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Abstract. We discuss the spectral problem for limit distributions of conflict dy-
namical systems on spaces subjected to fractal divisions. Conditions ensuring the
existence of the point spectrum are established in two cases, the repulsive and the

attractive interactions between the opponents. A key demand is the strategy of
priority in a single region.

1. Introduction

In the present paper we continue the study, started in [24], of the problem connected
with appearance of the point spectrum in the limiting singular distributions of dynamical
systems on spaces subjected to fractal partitions. Such kind of distributions describe the
limiting at time states of specific dynamical systems which we call conflict dynamical
systems. They simulate processes of conflict interactions between alternative opponents
in a wide sense. An essential feature of our constructions is a procedure of fractal partition
of a conflict space which reflects the natural repeating of self-similar or similar structure
elements (species) in the population dynamics [6, 7, 20].

Apparently, at first the spectral properties of limiting distributions associated with
probability measures as states of the conflict dynamical systems have been studied by Al-
beverio, Koshmanenko, Prats’ovytyi, and Torbin in [2]–[4], see also [13, 18, 19]. Typically
these distributions are pure singular and have a complicated fractal structure [4, 30, 31].
Precisely, it was shown by Koshmanenko in [16] that the class of pure singular contin-
uous singular distributions represents a family of full measure in the space of all limit
distributions for conflict dynamical systems. Significantly that pure point (discrete) dis-
tributions appears exotically under rather extremal conditions ensuring a rapidly strong
local convergence of approximating measures (see condition (19)). This result has anal-
ogy with Jenssen-Wintner theorem for the infinite Bernoulli convolutions of probability
values.

It should be noted that a notion of the conflict dynamical system, as a specific kind
of dynamical system, was introduced and developed by Koshmanenko in the papers
[5, 11, 1, 13, 14], (see also [12, 20]). A study of spectral properties for limit distribu-
tions takes its beginning in the paper [3]. A typical property of limiting measures to
be pure singular continuous, apparently emerges the universal singularity phenomenon.
It is well-known in functional analysis and linear operators theory (see, for example,
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[32, 26, 28, 31]). It follows that discrete and absolutely continuous functions and dis-
tributions, as well as, both, the point and the absolutely continuous spectra, arise very
seldom exotically. Usually, typical objects of mathematical studding dealing with infinite-
dimensional constructions (fractal partitions of underlying space) necessary have singular
structure. Moreover, they are measured by the second Baire category [32]. Of course,
practically, in reality, we use only physical spectral types, absolutely continuous and dis-
crete or point. Our macro world pictures are far from singularities. It is the reason, why
in this paper we are interesting in conditions which ensure the appearance of the point
spectrum.

Certainly, we start with two sequences of piecewise uniformly distributed probability
measures µt, νt, t = 1, 2, . . . which approximate the evolution of conflict interaction
between opponents at discrete time. We assume that the procedure of fractal partition
of the conflict territory (space) into regions is performed simultaneously with the discrete
time. It means that for given iterated functional system {Ki}, a number of contractive
maps Kik , k = 1, 2, . . . acting on space at moment t exactly coincides with meaning of
this time, k = t.

We prove weak convergence of µt, νt to the limit measures, µ∞ = limt→∞ µt, ν∞ =
limt→∞ νt, and seek conditions ensuring that at least one of the limit measures is a point.
In our setting, if the point spectrum appears, it is concentrated nearly zero. The next
important question is, how quickly the point spectrum condensed to zero. The answer
have to establish the ranking for distribution of the conflict resource (space) depending
of a number of contractive maps.

We note that the mixed types spectrums are impossible. This fact reflects else one
analogy with theorems of Jenssen-Wintner type which assert existence of distributions
with pure only types of spectrum, i.e., the pure absolutely continuous, the pure point,
or the pure absolutely continuous. Nevertheless, there is the possibility to transform
different types of spectra one to other in during of conflict redistributions of the space.
So, the question on transformation of the singular continuous spectrum into point ones
was studied in [17, 10, 18].

