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THREE SPECTRA PROBLEMS FOR STAR GRAPH OF STIELTJES

STRINGS

A. DUDKO AND V. PIVOVARCHIK

This paper is dedicated to Yu. M. Arlinskii’s 70th anniversary

Abstract. The (main) spectral problem for a star graph with three edges composed
of Stieltjes strings is considered with the Dirichlet conditions at the pendant vertices.

In addition we consider the Dirichlet-Neumann problem on the first edge (Problem
2) and the Dirichlet-Dirichlet problem on the union of the second and the third
strings (Problem 3). It is shown that the spectrum of the main problem interlace

(in a non-strict sense) with the union of spectra of Problems 2 and 3. The inverse
problem lies in recovering the masses of the beads (point masses) and the lengths of
the intervals between them using the spectra of the main problem and of Problems
2 and 3. Conditions on three sequences of numbers are proposed sufficient to be the

spectra of the main problem and of Problems 2 and 3, respectively.

1. Introduction

Boundary value problems on graphs consisting of Stieltjes strings (elastic massless
threads bearing point masses, in other words, beads) are natural generalizations of bound-
ary value problems on a single interval and are often used in the theory of vibrations of
nets. Direct and inverse problems for a single Stieltjes string were solved in [8].

Finite dimensional inverse spectral problems for star graphs were solved in [2], [19],
[20]. By inverse spectral problem we mean recovering the masses of the beads and the
lengths of the intervals between them using certain spectral data.

It is clear that the spectrum of the spectral problem on a star graph does not determine
uniquely the masses of the beads and the lengths of the intervals between them. The
authors of papers [2], [19], [20] used the spectrum of a problem on the whole star graph
together with the spectra of boundary value problems on the edges as the given data.

Nowadays, finite dimensional spectral problems complete actual topics of investigation
for physicists and mathematicians (see, e.g. [6], [7], [9], [15], [18], [19]) as well as their
infinite dimensional analogues (in quantum graph theory), see, e.g. [1], [12], [14], [17].

Finite dimensional spectral problems appear in the theory of vibrations of mechanical
systems which have forms of graphs (see, [6], [7], [9], [15], [18], [19]) and in the theory of
synthesis of electrical circuits (see, [5], [10]).

In the present paper we consider a star graph with three edges. The spectral problem
on the whole graph is the one with the Dirichlet conditions at the graphs pendant vertices
and the continuity and balance of forces conditions at the central vertex. Also we consider
Dirichlet-Neumann problem (the Dirichlet condition at the left end and the Neumann
condition at the right end) on the first edge and the third problem which is Dirichlet-
Dirichlet problem (the Dirichlet condition at both ends) on the union of the second and
the third strings.
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Our inverse problem lies in recovering of masses of the beads and the lengths of the
intervals between them, using the spectra of the three spectral problems described in the
above paragraph and the total lengths of the strings. Solving of this inverse problem lies
in:
1) establishing conditions on three sequences of real numbers necessary and sufficient to
be the spectra of three problems described above;
2) proving uniqueness of the solution (if it is unique);
3) finding a method for recovering the masses and the lengths of the intervals.

We solve the inverse problem in Section 3, while in Section 2 we solve the direct
problem, i.e. we describe mutual location of the spectra of three problems described
above. This we need to compare the conditions on three sequences of real numbers
described in Section 3 as sufficient conditions with the necessary conditions described in
Section 2. We show that the three spectra and the total lengths of the strings uniquely
determine the masses of the beads and the lengths of the intervals between them on
the first string. An algorithm of recovering the masses and the lengths of the intervals
between them is also given in Section 3.

2. Direct spectral problem

We consider three Stieltjes strings which are joined in one point (see Fig. 1) to compose
a star graph. The joining point of the obtained star graph is free of beads. The pendant
vertices of the obtained star graph are fixed. We measure distances from the pendant
vertices on each edge. Starting indexing from the pendant vertices, nj beads of masses

m
(j)
k > 0, k = 1, 2, . . . , nj , are positioned on the j-th string, j = 1, 2, 3, which divide

the jth string into nj + 1 (nj ≥ 1) subintervals the lengths of which are denoted by

l
(j)
k > 0 (k = 0, 1, . . . , nj) again starting indexing from the free ends. In particular,

l
(j)
0 is the distance on the j-th string between the fixed endpoint and m

(j)
1 , l

(j)
k for

(k = 1, 2, . . . , nj − 1) is the distance between the beads of masses m
(j)
k and m

(j)
k+1, and

l
(j)
nj is the distance on the j-th string between the bead of mass m

(j)
nj and the point of

joining of the strings. The tension of each thread is assumed to be equal to 1.

