1(K) can be embedded inside M(K) via

f 7→ fλ.
(iii) ⇒, (i). By Lemma 3.1, we get D(T ) ∗ L1(K) = D(T ). Therefore, for every

f ∈ D(T ) there exist g ∈ D(T ) and h ∈ L1(K) such that f = g ∗ h. Now, since
Lx, x ∈ K, is a bounded translation invariant operator and it is a multiplier. Therefore,
by Weldel’s theorem for bounded operators [17] we have

(Tf)x = (T (g ∗ h))x = ((Tg) ∗ h)x = (Tg) ∗ hx = T (g ∗ hx) = T ((g ∗ h)x) = T (fx).

This establishes the implication. �

In [17], the authors prove Wendel’s theorem for bounded linear operators. Our next
corollary is an analogue of the Weldel’s theorem for densely defined closed linear opera-
tors. Here, wF denotes the weak topology σ(L1(K), F ).

Corollary 3.3. Let T : L1(K) → L1(K) be a densely defined closed linear operator.
Then the following statements are equivalent:

(i) (Tf)x = T (fx), for all f ∈ D(T ), x ∈ K.
(ii) (Tf) ∗ ν = T (f ∗ ν), for all f ∈ D(T ), ν ∈M(K).
(iii) (Tf) ∗ g = T (f ∗ g), for all f ∈ D(T ), g ∈ L1(K).
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(iv) There exist a translation invariant separating subset F ∈ L∞(K) and a net
{µα}α ⊂M(K) such that

wF − lim
α
µα ∗ f = T (f)

defines T, i.e., the above equality holds for all f ∈ D(T ) and

{f : ∃g ∈ L1(K) s.t.wF − lim
α
µα ∗ f = g} = D(T ).

Proof. In view of Theorem 3.2, it is enough to show that the statements (i) and (iv) are
equivalent. Suppose that (i) holds and hence (ii) and (iii) also hold. Let {uα}α ⊂ D(T )
be a bounded left approximate identity in L1(K) bounded by K > 0. Note that the
domain D(T ∗) of the adjoint T ∗ of T is separating in L1(K) as D(T ∗) is weak∗-dense in
L∞(K) [12, Proposition 5.2]. Also, for ϕ ∈ D(T ∗), ϕT is a continuous linear functional
on D(T ). Thus, for f ∈ D(T ),

lim
α
〈(Tuα) ∗ f, ϕ〉 = lim

α
〈T (uα ∗ f), ϕ〉 = 〈Tf, ϕ〉, ϕ ∈ D(T ∗).

Therefore, if µα = (Tuα)λ ∈M(K), then by setting F := D(T ∗), we have

(1) wF − lim
α
µα ∗ f = Tf.

Now, suppose that there exist g and h in L1(K) such that

lim
α
〈µα ∗ h, ϕ〉 = 〈g, ϕ〉, ∀ϕ ∈ D(T ∗).

Then, we have

〈g, ϕ〉 = 〈h, ϕT 〉 = 〈h, T ∗ϕ〉, ∀ϕ ∈ D(T ∗),

where ϕT is the unique continuous extension of ϕT to L1(K). Therefore, we get h ∈
D(T ∗∗) and T ∗∗h = g. As we know that T ∗∗ = T [12, Proposition 5.2], it follows that
h ∈ D(T ) and Th = g. Thus, T is completely determined by (1).

Now, it remains to show that F := D(T ∗) is invariant under composition with right
translations. Let x ∈ K and ϕ ∈ D(T ∗). Then

|〈(Tf)x, ϕ〉| = |〈Tfx, ϕ〉| ≤ ‖ϕT‖‖Lx‖‖f‖ ≤ ‖ϕT‖ ‖f‖, ∀f ∈ D(T ).

Therefore, we have 〈(·)x, ϕ〉 ∈ D(T ∗), which is the required condition. Hence, (i) ⇒ (iv)
is established.

