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ON THE F -CONTRACTION PROPERTIES OF MULTIVALUED

INTEGRAL TYPE TRANSFORMATIONS

DERYA SEKMAN AND VATAN KARAKAYA

Abstract. The main purpose of this work is to extend the properties of multivalued

transformations to the integral type transformations and to obtain the existence of
fixed points under F -contraction. In addition, the results of this study were evaluated

with some interesting example.

1. Introduction and Preliminaries

In the development process of fixed point theory, every new problem has contributed
to the expansion of this theory and it has been possible to incorporate new fields and
new concepts into it. In this sense, the existence of fixed points of multivalued transfor-
mations is an important research area. These studies, which started with Nadler [10],
leaded many new ideas. In this way, many authors including Gordji [6], Berinde [4],
Sekman et al. [12] the others studied and generalized set-valued mappings. The fact
that the transformation classes have the contraction condition, first given by Banach [3],
has an important role in the existence and uniqueness of the fixed point. Quiet recently,
Wardowski [14] introduced the concept of F -contraction and examined the properties of
this transformation for single valued transformations. Later, many authors have done a
lot of work using this idea. One can find in list [1, 7, 9, 13]. Afterward, by combining the
concepts of F -contraction and multivalued mapping, Altun et al. [2] defined the multi-
valued F -contraction. Our goal in this work is to determine the behavior of multivalued
integral mappings under F -contraction and to investigate their some properties, which
is a open problem in the current literature. It also supports the results of the study with
some interesting examples.

Let (X, d) be a metric space. Denote by P (X) the family of all nonempty subsets of
X, CB(X) the family of all nonempty, closed and bounded subsets of X and K(X) the
family of all nonempty compact subsets of X.

Definition 1. Let X be a nonempty set. T is said to be a multivalued mapping if T is a
mapping from X to the power set of X. We denote a multivalued map by T : X → P (X).

Definition 2 (see [8]). Let (X, d) be a complete metric space. We define the Hausdorff
metric on CB(X) by

H(A,B) := max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
for all A,B ∈ CB(X), where D(x,B) := inf

b∈B
d(x, b) for all x ∈ X. Mapping H is said to

be a Hausdorff metric induced by d.

Lemma 1 (see [5]). Let A,B ∈ CB(X), then for any a ∈ A,

D(a,B) ≤ H(A,B).
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Definition 3 (see [10]). Let (X, d) be a metric space. A map T : X → CB(X) is said
to be multivalued contraction if there exists 0 ≤ λ < 1 such that

H(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X.

Definition 4 (see [10]). A point x0 ∈ X is said to be a fixed point of a multivalued
mapping T : X → CB(X) such that x0 ∈ T (x0).

Theorem 1 (see [11]). Let (X, d) be a complete metric space. Suppose T : X → CB(X)
is a contraction mapping for some 0 ≤ α < 1,∫ H(Tx,Ty)

0

ϕ(t)dt ≤ α
∫ M(x,y)

0

ϕ(t)dt,

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
for all x, y ∈ X. Then there exists a point x ∈ X such that x ∈ Tx (i.e., x is a fixed point
of T ).

Now, we will give a new type of contraction called F -contraction by introduced War-
dowski [14] and a fixed point theorem concerning F -contraction.

Definition 5 (see [14]). Let F :R+ → R be a mapping satisfying:

(F1) F is strictly increasing, i.e. for all α, β ∈ R+ such that α < β, F (α) < F (β),

(F2) For each sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 if and only if

lim
n→∞

F (αn) = −∞,
(F3) There exists k ∈ (0, 1) such that lim

α→0+
αkF (α) = 0.

A mapping T : X → X is said to be an F -contraction if there exists τ > 0 such that

(1.1) d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))

for all x, y ∈ X.

Remark 1. From (F1) and (1.1) it is easy to conclude that every F -contraction T is a
contractive mapping, i.e.

d(Tx, Ty) < d(x, y) for all x, y ∈ X, Tx 6= Ty.

Thus every F -contraction is a continuous mapping.