The transverse displacement of the bead of mass m
(j)
k at the time t is denoted by

v
(j)
k (t) (k = 1, 2, . . . , nj , j = 1, 2, 3). For convenience, we denote by v

(j)
0 the transver-

sal displacement of the pendant endpoints and by v
(j)
nj+1(t) the transversal displacement

at the point of joining considered as a point on j-th string.

Figure 1.
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The total length of jth string is denoted by lj :

lj =

nj
∑

k=0

l
(j)
k .

Newton’s law gives the following equations of motion for the beads:

v
(j)
k (t)− v

(j)
k+1(t)

l
(j)
k

+
v
(j)
k (t)− v

(j)
k−1(t)

l
(j)
k−1

+m
(j)
k v

(j)′′

k (t) = 0

(k = 1, 2, . . . , nj , j = 1, 2, 3).

From the continuity of the strings at the central vertex of the graph we obtain

v
(1)
n1+1(t) = v

(2)
n2+1(t) = v

(3)
n3+1(t)

and the balance of forces at this point leads to

3
∑

j=1

v
(j)
nj (t)− v

(j)
nj+1(t)

l
(j)
nj

= 0.

We impose the Dirichlet condition at the beginning of each string

v
(1)
0 (t) = v

(2)
0 (t) = v

(3)
0 (t) = 0,

which means fixing the pendant vertices of the graph.

Substituting v
(j)
k (t) = u

(j)
k eiλt and changing the spectral parameter for z = λ2 we

obtain the following recurrences for the amplitudes u
(j)
k of vibrations:

(1)
u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k zu

(j)
k = 0 (k = 1, 2, . . . , nj , j = 1, 2, 3),

(2) u
(1)
n1+1 = u

(2)
n2+1 = u

(3)
n3+1,

(3)

3
∑

j=1

u
(j)
nj − u

(j)
nj+1

l
(j)
nj

= 0,

(4) u
(1)
0 = u

(2)
0 = u

(3)
0 = 0.

Denote by {λk}
n1+n2+n3

k=1 the spectrum of problem (1)–(4).
Also we consider the spectral problem for the first string with Dirichlet condition at

the left end and with Neumann condition (which means that the end is free to move in
the direction orthogonal to the equilibrium position of the string) at the right end (see
Fig. 2):

(5)
u
(1)
k − u

(1)
k+1

l
(1)
k

+
u
(1)
k − u

(1)
k−1

l
(1)
k−1

−m
(1)
k zu

(1)
k = 0 (k = 1, 2, . . . , n1),

(6) u
(1)
0 = 0,

(7) u
(1)
n1+1 = u(1)

n1
.

Denote by {ν
(1)
k }n1

k=1 the spectrum of problem (5)–(7).
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In addition to problems (1)–(4) and (5)–(7), we consider the problem that occurs when
one of the ends of the second string is connected to one of the ends of the third string,
and at the pendant vertices we impose Dirichlet conditions (see Fig. 3):

(8)
u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k zu

(j)
k = 0 (k = 1, 2, . . . , nj , j = 2, 3),

(9) u
(2)
0 = u

(3)
0 = 0,

(10) u
(2)
n2+1 = u

(3)
n3+1.

(11)
3
∑

j=2

u
(j)
nj − u

(j)
nj+1

l
(j)
nj

= 0.

Denote by {µk}
n2+n3

k=1 the spectrum of problem (8)–(11).

Figure 2

Following [8] we look for a solution to problems (1)–(4), (5)–(7), (8)–(11) in the form:

(12) u
(j)
k = R

(j)
2k−2(z)u

(j)
1 (k = 1, 2, . . . , nj , j = 1, 2, 3),

where R
(j)
2k−2(z) are polynomials of degree k − 1.

According to [8] the polynomials R
(j)
k (z) satisfy the recurrences

R
(j)
2k−1(z) = −zm

(j)
k R

(j)
2k−2(z) +R

(j)
2k−3(z),

R
(j)
2k (z) = l

(j)
k R

(j)
2k−1(z) +R

(j)
2k−2(z)

(k = 1, 2, . . . , nj , j = 1, 2, 3)

and the initial conditions

R
(j)
−1(z) =

1

l
(j)
0

, R
(j)
0 (z) = 1.