We now prove the other implication. Let f ∈ D(T ). Then, for h ∈ F and x ∈ K,

lim
α
〈µα ∗ f − Tf, h〉 = 0

and

lim
α
〈µα ∗ fx − (Tf)x, h〉 = lim

α
〈(µα ∗ f − Tf)x, h〉 = 0,

i.e., wF − limα µα ∗ fx = (Tf)x. Hence, by assumption we have fx ∈ D(T ) and Tfx =
(Tf)x. �

Remark. We remark here that the statements given in this section holds true with same
proof even for a general hypergroup (not necessarily commutative) possessing a Haar
measure.
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4. Characterization of unbounded multipliers on L1(K) and L2(K)

We begin this section with the following important lemma. As the proof follows similar
lines as in [2, Lemma 1] by using the Young’s inequality and [10, Theorem 5.1 D], we
omit the proof of it.

Lemma 4.1. Let 1 ≤ p, q, r ≤ ∞ satisfy 1
p + 1

q −
1
r = 1. If A ⊂ Lp(K) and B ⊂ Lq(K)

are dense subsets, then the linear span span{A∗B} of A and B is weak-∗ dense in Lr(K).
Further, if r <∞, then span{A ∗B} is norm dense in Lr(K).

The following theorem presents an unbounded version of [7, Proposition 3], which char-
acterizes translation invariant operators. Also, it says that the domain of an unbounded
translation invariant operator on L1(K) is a dense ideal.

Theorem 4.2. Let 1 ≤ p <∞ and let T be a translation invariant operator on Lp(K).
Then we have L1(K) ∗ D(T ) ⊂ D(T ) and T (f ∗ g) = f ∗ Tg for all f ∈ L1(K) and
g ∈ D(T ).

Proof. Since T is translation invariant, for h ∈ D(T ∗) and g ∈ D(T ) we get

(h ∗ κTg)(x) =

∫
K

h(x ∗ y) (κTg)(y̌) dλ(y)

=

∫
K

h(x ∗ y) (Tg)(y) dλ(y)

=

∫
K

h(y) (Tg)(x̌ ∗ y) dλ(y), by [10, Theorem 5.1D],

=

∫
K

h(y) (Tg)x̌(y) dλ(y)

=

∫
K

h(y) (Tgx̌)(y) dλ(y)

= 〈h, Tgx̌〉 = 〈T ∗h, gx̌〉, ∀x ∈ K.
So we have

|(h ∗ κTg)(x)| = |〈T ∗h, gx̌〉| ≤ ‖T ∗h‖p′ ‖gx̌‖p ≤ ‖T ∗h‖p′ ‖g‖p
and hence ‖h ∗ κTg‖∞ ≤ ‖T ∗h‖p′ ‖g‖p.

Let f ∈ L1(K). Then, Young’s inequality gives

|〈f ∗ h, Tg〉| = |(f ∗ h ∗ κTg)(0)| ≤ ‖f ∗ h ∗ κTg‖∞ ≤ ‖f‖1‖T ∗h‖p′ ‖g‖p,
hence, by definition of the adjoint, f ∗ h ∈ D(T ∗).

Now, note that

(h ∗ κTg)(x) = 〈T ∗h, gx̌〉 =

∫
K

(T ∗h)(y) gx̌(y) dλ(y)

=

∫
K

(T ∗h)(x ∗ y) (κg)(y̌) dλ(y) = (T ∗h ∗ κg)(x),

and thus, for all g ∈ D(T ),

〈T ∗(f ∗ h), g〉 = 〈f ∗ h, T ∗(g)〉 = (f ∗ h ∗ κT ∗g)(0) = (f ∗ T ∗h ∗ κg)(0) = 〈f ∗ T ∗h, g〉.
By the density of D(T ), we get T ∗(f ∗ h) = f ∗ T ∗h. This gives

〈T ∗h, f ∗ g〉 = (T ∗h ∗ κg ∗ κf)(0) = (h ∗ (κTg) ∗ κf)(0)

= (h ∗ κ(f ∗ Tg))(0) = 〈h, f ∗ Tg〉.