In the recent paper by Koshmanenko and Voloshyna, [24] it was established the crite-
rion for appearance of the point spectrum at time limit for conflict dynamical systems on
the space Ω = [0, 1]. Our main result asserts that the condition of view (19) (see below)
is fulfilled and the limit measure is pure point, if and only if, at least one of opponents
picks the strategy of priority in a single region (see condition (17)).

In this paper, we generalize the above result for the case when the conflict space Ω is a
compact from R

d. Besides, here we consider two situations, with repulsive and attractive
interactions.

2. Conflict dynamical systems in terms of probability measures

Here we shortly recall some basic notations and definitions relating to the theory of
conflict dynamical systems in terms of probability measures. More details may be found
in [20]–[23] and references given there.

Let Ω be a compact set from R
d, d ≥ 1. The Borel σ-algebra and Lebesgue measure

are denoted by B and λ, respectively.
Everywhere in what follows a compact Ω is considered as a conflict space (space of

living resource) for a couple of alternative sides A and B which we call by opponents.
We suppose that distributions of opponents along Ω at an initial time moment, t = 0,
may be represented by probability measures µ, ν from some space M(Ω). We assume
that intersection of their supports is nonempty,

sup(µ)
⋂

sup(ν) 6= ∅,
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that is a reason for conflict between A and B. With aim to describe of conflict interactions
between A and B we introduce some noncommutative binary map > in the space of
probability measures M(Ω)

µ> ν = µ1, ν > µ = ν1.

The sequential iteration of > with starting µ0 = µ, ν0 = ν generates some trajectory at
discrete time

(1)

{
µt

νt

}

>

−→

{
µt+1

νt+1

}

, t = 0, 1, . . .

All such kind trajectories with a fixed law of interaction > generate some dynamical
system which describes the conflict redistributions of space Ω between opponents A and
B. The constructed dynamical system we call the conflict dynamical system and denote
by {X,>}, where X = M(Ω)×M(Ω) and > is a binary map associated with a conflict
interaction between opponents (for more details see [11, 13, 14]).

In what follows one can think, without lost of generality, that Ω = [0, 1] or Ω =
[0, 1]d, d ≥ 1. And M(Ω) denotes some specific class of measures on Ω which are suitable
for description of local priorities one of opponents over other.

The behavior of trajectories µt, νt, t = 0, 1, . . ., the study its properties, constitutes
the typical problems of the theory. In particular, one of main problem is the question
on existence of the limit measures µ∞ = limt→∞ µt, ν∞ = limt→∞ νt. According to the
already developed theory, [11, 20], it was proven the existence of final redistribution of
space Ω between opponents under rather weak demands on a law of conflict interaction
> in both, repulsive and attractive cases. However, for each concrete map > we have to
prove the existence of limit measures µ∞, ν∞ again.

In the present paper we are interesting in the question, under what conditions at
least one of the limit measures µ∞, ν∞ is pure point, i.e., it is concentrated at most
on a countable set. We consider two cases for definition of >: repulsive and attractive
interactions (see below formulas (6)–(10) and (37)). In a role of M(Ω) we use piecewise
uniformly distributed measures or similar structure measures introduced in [15].

2.1. Fractal regionalization. Self-similar and similar structure measures. Be-
low we develop the iterative construction of measures µk, νk, k = 0, 1, . . . connected with
the fractal partition of space without effects of conflict interaction. Our construction
directly depends of a fixed procedure of fractal partition (regionalization) of the conflict
space Ω.

We suppose that Ω is subjected to iterative procedure of regionalization, which, in
fact, coincides with typical construction of fractal divisions. It means that Ω admits a
sequential separation into similar regions

Ω =

n⋃

i1=1

Ωi1 , 2 ≤ n < ∞,

Ωi1 =

n⋃

i2=1

Ωi1i2 , Ω =

n⋃

i1,i2=1

Ωi1i2 , . . .