Remark 2. Let F1, F2 be the mappings satisfying (F1-F3). If F1(α) ≤ F2(α) for
all α > 0 and a mapping G : F1-F2 is nondecreasing then every F1-contraction T is
F2-contraction.

Theorem 2 (see [14]). Let (X, d) be a complete metric space and let T : X → X be an
F -contraction. Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X a sequence
{Tnx0}n∈N is convergent to x∗.

Definition 6 (see [1]). Let (X, d) be a metric space and T : X → CB(X) be a mapping.
Then T is said to be a generalized multivalued F -contraction if there exists τ > 0 such
that

H(Tx, Ty) > 0⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y)),



284 DERYA SEKMAN AND VATAN KARAKAYA

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
for all x, y ∈ X.

Theorem 3 (see [1]). Let (X, d) be a complete metric space and T : X → K(X) be a
generalized multivalued F -contraction. If T or F is continuous, then T has a fixed point
in X.

Theorem 4 (see [2]). Let (X, d) be a complete metric space and T : X → K(X) be a
multivalued F -contraction, then T has a fixed point in X.

Theorem 5 (see [2]). Let (X, d) be a complete metric space and let T : X → CB(X) be
a F -contraction. Suppose that F also satisfies

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0. Then T has a fixed
point.

2. Main Result

Definition 7. Let (X, d) be complete metric space and T : X → K(X) be a
F -contraction of generalized multivalued integral type mapping if there exists τ > 0
such that, for all x, y ∈ X,

(2.1) H(Tx, Ty) > 0⇒ τ + F

(∫ H(Tx,Ty)

0

ϕ(t)dt

)
≤ F

(∫ M(x,y)

0

ϕ(t)dt

)
,

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
,

where ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable on
each compact subset of [0,+∞), non-negative, and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0.

Example 1. Let F :R+ → R be a mapping given by F (α) = lnα. It is clear that F

satisfies (F1)–(F3) for any k ∈ (0, 1). Every F -contraction for generalized multivalued
integral type mapping satisfies

τ + F

(∫ H(Tx,Ty)

0

ϕ(t)dt

)
≤ F

(∫ M(x,y)

0

ϕ(t)dt

)
.

Now we have

ln eτ+ ln

(∫ H(Tx,Ty)

0

ϕ(t)dt

)
≤ ln

(∫ M(x,y)

0

ϕ(t)dt

)
,

∫ H(Tx,Ty)

0

ϕ(t)dt ≤ e−τ
∫ M(x,y)

0

ϕ(t)dt

for all x, y ∈ X, Tx 6= Ty. It is clear that for x, y ∈ X such that Tx = Ty the inequality∫ H(Tx,Ty)

0

ϕ(t)dt ≤ e−τ
∫ M(x,y)

0

ϕ(t)dt

also holds, i.e. T is a contraction.

Theorem 6. Let (X, d) be a complete metric space and T : X → K(X) be a
F -contraction of generalized multivalued integral type mapping. If T or F is continu-
ous, then T has a fixed point in X.
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Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn} by xn+1 ∈ Txn for
n = 1, 2, . . . . As Tx is nonempty for all x ∈ X, we can choose x1 ∈ Tx0. If x1 ∈ Tx1,
then x1 is a fixed point of T . Let x1 /∈ Tx1, then D(x1, Tx1) > 0 since Tx1 is compact.
By using (F1), from Lemma 1 and (2.1), we can write that

(2.2)

F

(∫ D(x1,Tx1)

0

ϕ(t)dt

)

≤F

(∫ H(Tx0,Tx1)

0

ϕ(t)dt

)
≤ F

(∫ M(x0,x1)

0

ϕ(t)dt

)
−τ

=F

(∫ max{d(x0,x1),D(x0,Tx0),D(x1,Tx1),
1
2 [D(x0,Tx1)+D(x1,Tx0)]}

0

ϕ(t)dt

)
−τ

≤F

(∫ max{d(x0,x1),
1
2D(x0,Tx1)}

0

ϕ(t)dt

)
−τ

≤F

(∫ max{d(x0,x1),D(x1,Tx1)}

0

ϕ(t)dt

)
−τ

≤ F

(∫ d(x0,x1)

0

ϕ(t)dt

)
−τ.