Since T is the σ(Lp
′
, Lp)-dual of T ∗, where σ(Lp

′
, Lp) denotes the weak-topology (see

[18, Corollary IV.7.1]), we have f ∗ g ∈ D(T ). Hence L1(K) ∗D(T ) ⊂ D(T ).
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Further,

〈h, f ∗ Tg〉 = 〈T ∗h, f ∗ g〉 = 〈h, T (f ∗ g)〉.
By using σ(Lp

′
, Lp)- density of D(T ∗), we get T (f ∗ g) = f ∗ Tg for all f ∈ L1(K) and

g ∈ D(T ). �

The following corollary gives a characterization of translation invariant operator on
L1(K) in terms of the Fourier transform. A version of the following corollary for bounded
translation invariant operators can be found in [7, Theorem 1].

Corollary 4.3. Let T be a densely defined linear operator on L1(K) with the domain
D(T ). Then the following statements are equivalent:

(i) T is translation invariant.
(ii) T is closable, f∗g ∈ D(T ), and T (f∗g) = f∗Tg for all f ∈ L1(K) and g ∈ D(T ).

(iii) There exists a unique ϕT ∈ C(K̂) such that T̂ f = ϕT f̂ for all f ∈ D(T ).

Proof. (i)⇒(ii). This follows from Theorem 4.2.

(ii) ⇒ (iii). Since the maximal ideal space of L1(K) is K̂, it becomes a particular
case of [19, Theorem 1].

(iii) ⇒ (i). We know that for x ∈ K and χ ∈ K̂,

f̂x(χ) = χ(x)f̂(χ) = δ̂x̌(ξ)f̂(ξ).

Therefore, we get

(̂Tf)x = δ̂x̌(ξ)T̂ f(ξ) = δ̂x̌(ξ)ϕT (ξ)f̂(ξ) = ϕT (ξ)δ̂x̌(ξ)f̂(ξ) = ϕT (ξ)f̂x(ξ) = T̂ fx(ξ).

The fact that the map f 7→ f̂ from L1(K) to C0(K̂) is a norm decreasing homomorphism
ensures that T commutes with translations. Hence (i) holds. �

The function ϕT : K̂ → C in the above Corollary is called as the symbol associated
with the translation invariant operator T.

In general, we do not know if any continuous function on K̂ is a symbol for a translation
invariant operator. But if K is compact then we have the following result which shows
that any complex valued function is a symbol for some translation invariant operator
defined on L1(K).

Corollary 4.4. Let K be a commutative compact hypergroup and let ϕ : K̂ → C be
any function. Then there exists a translation invariant operator T on L1(K) such that
ϕT = ϕ.

Proof. Since K is compact it follows that its dual K̂ is discrete and therefore ϕ is con-

tinuous. Note that the set D := F−1(Cc(K̂)) is a dense subset of L2(K) because the

Fourier transform F is an isometry from L2(K) onto L2(K̂) and Cc(K̂) is dense in L2(K̂).
Since L2(K) is dense in L1(K) this implies that D is also dense in L1(K). Now, note

that ϕf̂ ∈ Cc(K̂) ∩ F(L1(K)). Therefore, we can define an operator T : D → L1(K) by

Tf = F−1(ϕf̂). Now, by Corollary 4.3, T is a translation invariant operator on L1(K)
and ϕ is symbol for T. �

The following theorem presents some basic properties of translation invariant opera-
tors.

Theorem 4.5. Let T be a translation invariant operator. Then

(i) Let 1 ≤ p < ∞. If C is a core for T and D is a dense subset L1(K) then
span[D ∗ C] is a core for T.
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(ii) Let 1 ≤ p ≤ 2. If D(T ) ∩ L1(K) is a core for T , then the dual operator T ∗ on

Lp
′
(K) is an extension of the translation invariant operator κTκ defined from

κ(span[Cc(K) ∗ (D(T ) ∩ L1(K))]) ⊂ Lp′(K) to Lp
′
(K).