Ωi1...ik−1
=

n⋃

ik=1

Ωi1...ik , Ω =
n⋃

i1,...,ik=1

Ωi1...ik , . . .

with condition: |Ωi1...ik | = λ(Ωi1...ik) −→ 0, k → ∞. Therefore, the subsets Ωi1...ik

generate a basic for the Borel σ-algebra B.
More generally, the described procedure admits treating in terms of some iterated

functional systems [6, 9, 29].
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We recall that a family of contractive maps K = {Ki}
n
i=1, 2 ≤ n < ∞ in R

d is called
(see Barnsley, Hutchinson, Triebel) an iterated functional system (IFS) on Ω, if the
following conditions hold:

∀i, Ωi ⊂ Ω, where Ωi := KiΩ,

and
int(Ωi)

⋂

int(Ωj) = ∅, i 6= j.

In what follows we additionally assume that

(2) Ω =

n⋃

i=1

Ωi, 0 < |Ωi| = qi < 1, 1 =

n∑

i=1

qi.

Thus, every ITF with condition (2) generates some fractal division of Ω

Ω =

n⋃

i1,...,ik=1

Ωi1...ik , Ωi1...ik := Ki1 ◦ · · · ◦KikΩ.

Let some ITF and a sequence of stochastic vectors P = {pk}∞k=1, pk ∈ R
d are are

given. Here, pk = (pki )
n
i=1,

∑

i p
k
i = 1. With P we associate a sequence of piecewise

uniformly distributed measures µk on Ω

(3) µk(Ωi1...ik) = p1i1p
2
i2
. . . pkik , k = 1, 2, . . .

According Hutchinson [9] and Triebel [29] (see also [30, 31, 15]) the sequence µk, k =
1, 2, . . . converges, at least in the weak sense, to some probability measure

µ = lim
k→∞

µk.

Moreover, there exists a one-to-one correspondence between above kind sequences P and
a class of similar structure measures µ ∈ M(Ω) under fixed ITF on Ω. That is, µ is
self-similar, if all vectors pk are the same. In the general case, µ is a similar structure
measure. It means that relations

µ(Ωi1...ik)

µ(Ωi1...ik−1
)
= pkik

are only dependent of a last index ik (for details see ([15, 20]).
We recall, that usually µ is singular continuous, µ ∈ Msc(Ω). However, in some

extremal cases, these measure may become pure point. It occurs under condition

(4)

∞∏

k=1

max
i1...ik

µk(Ωi1...ik) > 0.

2.2. Approximation of free states of dynamical systems. In general, it is a non-
trivial problem to construct the well-defined interaction map > in terms of probability
measures (see constructions developed in [19], [21]–[23]). What is why further we will de-
velop some approximating approach to description of the free states of dynamical systems
in terms of simple measures for which the interaction map > has a rather transparent
sense. We shall use the above described fractal regionalization of the conflict space Ω and
take into account on each step of approximation more detailed structures of the initial
measures.

A measure µ ∈ M(Ω) we call simple, if it has a piecewise uniformly distribution. So,
in the case Ω = [0, 1] a density of simple measure is a simple function. Such class of
probability measures we denote by Mpud(Ω) (pud – piecewise uniformly distributed).

Assume, some IFS, K = {Kk}
∞
k=1, is fixed. Let opponents A and B are represented

at a starting moment of time by a couple of measures µ, ν ∈ M(Ω), which both have the
similar structure. For setting of the conflict problem we put in correspondence to given
measures µ, ν two approximating sequences of simple measures µk, νk, k = 1, 2, . . .