Substituting (12) into (2), (3), we obtain

R
(1)
2n1

(z)u
(1)
1 = R

(2)
2n2

(z)u
(2)
1 = R

(3)
2n3

(z)u
(3)
1 ,

R
(1)
2n1−1(z)u

(1)
1 +R

(2)
2n2−1(z)u

(2)
1 +R

(3)
2n3−1(z)u

(3)
1 = 0,
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or in matrix form

(13)







R
(1)
2n1

(z) −R
(2)
2n2

(z) 0

0 R
(2)
2n2

(z) −R
(3)
2n3

(z)

R
(1)
2n1−1(z) R

(2)
2n2−1(z) R

(3)
2n3−1(z)













u
(1)
1

u
(2)
1

u
(3)
1






= 0.

The sequence of eigenvalues of problem (1)–(4) coincides with the sequence of values of
the spectral parameter z, for which system (13) has a nontrivial solution, that is, for
which the determinant of the matrix of the system is 0

∣

∣

∣

∣

∣

∣

∣

R
(1)
2n1

(z) −R
(2)
2n2

(z) 0

0 R
(2)
2n2

(z) −R
(3)
2n3

(z)

R
(1)
2n1−1(z) R

(2)
2n2−1(z) R

(3)
2n3−1(z)

∣

∣

∣

∣

∣

∣

∣

= 0.

Thus, the spectrum {λk}
n1+n2+n3

k=1 of problem (1)–(4) coincides with the sequence of
solutions of the equation

(14)
Φ(z) : = R

(1)
2n1

(z)R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(1)
2n1−1(z)R

(2)
2n2

(z)R
(3)
2n3

(z)

+R
(1)
2n1

(z)R
(2)
2n2−1(z)R

(3)
2n3

(z) = 0.

We call Φ(z) the characteristic polynomial of problem (1)–(4).

The spectrum {ν
(1)
k }n1

k=1 of problem (5)–(7) coincides with the sequence of solutions
of the equation

(15) R
(1)
2n1−1(z) = 0.

The left side of equation (15) is the characteristic polynomial of problem (5)–(7).
Substituting (12) into (8)–(11), we obtain

R
(2)
2n2

(z)u
(2)
1 = R

(3)
2n3

(z)u
(3)
1 ,

R
(2)
2n2−1(z)u

(2)
1 +R

(3)
2n3−1(z)u

(3)
1 = 0,

or in the matrix form
(

R
(2)
2n2

(z) −R
(3)
2n3

(z)

R
(2)
2n2−1(z) R

(3)
2n3−1(z)

)(

u
(2)
1

u
(3)
1

)

= 0.

The spectrum {µk}
n2+n3

k=1 of problem (8)–(11) coincides with the sequence of solutions of
the equation

Ψ(z) := R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z) = 0.

Here Ψ(z) is the characteristic polynomial of problem (8)–(11). We denote by
{ξk}

n1+n2+n3

k=1 the union of the spectra of problems (5)–(7) and (8)–(11), i.e.

{ξk}
n1+n2+n3

k=1 ={ν
(1)
k }n1

k=1

⋃

{µk}
n2+n3

k=1 .

We index elements of {ξk}
n1+n2+n3

k=1 in the nondecreasing order such that

ξ1 ≤ ξ2 ≤ · · · ≤ ξn1+n2+n3
.

Definition 2.1. (see e.g. [16], Definition 5.1.20). A function ω(z) is said to be Nevan-
linna (or R - function in terms of [11]), if:
1) the function ω(z) is analytic in the half-planes Imz > 0 and Imz < 0;

2) ω(z) = ω(z);
3) Imz Imω(z) ≥ 0 for Imz 6= 0.

Definition 2.2.(see [11] or [16], Definition 5.1.24). A Nevanlinna function ω(z) is said
to be an S-function, if ω(z) > 0 for z < 0.

Definition 2.3. An S-function is called S0-function, if |ω(0)| < ∞.
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Lemma 2.4. Let f1(z) and f2(z) be S0-functions. Then f1(z) + f2(z) and
(

f−1
1 (z) + f−1

2 (z)
)−1

are also S0-functions.

Proof. Since Imz Im (f1(z) + f2(z)) = Imz Imf1(z) + Imz Imf2(z) ≥ 0 for Imz 6= 0

and f1(z) + f2(z) = f1(z) + f2(z) = f1(z) + f2(z) we conclude that f1(z) + f2(z) is a
Nevanlinna function.