Proof. (i) By Lemma 4.1 span[D ∗ C] is dense in Lp(K). Therefore, by Theorem 4.2,
T |span[D∗C] is a densely defined closable operator on Lp(K). Let f ∈ D(T ). Then, there

exists a sequence {fn} ⊂ C such that lim ‖fn − f‖p = 0 and lim ‖Tfn − Tf‖ = 0. Let
{hn} ⊂ L1(K) be a bounded approximate identity for Lp(K) as in [13, Lemma 3.3] and
hence lim ‖hn ∗ fn− fn‖p = 0 and lim ‖hn ∗Tfn−Tfn‖p = 0. Since D is dense in L1(K)
we can choose {hn} from D. Therefore, by Theorem 4.2, it follows that span[D ∗C] is a
core of T.

(ii) Again, by Lemma 4.1, the space span[Cc(K) ∗ (D(T ) ∩ L1(K))] = D (say) is a

dense subspace of D(T ). Since p′ ≥ p, D is weak*-dense in Lp
′
(K) (norm dense if p > 1).

Now, for f ∈ κD and g ∈ D(T ) ∩ L1(K), Theorem 4.2 yields that

〈f, Tg〉 = (f ∗ κ(Tf))(0) = T (κf ∗ g)(0) = (Tκf ∗ g)(0) = 〈κTκf, g〉.

Now, κTκf ∈ Lp′(K) give f ∈ D(T ∗) because D(T )∩L1(K) is a core. Thus, 〈T ∗f, g〉 =
〈κTκf, g〉 and this shows T ∗f = κTκf. �

Notation: For 1 ≤ p ≤ ∞ and ϕ a measurable function on S with respect to πK , set

Dp(ϕ) = {f ∈ Lp(S) : ϕf ∈ Lp(S)}.

In [7], Sina characterized the bounded multiplies on L2(K) in terms multiplication op-
erators of L∞- functions on S. Our next theorem characterizes the unbounded multipliers
on L2(K). It says that there is a one to one correspondence between the set of translation
invariant operators on L2(K) and set of all complex-valued measurable functions on S.

Theorem 4.6.

(i) Let T be a translation invariant operator on L2(K). Then there exists a measur-

able function ϕT : S → C such that T̂ f = ϕT f̂ for all f ∈ D(T ). Further, ϕT is
uniquely determined locally a.e..

(ii) Let ϕ : S → C be a measurable function. Then the operator

T : F−1(D2(ϕ)) ⊂ L2(K)→ L2(K)

given by Tf = F−1(ϕf̂) is a translation invariant operator, where F−1 is the
inverse of the Fourier transform F on L2(K).

Proof. (i) First note that, by [11, Theorem 3.24, p. 275], the operator S := T ∗T is a
densely defined, self-adjoint, positive operator and the core of T is D(T ∗T ). Therefore,
(I + S)−1 is a translation invariant operator on L2(K). Hence, by [7, Theorem 2], there
exists a measurable function ϕ ∈ L∞(S) such that

F((I + S)−1f) = ϕf̂, ∀f ∈ L2(K).

By applying [6, Corollary 3.2.10] to our setting, we get a measurable set E ⊂ S such
that

F(D(S)) = F(Range(I + S)−1) = χE · L2(S).

Note that ϕ(χ) 6= 0 locally a.e. because S\E is locally null w.r.t. πK . Set

ϕS(ξ) =

{
1

ϕ(ξ) − 1 if ϕ(ξ) 6= 0,

0 otherwise.
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Since ‖ϕ‖∞ ≤ ‖(I + S)−1‖B(L2(K)), ϕS is measurable and ϕS ≥ 0 a. e. locally. Now,

for f ∈ D(S) = Range(I + S)−1, there exists g ∈ L2(K) such that f = (I + S)−1g and

hence f̂ = F((I + S)−1g) = ϕf̂. This also shows that (I + S)f = g and hence

Ŝf = ĝ − f̂ =
1

ϕ
ϕĝ − f̂ =

(
1

ϕ
− 1

)
f̂ = ϕS f̂ a.e..