To avoid some pure mathematical problems we will assume some additional conditions.
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We say that the iterated functional system K and a measure µ are conformed, if
there exist a restriction K on a Borel subset Ω♯ ⊆ Ω (not necessary closed), such that
all properties of fractal regionalization described in the previous subsection are valid in

terms Ω♯
i1...ik

= Ωi1...ik

⋂
Ω♯, µ(Ω♯) = µ(Ω), and, additionally,

(5) µ(Ω♯
i1...ik

⋂

Ω♯
j1...jk

) = 0, k = 1, 2, . . . ,

if il 6= jl at least for a one 1 ≤ l ≤ k. Further we always assume that K and both

initial measures µ, ν are conformed simultaneously and we can replace Ωi1...ik by Ω♯
i1...ik

without changing of notations.
On the first step of approximation, k = 1, we replace starting measures µ, ν ∈ M(Ω)

by their rough versions µ1, ν1 from Mpud(Ω) defined as follows:

µ1(Ωi1) = µ(Ωi1) := pi1 , ν1(Ωi1) = ν(Ωi1) := ri1 , i1 = 1, . . . , n,

which are uniformly distributed along every set Ωi1 . The last property distinguishes µ1

from µ and ν1 from ν, respectively. Two sets of values pi1 , ri1 , ii = 1, 2, . . . , n form two
stochastic vectors, p1 = (p1, . . . , pn) and r1 = (r1, . . . , rn). Now one can develop some
rough version of conflict redistribution of Ω between opponents A and B in terms of these
vectors (see [11, 12]). However, we want to develop a more detailed conflict picture.

To this aim we produce the second approximation step and replace µ, ν by more exact
their versions µ2, ν2 from Mpud(Ω)

µ2(Ωi1i2) = µ(Ωi1i2) := pi1i2 , ν2(Ωi1i2) = ν(Ωi1i2) := ri1i2 .

With measures µ2, ν2 we associate a new couple of stochastic vectors p2 = {pi2}
n
i2=1, r2 =

{ri2}
n
i2=1, with coordinates

pi2 :=
pi1i2
pi1

, ri2 :=
ri1i2
ri1

.

That is, these coordinates are well defined, i.e., they are independent of an index i1 due
to starting measures have the similar structure. We can repeat the above procedure for
any natural k and define more and more close versions µk, νk ∈ Mpud(Ω) of the starting
measures µ, ν

µk(Ωi1...ik) = µ(Ωi1...ik) := pi1...ik , νk(Ωi1...ik) = ν(Ωi1...ik) := ri1...ik .

With µk, νk one can associate a couple of stochastic vectors pk = {pik}
n
ik=1, rk =

{rik}
n
ik=1 with coordinates

pik :=
pi1...ik
pi1...ik−1

, rik :=
ri1...ik
ri1...ik−1

.

Thus, having two sequences of stochastic vectors P = (pk)
∞
k=1, R = (rk)

∞
k=1 we are

able to solve the problem of conflict redistribution of the space Ω between opponents A
and B with any accuracy in terms of vectors pk, rk according to the theory developed in
[11, 14].

Vice versa, if we have two sequences of stochastic vectors P = (pk)
∞
k=1, R = (rk)

∞
k=1,

pk = {pik}
n
ik=1, rk = {rik}

n
ik=1,

n∑

i=1

pik = 1 =
n∑

i=1

rik , pik , rik ≥ 0, ∀k,

we may reconstruct two sequences of piecewise uniformly distributed probability mea-
sures µk, νk ∈ Mpud(Ω) putting

µk(Ωi1...ik) = pi1 · · · pik , νk(Ωi1...ik) = ri1 · · · rik , k = 1, 2, . . .

According subsection 2.1, sequences µk, νk have at least the weak limits, µ, ν, which are
the similar structure measures. Thus, we may state that the setting of conflict dynamical
problem for opponents presented by similar structure measures µ, ν ∈ M(Ω), admits
consideration with any power of accuracy in terms of simple measures from Mpud(Ω) or,
equivalently, in terms of stochastic vectors.
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We remark that in applications the values µk(Ωi1...ik), νk(Ωi1...ik) have interpretation
of probabilities to observe some property of opponents in a region Ωi1...ik . Using these
values for all Ωi1...ik , k ≥ 1 and due to conditions on IFS, one can calculate the probability
to find this property in any Borel set E ∈ B from Ω. Moreover, the fractal structure of
regional divisions Ω allows to get information about spectral properties of measures µ
and ν under evolution produced by conflict interaction between opponents.