Noticing that f1(z) > 0 and f2(z) > 0 for z ≤ 0 we arrive at f1(z) + f2(z) > 0 for
z ≤ 0. Thus, f1(z) + f2(z) is an S0-function.

Since

(16) Im
1

fj(z)
= Im

fj(z)

|fj(z)|2
=

− Imfj(z)

|fj(z)|2

for j = 1, 2 we obtain that

Im
1

1

f1(z)
+

1

f2(z)

= Im

1

f1(z)
+

1

f2(z)
∣

∣

∣

∣

∣

1

f1(z)
+

1

f2(z)

∣

∣

∣

∣

∣

2 =

− Im

(

1

f1(z)
+

1

f2(z)

)

∣

∣

∣

∣

∣

1

f1(z)
+

1

f2(z)

∣

∣

∣

∣

∣

2 .

Using (16) we arrive at

Im
1

1

f1(z)
+

1

f2(z)

=

Imf1(z)

|f1(z)|2
+

Imf2(z)

|f2(z)|2
∣

∣

∣

∣

∣

1

f1(z)
+

1

f2(z)

∣

∣

∣

∣

∣

2 .

Since Imz Imfj(z) > 0 for Imz 6= 0 and j = 1, 2 we arrive at Imz Im
1

1

f1(z)
+

1

f2(z)

≥ 0

for Imz 6= 0.

Also it is clear that
1

1

f1(z)
+

1

f2(z)

=
1

1

f1(z)
+

1

f2(z)

and
1

1

f1(z)
+

1

f2(z)

> 0

for z ≤ 0. �

Theorem 2.5. The sequences {λk}
n1+n2+n3

k=1 and {ξk}
n1+n2+n3

k=1 satisfy the following
conditions:
1) 0 < ξ1 ≤ λ1 ≤ ξ2 ≤ λ2 ≤ · · · ≤ ξn1+n2+n3

< λn1+n2+n3
;

2) If λk = λk+1, then ξk < λk = ξk+1 = λk+1 < ξk+2

(k = 1, 2, . . . , n1 + n2 + n3 − 2);
If λn1+n2+n3−1 = λn1+n2+n3

, then
ξn1+n2+n3−1 < λn1+n2+n3−1 = ξn1+n2+n3

= λn1+n2+n3
.

3) the multiplicity of λk and of ξk does not exceed 2 for all k.

Proof. Since {ν
(1)
k }n1

k=1 are the zeros of R
(1)
2n1−1(z) and {µk}

n2+n3

k=1 are the zeros of the
polynomial Ψ(z), we conclude that ξks are the zeros of the polynomial

F (z) := R
(1)
2n1−1(z)

(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

.
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Consider the ratio

Φ(z)

F (z)
=

R
(1)
2n1

(z)
(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

R
(1)
2n1−1(z)

(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

+
R

(1)
2n1−1(z)R

(2)
2n2

(z)R
(3)
2n3

(z)

R
(1)
2n1−1(z)

(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

=
R

(1)
2n1

(z)

R
(1)
2n1−1(z)

+
R

(2)
2n2

(z)R
(3)
2n3

(z)

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)

=
R

(1)
2n1

(z)

R
(1)
2n1−1(z)

+
1

1

R
(3)
2n3

(z)

R
(3)
2n3−1(z)

+
1

R
(2)
2n2

(z)

R
(2)
2n2−1(z)

.

From [8] we know that
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

is an S0-function for each j = 1, 2, 3. Then





(

R
(2)
2n2

(z)

R
(2)
2n2−1(z)

)−1

+

(

R
(3)
2n3

(z)

R
(3)
2n3−1(z)

)−1




−1

is also a S0-function (see Lemma 2.4.).

So, we conclude that
Φ(z)

F (z)
is also a S0-function, and thus zeros of this rational function

interlace with its poles as in the statement 1) of the theorem.

Now let us prove statement 3). It is known that the eigenvalues {ν
(1)
k }n1

k=1 of the
Dirichlet-Neumann problem (5)–(7) are simple (see, e.g. [8], Addition II, inequalities
(20)), as well as the eigenvalues {µk}

n2+n3

k=1 of the Dirichlet-Dirichlet problem (8)–(11).

This means that the multiplicity of any element of the sequence {ξk}
n1+n2+n3

k=1 does not
exceed 2. It was proved in [2] (Theorem 2.2) that the multiplicity of λk does not exceed 2.
Statement 3) is proved.