Since Range((I + S)−1) = D(T ∗T ) ⊂ D(T ), the operator T (I + T ∗T )−1 is well-defined
on D(T (I + S)−1) = L2(K). It follows from closed graph theorem that the operator
T (I + S)−1 is bounded on L2(K). Further, T (I + S)−1 commutes with translations and
hence there exists a symbol ψ ∈ L∞(S) for it.

Set ϕT = ψ · (1 + ϕS). Then ϕT is measurable function and we have, for f ∈ D(T ∗T )

T̂ f = F(T (I + S)−1(I + S)f) = ψF((I + S)f) = ψ(f̂ + ϕS f̂) = ϕT f̂ .

Since D(T ∗T ) is a core for T , we get T̂ f = ϕT f̂ .
Next, we prove the uniqueness of ϕT . Let ϕ1 and ϕ2 be two symbols for the operator

T. Set

F = {ξ ∈ S : ϕ1(ξ) 6= ϕ2(ξ)} .
Then, for all f ∈ D(T ), χF ·(ϕ1−ϕ2)f̂ = χF ·F(Tf−Tf) = 0 a.e.. Therefore, χF · f̂ = 0
and

L2(S) = F(D(T )) ⊂ χS\F · L2(S)

implies that F is locally null with respect to πK . Hence, ϕ1 = ϕ2 a.e. locally.
(ii) The multiplication operator Mϕ from D2(ϕ) ⊂ L2(S) to L2(S) given by Mϕ(f) =

ϕf is a densely defined closed operator. Now, the proof follows by using the fact that
the Fourier transform is an isometry on L2(K). �

5. Unbounded translation invariant operators on Lp(K)

In this section, we deal with translation invariant operators on Lp- spaces on commuta-
tive hypergroups. We present results related to interpolation and duality for translation
invariant operators and uniqueness of closed extension of a translation invariant opera-
tor. At last, we prove that the set of all closed translation invariant operators on L1(K)
or L2(K) bears a commutative algebra structure.

We begin this section with the following important lemma.

Lemma 5.1. Let 1 ≤ p1 ≤ r ≤ p2 <∞ and let T ∈M(Lp1(K))∩M(Lp2(K)). Then we
have T ∈M(Lr(K)).

Proof. Let T ∈M(Lp1(K)) ∩M(Lp2(K)). It is clear that it is enough to show that T is
closable on Lr(K) for proving that T ∈M(Lr(K)). Throughout this proof, for the sake
of clarity, we write the domain of T as D(Tr) if the operator T is acting on Lr(K).

We prove the closability of T on Lr(K) by proving that D((Tr)
∗) is dense in Lr

′
(K).

Since Lp2(K) is a reflexive space it follows that D((Tp2)∗) is dense in Lp
′
2(K) and there-

fore, by Theorem 4.5 (i), span[Cc(K) ∗D((Tp′2)∗)] is a core for T ∗p2 (which is the adjoint
of T acting as an operator on Lp2(K)). For f ∈ Cc(K) ∗D(T ∗p2) and g ∈ D(Tr) we get,
by Lemma 4.1,

T ∗p2f ∈ Cc(K) ∗ Lp
′
2(K) ⊂ Lr

′
(K)

and

〈T ∗p2f, g〉 = 〈f, Tp2g〉 = 〈f, Trg〉 = 〈T ∗r f, g〉,
which gives that span[Cc(K)∗D((Tp2)∗)] ⊂ D((Tr)

∗). Now, span[Cc(K)∗D((Tp2)∗)], and

hence D((Tr)
∗) is dense in Lr

′
(K) by Lemma 4.1, which proves our assertion. Therefore,

T is closable on Lr(K). �
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For bounded translation invariant operator the following is true [6, p. 32]:

M(L1(K)) ⊂M(Lp(K)) ⊂M(Lq(K)) ⊂M(L2(K)),

where 1 ≤ p ≤ 2 and p ≤ q ≤ p′. We prove these inclusions for the unbounded trans-
lation invariant operators in the next two results. The following theorem is well-known
for bounded translation invariant operators (see [6, Chapter 3]). It can be seen as an
interpolation theorem.