3. Conflict dynamical systems in terms of simple measures

In this section we describe in what way the measures µk, νk from previous section
will transformed under action of the conflict interaction between opponents. In other
words, we will describe the changes of states for dynamical system (1) in terms of simple
measures.

So, we start with a couple of probability similar structure measures µ, ν on Ω which
are conformed with some IFS.

At the first moment, t = 1, of the conflict interaction we put in correspondence to
system the state with two changed (non-free) measures µt=1, νt=1 ∈ Mpud(Ω) associated
with stochastic vectors p1 = (p1i1) and r1 = (r1i1), i1 = 1, . . . , n whose coordinates are
calculated as follows,

(6) p1i1 =
pi1(1− ri1)

1−
∑

i1
pi1ri1

, r1i1 =
ri1(1− pi1)

1−
∑

i1
pi1ri1

.

where

(7) pi1 = µ(Ωi1), ri1 = ν(Ωi1).

For the next moment of time, t = 2, we can define µ2, ν2 in two different way: to use
formula of view (6) with values pi1i2 , ri1i2 from previous subsection instead pi1 , ri1 , or
another one, to calculate

(8) p2i2 =
p1i2(1− r1i2)

1−
∑

i p
1
i r

1
i

, r2i2 =
r1i2(1− p1i2)

1−
∑

i p
1
i r

1
i

,

and define

µt=2(Ωi1i2) = pi1i2 := p1i1 · p
2
i2
, νt=2(Ωi1i2) = ri1i2 := r1i1 · r

2
i2
.

We prefer to take the second way. Thus, by iteration we find

(9) µt=k(Ωi1...ik) = pi1...ik := p1i1 · · · p
k
ik
, νt=k(Ωi1...ik) = ri1...ik := r1i1 · · · r

k
ik
, k ≥ 1,

where

(10) pkik =
pk−1
ik−1

(1− rk−1
ik−1

)

1−
∑

i p
k−1
i rk−1

i

, rkik =
rk−1
ik−1

(1− pk−1
ik−1

)

1−
∑

i p
k−1
i rk−1

i

.

Thus, formulas (6)–(10) describe the iterative construction of states for conflict dynam-
ical system in terms of piecewise uniformly distributed measures µt, νt, t = 1, 2, . . .
Symbolically, we denote these constructions as follows

µt
> νt = µt+1, νt > µt = νt+1,

where the map > corresponds to the repulsive law of interaction between opponents.
Below it will be shown that as a rule sequences µt=k(Ωi1...ik), ν

t=k(Ωi1...ik), k = 1, 2, . . .
converge to zero, with t → ∞. According [30, 31], the limit measure µ∞ is singular
continuous if limt=k→∞ µt(Ωii...ik) = 0 for all sequences i1, . . . , ik, . . . However, we are
seeking the conditions which ensure the converging µt=k(Ωi1...ik) or ν

t=k(Ωi1...ik) to non-
zero values at least for some sequences i1, . . . , ik, . . .
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In what follows we will used the following notations:

(11) µi1...ik... =

∞∏

k=1

pkik = lim
k→∞

pi1...ik , νi1...ik... =

∞∏

k=1

rkik = lim
k→∞

ri1...ik ,

where we recall that

(12) pi1...ik := p1i1 · · · p
k
ik
, ri1...ik := r1i1 · · · r

k
ik

and pkik , r
k
ik

are defined by (10). Besides, we recall that each point from Ω admits the
representation

(13) Ω ∋ ωi1...ik... =

∞⋂

k=1

Ωi1...ik ,

i.e., it is associated with some directed sequence of indices i1, . . . , ik, . . .

3.1. Weak convergence of interacted distributions. Here we prove that both se-
quences of simple measures µt, νt defined by (9) have the weak limits with t → ∞. This
fact is not new, however our proof is transparent and differ from the way used in [30].

Below we deals only with µt, similar arguments are valid for νt.