Also, since Tx1 is compact, we obtain that x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1).
From (2.2) we have

(2.3)

F

(∫ d(x1,x2)

0

ϕ(t)dt

)
≤F

(∫ H(Tx0,Tx1)

0

ϕ(t)dt

)
≤ F

(∫ d(x0,x1)

0

ϕ(t)dt

)
−τ

F

(∫ d(x2,x3)

0

ϕ(t)dt

)
≤F

(∫ d(x1,x2)

0

ϕ(t)dt

)
−τ ≤ F

(∫ d(x0,x1)

0

ϕ(t)dt

)
−2τ

...

F

(∫ d(xn,xn+1)

0

ϕ(t)dt

)
≤F

(∫ d(xn−1,xn)

0

ϕ(t)dt

)
−τ ≤ F

(∫ d(x0,x1)

0

ϕ(t)dt

)
−nτ.

So we obtain a sequence {xn} in X such that xn+1 ∈ Txn and for all n ∈ N.
If there exists n0 ∈ N for which xn0

∈ Txn0
, then xn0

is a fixed point of T and so the
proof is completed. Thus, suppose that for every n ∈ N, xn /∈ Txn. Denote

γn=

∫ d(xn,xn+1)

0

ϕ(t)dt

for n = 0, 1, 2, . . . .
Then γn > 0 for all n and by using (2.3)

(2.4) F (γn)≤ F (γn−1)−τ ≤ F (γn−2)−2τ ≤ · · · ≤ F (γ0)−nτ.

From (2.4), we get lim
n→∞

F (γn) = −∞. Thus, from (F2), we have

lim
n→∞

γn= 0.

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

γknF (γn) = 0.



286 DERYA SEKMAN AND VATAN KARAKAYA

By (2.4), the following inequality holds for all n ∈ N

(2.5) γknF (γn)−γknF (γ0)≤ −γknnτ ≤ 0.

Letting n→∞ in (2.5), we obtain that

(2.6) lim
n→∞

nγkn= 0.

From (2.6), there exists n1 ∈ N such that nγkn ≤ 1 for all n ≥ n1. So we obtain that

(2.7) γn≤
1

n1/k
.

Now, let m,n ∈ N such that m > n > n1 to show that {xn} is a Cauchy sequence. By
using the triangle inequality for the metric and from (2.7), we have∫ d(xn,xm)

0

ϕ(t)dt≤
∫ d(xn,xn+1)

0

ϕ(t)dt

+

∫ d(xn+1,xn+2)

0

ϕ(t)dt+ · · ·+
∫ d(xm−1,xm)

0

ϕ(t)dt

= γn+γn+1+ · · ·+ γm−1 ≤
∞∑
i=n

1

i1/k
.

By the convergence of the series
∞∑
i=n

1
i1/k

, we get
∫ d(xn,xm)

0
ϕ(t)dt→ 0 as n→∞. As a

result, {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, the
sequence {xn} converges to some point z ∈ X, that is, lim

n→∞
xn = z.

If T is compact, then we have Txn → Tz and from Lemma 1

D(xn, T z) ≤ H(Txn−1, T z),

so D(z, Tz) = 0 and z ∈ Tz.
Now, suppose F is continuous. In this case, we claim that z ∈ Tz. Assume the

contrary, that is, z /∈ Tz. In this case, there exists an n0 ∈ N and a subsequence {xnk
} of

{xn} such that D(xnk+1, T z) > 0 for all nk ≥ n0. (Otherwise, there exists n1 ∈ N such
that xn ∈ Tz for all n ≥ n1, which implies that z ∈ Tz. This is a contradiction).