Theorem 5.2. Let 1 ≤ p ≤ 2, p ≤ q ≤ p′, q < ∞ and let T be a translation invariant
operator on Lp(K) such that D(T )∩L1(K) is dense in Lp(K). Then T |D is a translation
invariant operator on Lq(K), where D := span[Cc(K) ∗ (D(T ) ∩ L1(K))].

Proof. Note that, Lemma 5.1 together with Theorem 4.6 and corollary 4.3 gives that
T |D ∈ M(Lr(K)) for 1 ≤ r ≤ 2 and hence the case p = 1 follows. Now, let 1 < p ≤ 2.

Therefore 1 < p ≤ p′ <∞ and so D = span[Cc(K)∗ (D(T )∩L1(K))] is dense in Lp
′
(K).

With the help of Theorem 4.5, one can see that T |D ⊂ κT ∗κ. Hence T |D is closable

on Lp
′
(K). By combining this with the assumption, we get that T |D ∈ M(Lp(K)) ∩

M(Lp
′
(K)). Hence, by Lemma 5.1, we get that T |D ∈M(Lq(K)). �

Our next corollary says that M(L1(K)) ⊂ M(Lp(K)) for 1 ≤ p < ∞ and will be
useful for application purposes.

Corollary 5.3. Let T be a translation invariant operator on L1(K). Assume that D(T )
is dense in L1(K) ∩ Lp(K), for 1 ≤ p < ∞. If T maps D(T ) into L1(K) ∩ Lp(K) then
T is a translation invariant operator on Lp(K).

Proof. The Theorem 5.2 above shows that T |D ∈ M(Lp(K)) where D := span[Cc(K) ∗
D(T )]. Therefore, for proving this corollary, it is enough to prove that the closure of T |D
on Lp(K) extends T. Suppose that {gn} ∈ Cc(K) is a approximate identity for Lp(K)
(see [13, Lemma 3.3]) such that

gn ∗ f → f and T |D(gn ∗ f) = gn ∗ Tf = Tf

in p-norm. This shows that T ⊂ T |D. �

The following lemma will be used in proving the next theorem. Here, we assume that
K is a strong hypergroup.

Lemma 5.4. Let 1 ≤ p <∞, T ∈Mc(L
p(K)), D1 := F(D(T )) and let h be a measurable

function on S with respect to πK such that hf ∈ L1(S) for all f ∈ D1. Then
∫
S hfdπK =

0 for all f ∈ D1 implies that h = 0 a.e. πK-locally.

Proof. Let U and V be subsets of S such that πK(U) < ∞ and πK(V ) < ∞. Then
χU ∗ χV ∈ F(L1(K)) (see [1, Lemma 2.1]). Therefore, by Theorem 4.2, we have (χU ∗
χV ) ·D1 ⊂ D1. Choose neighborhoods Un of e such that

lim
n
‖χU ∗ µn − χU‖2 = 0,

where µn =
χUn

πK(Un) (see [8, Theorem 25.15]). We can suppose (possibly by taking

subsequence) that the convergence χU ∗ µn → χU is πK-a.e. and also, we have

lim
n
‖(χU ∗ µn)hf − hfχU‖1 = 0.

Thus, by using the estimate ‖χU∗µ‖∞ ≤ ‖χU‖∞ 1
πK(Un)‖χUn

‖1 = 1, we get
∫
S hχUf dπK =

0 for all f ∈ D1 and for all U such that πK(U) <∞. By approximating any measurable
subset by finite πK- measure sets we get

∫
S hχUf dπK = 0 for all πK-measurable subset

of S and f ∈ D1. Further, by the weak*-density of simple function in L∞(S), we get∫
K
h g f dπK = 0 for all g ∈ L∞(S) and f ∈ D1.
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Finally, if πK(U) < ∞, take g := (1 + |h|)−1χU , so that g ∈ L2(S) ∩ L∞(S). In
particular, hg ∈ L2(S). Whenever πK(U) <∞, the density of D1 gives that χU · h = 0.
Hence h = 0 a.e. πK-locally. �

Our next result is about the uniqueness of the closed extension of a translation invari-
ant operator on Lp(K). Here also we assume that K is a strong hypergroup.