Lemma 1. The sequence of simple measures µt, t = 1, 2, . . . defined by (9) converges in
the weak sense to some probability measure µ∞ ∈ M(Ω)

µ∞ = w − lim
t→∞

µt.

Proof. Let us associate with measures µt, t ≥ 1 the linear functionals Φk(ϕ), k ≥ 1

(14) Φk(ϕ) =

∫

Ω

ϕ(x)dµt=k(x), k = 1, 2, . . . , ϕ ∈ C(Rd),

where C(Rd) denotes the space of continuous functions. Let a function ϕ is fixed, then
without loss of generality we may assume that it is positive and bounded on Ω, i.e.,

0 ≤ ϕ(x) ≤ M, x ∈ Ω.

Now one can estimate the values of functional Φk(ϕ) from above and from below by
replacing the function ϕ(x) in (14) by its minimal and maximal meanings on each region
Ωi1...ik . To write such estimation explicitly we introduce notations

ϕi1...ik,m := min
x∈Ωi1...ik

ϕ(x), ϕi1....ik,M := max
x∈Ωi1...ik

ϕ(x).

Then, it is evident that
Φk,m(ϕ) ≤ Φk(ϕ) ≤ Φk,M (ϕ) ,

where

Φk,ex(ϕ) :=

n∑

i1,...,ik=1

ϕi1...ik,ex

∫

Ωi1...ik

dµt=k(x), ex = m
∨

M.

Using that µt=k(Ωi1...ik) = pi1...ik ≡ p1i1 · · · p
k
ik
, we can write

Φk,ex(ϕ) =

n∑

i1,...,ik=1

ϕi1...ik,ex · µ
t(Ωi1...ik) =

n∑

i1,...,ik=1

ϕi1...ik,ex · pi1...ik .

We state that differences Φk,M (ϕ)− Φk,m(ϕ) monotonically decrease to zero as k → ∞

Φk,M (ϕ)−Φk,m(ϕ)=
n∑

i1,...,ik=1

(ϕi1...ik,M − ϕi1...ik,m)pi1...ik ≤dk

n∑

i1,...,ik=1

pi1...ik =dk → 0.

Indeed, it is true since the sequence

dk := max
i1...ik

{ϕi1...ik,M − ϕi1...ik,m}

decreases to zero because ϕ(x) is continuous and bounded, and λ(Ωi1...ik) → 0, as k → ∞.
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Hence, there exists the limit functional

Φ∞(ϕ) = lim
k→1

Φk,m(ϕ) = lim
k→1

Φk,M (ϕ) .

By construction,

Φ∞(ϕ) = lim
k→∞

n∑

i1...ik=1

ci1...ik

∫

Ωi1...ik

ϕ(x)dx, ci1...ik :=
pi1...ik

λ(Ωi1...ik)
.

This functional is positive and continuous on C(Rd). Therefore it is associated with some
probability measure µ∞ ∈ M(Ω), and we can write:

Φ∞(ϕ) =

∫

Ω

ϕ(x)dµ∞(x).

�

We remark that the functional Φ∞(ϕ) and the measure µ∞ are associated (see (9))
with infinite matrix

P = {pk}∞k=1 = {pkik}
1,n
k=1,ik=1

and therefore µ∞ is a similar structure measure.
In what follows we will use

Definition 1. A sequence of elements pkik , k = 1, 2, . . . from the matrix P = (pkik)
∞,n
k=1,ik=1

is said to be 0-convergent, if
∞∑

k=1

pkik < ∞.

A sequence pkik , k = 1, 2, . . . is called 1-convergent, if

(15)

∞∏

k=1

pkik > 0.

In general, it is a non-trivial problem to select a 1-convergent sequence of elements
from the matrix P since all vectors pk are stochastic and 0 ≤ pkik ≤ 1. We recall that
condition (15) has an equivalent form

∞∑

k=1

(1− pkik) < ∞.