Now let’s prove statement 2). Let λk = λk+1, then according to statement 1) we have

λk = ξk+1 = λk+1. But this means that R
(1)
2n1

(λk) = R
(2)
2n2

(λk) = R
(3)
2n3

(λk) = 0 (see the

proof of Theorem 2.2 in [2]). It follows from R
(1)
2n1

(λk) = 0 that R
(1)
2n1−1(λk) 6= 0 since

the zeros of R
(j)
2k (λ) strictly interlace with the zeros of R

(j)
2k−1(λ) (see [8]). On the other

hand, ξk+1 can be double only when R
(1)
2n1−1(ξk+1) = 0 and R

(2)
2n2

(ξk+1)R
(3)
2n3−1(ξk+1) +

R
(2)
2n2−1(ξk+1)R

(3)
2n3−2(ξk+1) = 0. Thus ξk+1 is a simple element of the sequence

{ξk}
n1+n2+n3

k=1 . Statement 2) is proved.
�

3. Inverse problem

In this section we consider the inverse problem of recovering three strings beads’ masses

{m
(j)
k }

nj

k=1 (j = 1, 2, 3) and intervals’ lengths {l
(j)
k }

nj

k=0 (j = 1, 2, 3), using the follow-

ing given data: the total lengths l1, l2, l3 of the strings and the spectra {λk}
n1+n2+n3

k=1 ,

{ν
(1)
k }n1

k=1, {µk}
n2+n3

k=1 of problems (1)–(4), (5)–(7), (8)–(11), respectively.
In the sequel we will need an auxiliary theorem, which is proved in [3], (Theorem 3.1

there), which in our terms has the following form.
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Theorem 3.1. Let l2 and l3 be positive numbers. Let three sequences of real numbers

{µk}
n2+n3

k=1 , {τ
(2)
k }n2

k=1, {τ
(3)
k }n3

k=1 be given, which satisfy the following conditions:

1) µk < µk′ , if k < k′, τ
(j)
k < τ

(j)
k′ , if k < k′ and j = 2, 3.

2)

{µk}
n2+n3

k=1 ∩ {τ
(2)
k }n2

k=1 = ∅,

{µk}
n2+n3

k=1 ∩ {τ
(3)
k }n3

k=1 = ∅,

{τ
(2)
k }n2

k=1 ∩ {τ
(3)
k }n3

k=1 = ∅.

3) Elements of the sequence {χk}
n2+n3

k=1 := {τ
(2)
k }n2

k=1 ∪ {τ
(3)
k }n3

k=1 indexed such that

χk < χk′ , if k < k′ interlace with elements of the sequence {µk}
n2+n3

k=1 , i.e.

0 < µ1 < χ1 < µ2 < χ2 < · · · < µn2+n3
< χn2+n3

.

Then there is a unique collection of sequences {m
(2)
k }n2

k=1, {m
(3)
k }n3

k=1, {l
(2)
k }n2

k=0,

{l
(3)
k }n3

k=0 such that
nj
∑

k=0

l
(j)
k = lj (j = 2, 3), which generates problem

(8)–(11) with the spectrum {µk}
n2+n3

k=1 and the problem

(17)
u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k zu

(j)
k = 0 (k = 1, 2, . . . , nj),

(18) u
(j)
0 = u

(j)
nj+1 = 0

with j = 2, which has the spectrum {τ
(2)
k }n2

k=1 and problem (17),(18) with j = 3, which

has the spectrum {τ
(3)
k }n3

k=1.
Now we present the main result.

Theorem 3.2. Let three positive numbers l1, l2, l3 be given together with sequences of

positive numbers {ν
(1)
k }n1

k=1, {µk}
n2+n3

k=1 , {λk}
n1+n2+n3

k=1 which satisfy the following condi-
tions:

(19) 1) 0 < ξ1 < λ1 < ξ2 < λ2 < · · · < ξn1+n2+n3
< λn1+n2+n3

,

where {ξk}
n1+n2+n3

k=1 ={ν
(1)
k }n1

k=1

⋃

{µk}
n2+n3

k=1 ;

(20) 2) (−1)n1





n1
∏

j=1

l1

ν
(1)
0 − ν

(1)
j

+

n1
∑

k=1

P3(ν
(1)
k )

P2(ν
(1)
k )

n1
∏

j=0,j 6=k

1

ν
(1)
k − ν

(1)
j



 > 0;

(21) 3) (−1)n2+n3





n2+n3
∏

j=1

l2l3

µ0 − µj

+

n2+n3
∑

k=1

P3(µk)

P1(µk)

n2+n3
∏

j=0,j 6=k

1

µk − µj



 > 0.