Theorem 5.5. Let 1 ≤ p <∞ and let T1 and T2 be closed translation invariant operator
on Lp(K), i.e., T1, T2 ∈ Mc(L

p(K)) such that T1 ⊂ T2. If D(Ti) ∩ L1(K) is a core for
Ti (i = 1, 2) or p = 2 then T1 = T2.

Proof. First assume that p 6= 2. Then, by Theorem 4.5 (i),

D = span[(D(T1) ∩ L1(K)) ∗ (D(T2) ∩ L2(K))] ⊂ D(T1) ∩D(T2)

is a core for T2. Then T2 = T2|D. But we also have T2|D ⊂ T1 ⊂ T2. Therefore, T1 = T2.
Now, assume that p = 2. Then D1 = F(D(T1)) ⊂ F(D(T2)) ⊂ D2(ϕT2

), where ϕT2
is

the symbol associated with T2. Therefore, it is enough to show that D1 is a core for the
multiplication operator MϕT2

: L2(S)→ L2(S) given by Mϕ(f) = ϕT2f with the domain

D2(ϕ).
First, we prove that (MϕT2

|D1
)∗ = M∗ϕT2

. To see this, note that MϕT2
|D1
⊂MϕT2

and

therefore (MϕT2
)∗ ⊂ (MϕT2

|D1)∗.Now, for the other side inclusion, let g ∈ (D(MϕT2
|D1)∗).

Then we have, for all f ∈ D1,∫
S

(gϕT2
− (MϕT2

|D1)∗g) f dπK = 〈g, (MϕT2
|D1f)f〉 − 〈(MϕT2

|D1)∗g, f〉 = 0.

Therefore, by Lemma 5.4, we get gϕT2 − (MϕT2
|D1)∗g = 0 a.e. πK-locally and so g ∈

D2(ϕT2
) = D(M∗ϕT2

). Hence, (MϕT2
|D1

)∗ = M∗ϕT2
. This implies that MϕT2

= M∗∗ϕT2
=

(MϕT2
|D1

)∗∗ = MϕT2
|D1 . Therefore, D1 is core for MϕT2

. Hence the proof. �

The following theorem says that the space of all closed translation invariant operators
on Lp(K) for p = 1 or 2 is a commutative algebra over the field of complex numbers.

Theorem 5.6. Let p = 1 or 2. Then Mc(L
p(K)), the set of all closed translation

invariant operators on Lp(K), forms a commutative algebra over C with respect to the
following operations: For T, S ∈Mc(L

p(K)) and α ∈ C

T +Mc
S = T + S, α ·Mc

T = αT and T ◦Mc
S = T ◦ S.

Proof. For p = 1, the operation +Mc
and ◦Mc

is defined on a common core of for S and
T, namely, D(S) ∗D(T ) which is contained in D(T + S) ∩D(T ◦ T ). Therefore, all the
three operations are well-defined. Verifying all algebraic operations is a routine check.
By Corollary 4.3, T + S and T ◦ S are given by symbols ϕT + ϕS and ϕTϕS , where ϕT
and ϕS are symbols of T and S respectively. By Corollary 4.3, T + S and T ◦ S are
closable with a unique closed extension.

For p = 2, the proof is similar to p = 1 case by noting that the common core for T and
S, namely, F−1(D2((1 + |ϕT |)(1 + |ϕS |))) ⊂ D(T +S)∩D(T ◦S) as |ϕT |, |ϕS |, |ϕT +ϕS |
and |ϕSϕT | are less or equal to (1 + |ϕT |)(1 + |ϕS |). �
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