A couple of sequences pkik , p
k
jk
, k = 1, 2, . . . we call equivalent, if pkik 6= pkjk for at

most finite many indices. However, if pkik = pkjk for at most finite many indices, then this
couple of sequences we call disjunctive.

Proposition 1. If the matrix P contains a 1-convergent sequence of its elements, then
it is unique up to equivalence. All other disjoint sequences are 0-convergent.

Proof. If a sequence pkik , k = 1, 2, . . . is 1-convergent, then with necessity pkik → 1, k → ∞.

Since all pk are stochastic, it is possible only for a unique sequence up to equivalence.
Therefore all other sequences, disjoint to this 1-convergent sequence, are 0-convergent.

�

Assume a sequence pkik , k = 1, 2, . . . is 1-convergent. Put in correspondence to each
set of indices i1 . . . ik the linear functional

Ψk(ϕ) :=

∫

Ωi1...ik

ϕ(x)dµk(x), ϕ ∈ C(Rd).
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Lemma 2. The sequence of functionals Ψk is convergent and the limit functional is
generated by Dirac δ-function concentrated at point

(16)
xik

≡ xi1...ik... =

∞⋂

k=1

Ωi1...ik :

Ψk(ϕ) → µik
δx=xik

(ϕ) = µik
ϕ(xik

),

where

µik
=

∞∏

k=1

pkik .

Proof. By construction,

Ψk(ϕ) = ci1...ik

∫

Ωi1...ik

ϕ(x)dλ(x),

where

ci1...ik =
pi1...ik

λ(Ωi1...ik)
.

Hence, we can use the estimation

ϕi1...ik,mci1...ikλ(Ωi1...ik) ≤ Ψk(ϕ) ≤ ϕi1...ik,Mci1...ikλ(Ωi1...ik),

and get

ϕi1...ik,m pi1...ik ≤ Ψk(ϕ) ≤ ϕi1...ik,Mpi1...ik .

Since the sequence of regions Ωi1...ik shrinks to point xik
and the function ϕ is assumed

continuous, two sequences ϕi1...ik,m and ϕi1...ik,M converge to the same value ϕ(xik
).

This proves (16). �

Using Lemma 2 we able to represent the meanings of limit functional Φ∞ from
Lemma 1 in terms of δ-functions.

Theorem 1. Assume the matrix P = (pkik)
∞,n
k=1,ik=1 contains a 1−convergent sequence.

Then the limit functional Φ∞(ϕ) = limk→∞ Φk(ϕ) (see Lemma 1) admits the following
representation:

Φ∞(ϕ) =
∑

x̄∈Γµ

µx̄ϕ(x̄),

where Γµ denotes the countable set of points

x̄ ≡ xik
= xi1...ik... =

∞⋂

k=1

Ωi1...ik

such that all corresponding sequences of matrix elements {pkik} are 1−convergent and
mutually equivalent. That is, all constants µx̄ are given by products of matrix elements:

µx̄ ≡ µīk = µi1...ik... =

∞∏

k=1

pkik .

4. Criterion for point spectra, repulsive case

Let us consider the conflict dynamical system {X,>} with trajectories (1), where the
> denotes the repulsive interaction given by formulas (6)–(10).
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Theorem 2. For every couple of starting probability measures µ, ν ∈ M(Ω), one of
the limit measures µ∞ or ν∞, constructed in according with formulas (7)–(10) by the
sequence of piecewise uniformly distributed probability measures µt=k, νt=k ∈ M(Ω), t =
1, 2, . . . is pure point, µ∞ ∈ Mpp or ν∞ ∈ Mpp, if and only if the condition

(17) µ(Ωi) > ν(Ωi)

or

(18) µ(Ωi) < ν(Ωi)

fulfilled for a single fixed index 1 ≤ i ≤ n.

Proof. We will consider only the limit measure µ∞. The proving for ν∞ is the same. By
the theory developed in [30, 31] (see also [3, 13, 4, 5, 20]) the limit measure µ∞ is purely
point if and only if

(19)
∞∏

k=1

max
i1...ik

µk(Ωi1...ik) > 0.