Then:
1) there exist sequences of positive numbers {m

(j)
k }

nj

k=1 (j = 1, 2, 3) and {l
(j)
k }

nj

k=0 (j =

1, 2, 3), which generate problems (1)–(4), (5)–(7), (8)–(11) such that {λk}
n1+n2+n3

k=1 is

the spectrum of problem (1)–(4), {ν
(1)
k }n1

k=1 is the spectrum of problem (5)–(7), {µk}
n2+n3

k=1

is the spectrum of problem (8)–(11), and total length of strings are l1, l2, l3, respectively ;
2) these data uniquely determine the masses and the intervals on the first string.
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Proof. Let us construct the following polynomials:

P1(z) =

n1
∏

k=1

(

1−
z

ν
(1)
k

)

,

P2(z) = (l2 + l3)

n2+n3
∏

k=1

(

1−
z

µk

)

,

P3(z) = (l1l2 + l1l3 + l2l3)

n1+n2+n3
∏

k=1

(

1−
z

λk

)

and consider the functional equation

(22) P3(z) = P1(z)Y (z) + P2(z)X(z),

where X(z), Y (z) are unknown polynomials.

Substituting z = ν
(1)
k into (22) we obtain

(23) X(ν
(1)
k ) =

P3(ν
(1)
k )

P2(ν
(1)
k )

, k = 1, 2, . . . , n1.

The condition of strict interlacing (19) implies that the denominator P2(ν
(1)
k ) 6= 0.

Let us find the polynomial X(z), using its known values (23) and setting by definition

ν
(1)
0 = 0 and X(ν

(1)
0 ) = X(0) = l1.

We construct the following Lagrange interpolating polynomial

X(z) =

n1
∑

k=0

X(ν
(1)
k )

n1
∏

j=0,j 6=k

z − ν
(1)
j

ν
(1)
k − ν

(1)
j

.

Denote by {ζ
(1)
k }n1

k=1 the zeros X(z). We need to show that they interlace with the

elements of the sequence {ν
(1)
k }n1

k=1.
To this end, let us find the signs of the values attained by the polynomial X(z) at the

points z = ν
(1)
k (k = 1, 2, . . .). By definition {ξk}

n1+n2+n3

k=1 ={ν
(1)
k }n1

k=1

⋃

{µk}
n2+n3

k=1 , and

therefore ν
(1)
k must coincide with some element of the sequence {ξk}

n1+n2+n3

k=1 . Let ν
(1)
k =

ξp, where p ≥ k ≥ 1. So, P3(ν
(1)
k ) = P3(ξp) and due to (19) we have P3(ν

(1)
k )(−1)p−1 =

P3(ξp)(−1)p+1 > 0. It follows from ν
(1)
k = ξp that there must be p − k elements of

the set {µk}
n2+n3

k=1 on the interval (−∞, ν
(1)
k ). This means that (−1)p−kP2(ν

(1)
k ) > 0.

Thus, (23) implies (−1)k+1X(ν
(1)
k ) > 0, for all k ≥ 1. Also we notice that (20) implies

(−1)n1X(z) > 0 when z → ∞.

So, we have

(24) 0 < ν
(1)
1 < ζ

(1)
1 < ν

(1)
2 < ζ

(1)
2 < · · · < ν(1)n1

< ζ(1)n1
.

Due to inequalities (24), the sequences {ν
(1)
k }n1

k=1 and {ζ
(1)
k }n1

k=1 can be considered as the
spectra of the Dirichlet-Neumann and Dirichlet-Dirichlet problems. Using these spectra

and the length l1 we can construct a Stieltjes string, that is, to find the masses {m
(1)
k }n1

k=1

and the lengths {l
(1)
k }n1

k=0 by the known procedure described in [8].
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Due to (24) the ratio
X(z)

P1(z)
is an S0-function and it can be expanded in the continued

fraction
X(z)

P1(z)
= a(1)n1

+
1

−b
(1)
n1

z +
1

a
(1)
n1−1 + · · ·+

1

−b
(1)
1 z +

1

a
(1)
0

,

where a
(1)
k > 0 (k = 0, 1, . . . , n1), b

(1)
k > 0 (k = 1, 2, . . . , n1).