Since D(xnk+1, T z) > 0 for all nk ≥ n0, then we have

τ + F

(∫ D(xnk+1,Tz)

0

ϕ(t)dt

)

≤ τ + F

(∫ H(Txnk
,Tz)

0

ϕ(t)dt

)
≤F

(∫ M(xnk
,z)

0

ϕ(t)dt

)

=F

∫ max
{
d(xnk

,z),D(xnk
,Txnk

),D(z,Tz), 12

[
D(xnk

,Tz)+D(z,Txnk
)
]}

0

ϕ(t)dt

 .

Taking the limit as k →∞ and using the continuity of F, we have

τ + F

(∫ D(z,Tz)

0

ϕ(t)dt

)
≤ F

(∫ D(z,Tz)

0

ϕ(t)dt

)
,

which is a contradiction. Thus, we get z ∈ Tz. That is, T has a fixed point. �
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Example 2. Let X = [0, 1] and d(x, y) = |x− y| . Define T : X → K(X) multivalued
mapping by

Tx =

[
x

4
,
x+ 1

2

]
.

For x0 = 0 and x1 = 1 arbitrary points, we have T0 =
[
0, 12
]

and T1 =
[
1
4 , 1
]
.

H(T 0, T 1) = max

{
sup
x∈T0

D (x, T1) , sup
y∈T1

D (y, T0)

}
= max

{
sup
x∈T0

inf
y∈T1

d(x, y), sup
y∈T1

inf
x∈T0

d(x, y)

}
=

1

4
.

Now, we show that mapping T under this condition is not generalized multivalued integral
type mapping. Afterward, we will show that it is a contraction together with F . By using
Theorem 1 and ϕ(t) = 1 for all t ∈ R, we have∫ H(T0,T1)

0

dt≤ α
∫ d(x0,x1)

0

dt and α ≥1

4
.

It can be shown that multivalued integral type mapping above holds for α ∈
[
1
4 , 1
)
. In

Theorem 1, it holds 0 ≤ α < 1. This is a contraction. Under same condition; we will
apply F -contraction. Let us take F (α) = lnα and τ ∈ (0, 1.39) also ϕ(t) = 1 for all
t ∈ R, we have

F

(∫ H(T0,T1)

0

dt

)
≤ F

(∫ d(x0,x1)

0

dt

)
−τ.

This inequality holds three condition of F -contraction:

i) It is easy to see (F1).
ii) Let xn =

(
1
n

)
∈ [0, 1] , n = 1, 2, . . . and x0 = 0. By taking xn =

(
1
n

)
, we get

Txn =

[
1

4n
,
n+ 1

2n

]
,

H(Txn, Txn+1) =
1

4n(n+ 1)
.

If we denote that γn =
∫ 1

4n(n+1)

0 ϕ(t)dt, ϕ(t) = 1 for all t ∈ R, then γn =(
1

4n(n+1)

)
. By using some calculations, we conclude that following inequality:

(2.8) F

(
1

4n(n+ 1)

)
≤ F

(
1

4(n− 1)n

)
−τ ≤ · · · ≤ F (1)− nτ.

By taking F (α) = lnα, we have

0 ≤ F
(

1

4n(n+ 1)

)
≤ ln 1− nτ.

From (2.8), letting n→∞, we obtain that

lim
n→∞

ln

(
1

4n(n+ 1)

)
= −∞.

Also for ϕ(t) = 1, γn =
(

1
4n(n+1)

)
and lim

n→∞
1

4n(n+1)= 0.

iii) We will show that lim
n→∞

γknF (γn) = 0. Letting n→∞, we have

lim
n→∞

γknF (γn) = lim
n→∞

1

[4n(n+ 1)]
k

ln

(
1

4(n+ 1)

)
= 0.
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Since xn =
(
1
n

)
∈ [0, 1] is a Cauchy sequence and (X, d) is complete metric space,

taking the limit as n→∞ we have 1
n → 0 in [0, 1]. However, since Txn=

[
1
4n ,

n+1
2n

]
and

Txn∈ K(X), then lim
n→∞

Txn= Tx, that is, we have

lim
n→∞

[
1

4n
,
n+ 1

2n

]
=

[
0,

1

2

]
.

As a result we get 0 ∈
[
0, 12
]
, that is, T has a fixed point under F -contraction.
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