We identify these coefficients with the masses of beads and the lengths of the intervals

between them on the first string, i.e. ak = l
(1)
k , (k = 0, 1, . . . , n1), bk = m

(1)
k , (k =

1, 2, . . . , n1). This means that the sequences {l
(1)
k }n1

k=0, {m
(1)
k }n1

k=1 generate problem (5)–

(7) with the spectrum {ν
(1)
k }n1

k=1 and problem (17),(18) with the spectrum {ζ
(1)
k }n1

k=1.
Then

(25) R
(1)
2n1−1(z) = P1(z)

and

(26) R
(1)
2n1

(z) = X(z).

Let us find Y (z). To this end, we substitute z = µk into equation (22) and obtain

(27) Y (µk) =
P3(µk)

P1(µk)
, k = 1, 2, . . . , n2 + n3.

It follows from the condition of strict interlacing (19) that P1(µk) 6= 0. We construct
the polynomial Y (z), using its known values (27) and setting by definition µ0 = 0 and
Y (µ0) = Y (0) = l2l3. The Lagrange interpolating polynomial has the form

Y (z) =

n2+n3
∑

k=0

Y (µk)

n2+n3
∏

j=0,j 6=k

z − µj

µk − µj

.

Denote by {χk}
n2+n3

k=1 the zeros of the polynomial Y (z). We need to show that they

interlace with the elements of the sequence {µk}
n2+n3

k=1 . To this end, we find the signs of
values attained by the polynomial Y (z) at points z = µk (k = 1, 2, . . . , n2 +n3). Since

{ξk}
n1+n2+n3

k=1 ={ν
(1)
k }n1

k=1

⋃

{µk}
n2+n3

k=1 , each µk must coincide with some element of the

sequence {ξk}
n1+n2+n3

k=1 . Let µk = ξp, where p ≥ k ≥ 1. Thus, P3(µk) = P3(ξp) and due
to (19) we have P3(µk)(−1)p−1 = P3(ξp)(−1)p+1 > 0. From µk = ξp it follows that there

must be p− k elements of the sequence {ν
(1)
k }n1

k=1 on the interval (−∞, µk). This means

that (−1)p−kP1(µk) > 0. Now it follows from equation (27) that (−1)k+1Y (µk) > 0 for
k ≥ 1. Finally, (21) implies (−1)n2+n3Y (z) > 0 for z → ∞.

Thus, we have

0 < µ1 < χ1 < µ2 < χ2 < · · · < µn2+n3
< χn2+n3

.

The sequence {µk}
n2+n3

k=1 can be considered as the spectrum of the Dirichlet-Dirichlet
problem on the interval formed by the union of the second and the third strings, while
{χk}

n2+n3

k=1 as the union of the spectra of the Dirichlet-Dirichlet problems on the second
and the third strings.

We have the sequence {µk}
n2+n3

k=1 and the sequence {χk}
n2+n3

k=1 , which we consider as

a union of sequences {τ
(2)
k }n2

k=1, {τ
(3)
k }n3

k=1. Of course, we can arbitrarily identify them.

Obviously, {µk}
n2+n3

k=1 , {τ
(2)
k }n2

k=1, {τ
(3)
k }n3

k=1 satisfy the conditions of Theorem 3.1. Thus,
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{µk}
n2+n3

k=1 is the spectrum of problem (8)–(11), {τ
(2)
k }n2

k=1 is the spectrum of problem

(17), (18) with j = 2 and {τ
(3)
k }n2

k=1 is the spectrum of problem (17), (18) with j = 3.

The method of finding {m
(2)
k }n2

k=1, {m
(3)
k }n3

k=1, {l
(2)
k }n2

k=0, {l
(3)
k }n3

k=0 can be found in [3].
It is as follows. Let us construct the following polynomials:

Qj(z) = lj

nj
∏

k=1

(

1−
z

τ
(j)
k

)

, j = 2, 3,

and the Lagrange interpolating polynomials

R2(z) =

nj
∑

k=1

zP2(τ
(2)
k )

τ
(2)
k Q3(τ

(2)
k )

n2
∏

p=1,p 6=k

z − τ
(2)
p

τ
(2)
k − τ

(2)
p

+

n2
∏

k=1

τ
(2)
k − z

τ
(2)
k

,

R3(z) =

n3
∑

k=1

zP2(τ
(3)
k )

τ
(3)
k Q2(τ

(3)
k )

n3
∏

p=1,p 6=k

z − τ
(3)
p

τ
(3)
k − τ

(3)
p

+

n3
∏

k=1

τ
(3)
k − z

τ
(3)
k

.

Denote by {α
(j)
k }

nj

k=1, (j = 2, 3) the zeros of the polynomial Rj(z) indexed in in-
creasing order.

According to the proof of Theorem 2.1 in [3] the following interlacing conditions are
fulfilled:

0 < α
(j)
1 < τ

(j)
1 < α

(j)
2 < τ

(j)
2 < · · · < α(j)

nj
< τ (j)nj

, j = 2, 3.

Due to these inequalities we conclude that
Qj(z)

Rj(z)
is an S0 - function for j = 2, 3.

Expanding the ratio
Qj(z)

Rj(z)
(j = 2, 3) into a continued fraction we get

Qj(z)

Rj(z)
= a(j)nj

+
1

−b
(j)
nj z +

1

a
(j)
nj−1 + · · ·+

1

−b
(j)
1 z +

1

a
(j)
0

,

where all a
(j)
k and b

(j)
k are positive numbers. We identify them as a

(j)
k = l

(j)
k , b

(j)
k = m

(j)
k ,

that is, we assume that the numbers {m
(j)
k }

nj

k=1, (j = 2, 3) are the masses of the beads

of j-th Stieltjes string and {l
(j)
k }

nj

k=0, (j = 2, 3) are the lengths of the subintervals of
the j-th Stieltjes string. Obviously, we have

nj
∑

k=0

l
(j)
k =

Qj(0)

Rj(0)
= lj .

Then, according to [3], {µk}
n2+n3

k=1 is the spectrum of problem (8)–(11) and

{τ
(j)
k }

nj

k=1 (j = 2, 3) are the spectra of problems (17), (18) generated by these masses
and lengths.

Thus,

(28) R
(2)
2n2−1(z)R

(3)
2n3

(z) +R
(3)
2n3−1(z)R

(2)
2n2

(z) = P2(z)

and

(29) R
(j)
2nj

(z) = Qj(z) (j = 2, 3),

(30) R
(j)
2nj−1(z) = Rj(z) (j = 2, 3).
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Now let us prove that the spectrum of problem (1)–(4) generated by the obtained
masses and lengths coincides with {λk}

n1+n2+n3

k=1 .
We consider equation (22) under the conditions Y (0) = l2l3, X(0) = l1. We have

already found its solution and now we need to prove the uniqueness of it.
Assume that there is another solution (X̃(z); Ỹ (z)), that is

(31) P3(z) = P1(z)Ỹ (z) + P2(z)X̃(z).

Subtracting (31) from (22) we obtain

P1(z)(Y (z)− Ỹ (z)) = −P2(z)(X(z)− X̃(z)).

From this we see that Y (z)− Ỹ (z) = CP2(z) and X(z)− X̃(z) = −CP1(z), where C is
a constant.

Since Ỹ (0) = Y (0) = l2l3 and X̃(0) = X(0) = l1, we conclude that C = 0. Thus, we

have proved the uniqueness of the solution of (31) under the conditions Ỹ (0) = Y (0) =

l2l3 and X̃(0) = X(0) = l1,.
The spectrum of problem (1)–(4) with the obtained masses and intervals according to

(14) is the sequence of the zeros of the polynomial

R
(1)
2n1−1(z)R

(2)
2n2

(z)R
(3)
2n3

(z) + +R
(1)
2n1

(z)
(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

.

According to (25),(26),(28),(29),(30) we have

R
(1)
2n1−1(z)R

(2)
2n2

(z)R
(3)
2n3

(z) + +R
(1)
2n1

(z)
(

R
(2)
2n2

(z)R
(3)
2n3−1(z) +R

(2)
2n2−1(z)R

(3)
2n3

(z)
)

= P1(z)Y (z) + P2(z)X(z) = P3(z)

and the sequence of the zeros P3(z) is {λk}
n1+n2+n3

k=1 . �

Remark. It is clear from the proof of Theorem 3.2 that the data {ν
(1)
k }n1

k=1, {µk}
n2+n3

k=1 ,

{λk}
n1+n2+n3

k=1 , l1, l2, l3 uniquely determine the masses {m
(1)
k } and the lengths {l

(1)
k } on

the first string, but because of arbitrary choice of choosing {τ
(2)
k } and {τ

(3)
k } among

{χk}
n2+n3

k=1 , the masses {m
(j)
k }

nj

k=1 (j = 2, 3) and the lengths {l
(j)
k }

nj

k=1 (j = 2, 3) are not
determined uniquely.
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