This statement is some analog of Jenssen-Wintner theorem. We will prove that (19)
follows from (17).

So, for t = 1, from (17), in accordance with (7), we obtain

(20) µ1(Ωi) = p1
i

> ν1(Ωi) = r1
i
.

Moreover, the similar arguments show that it is true for any k ≥ 1

(21) µk(Ωi1=i...ik=i) = pki1=i...ik=i
> νk(Ωi1=i...ik=i) = rki1=i...ik=i

.

Since condition (17) is assumed only for a unique index i, for all other indices we have

(22) µ1(Ωi) < ν1(Ωi), ∀i 6= i,

and, by induction, for any k

(23) µk(Ωi1...ik) < νk(Ωi1...ik), i1, . . . , ik 6= i.

Therefore, by Theorem of conflict [11] it yields

(24) µk(Ωi1...ik) → 0, k → ∞, i1, . . . , ik 6= i.

At the same time the last multiplier in µk(Ωi···i) = p1
i
· · · pk

i
has a monotonic grow

pk
i
→ 1, k → ∞,

because by (10), pkik → 0 for all ik 6= i due to condition (17). These facts shows that

(25) µk(Ωi...i) = max
i1...ik

µk(Ωi1...ik).

Now we have to prove that

(26)

∞∏

k=1

µk(Ωi...i) > 0.

Let us consider the helping constructions.
Assume we have a couple of stochastic vectors p1, r1 ∈ R

n, n ≥ 2 with different
coordinates, 0 < p1i 6= r1i < 1, i = 1, . . . , n. We will study the trajectory

{pk, rk}
>

−→ {pk+1, rk+1}, k = 1, 2, . . . ,

where the coordinates of {pk, rk} are defined by the rule (10). Assume, as that

(27) p1
i
> r1

i
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for a single only index i. Now, we will prove that due to (27), the sequence pk
i
, k = 1, 2, . . .

is 1-converging and therefore,

(28)

∞∏

k=1

pk
i
> 0.

At first, consider the case n = 2. It easily seen that for any starting p, r ∈ R
2
+,1

already on the first step of conflict interaction, the coordinates of vectors p1, r1 become
symmetric:

p11 = r12, p12 = r11.

By this reason without lost of generality one can set

p11 = a1, p12 = 1− a1, r11 = 1− a1, r12 = a1, 0 < a1 < 1.

Clearly that coordinates of vectors pt=k and rt=k for all k ≥ 1 are also symmetric:

pk1 = rk2 = ak, pk2 = rk1 = 1− ak, 0 < ak < 1.

Let us fix one of indices from {1, 2}, for instance, put i = 1. Then condition (27)
means that a1 > 1/2. Using this assumption we have to prove that the sequence pk1 = ak
increases to unite: ak → 1, so quickly that

(29)

∞∏

k=1

ak > 0.

Recalling that coordinates pki , r
k
i are calculated by formulas

(30) pki = pk−1
i ·

1− rk−1
i

1− θk−1
, rki = rk−1

i ·
1− pk−1

i

1− θk
,

we observe that iterated rule (30) in case n = 2 in really is the difference variant of the
continuous one-dimensional maps

F1(x) =
x2

x2 + (1− x)2
, F2(x) =

(1− x)2

(1− x)2 + x2
, x ∈ R

1.

It is easy to see that for x = a1 > 1/2 the sequence

(31) ak+1 =
a2k

a2k + (1− ak)2
, k = 1, 2, . . .

converges to 1. We have to prove that condition a > 1/2 implies (42).
Instead (29) we will prove the convergence of series

(32)
∞∑

k=1

(1− ak) < ∞

that is equivalent. To prove (32) we can use the well-known Raabe criterion. Indeed, due

to (31) it easy to see that value k
(

1−ak

1−ak+1
− 1

)

has the monotonic grows, if a1 > 1/2.

Moreover, due to ak → 1, it follows that k
(

1−ak

1−ak+1
− 1

)

goes to infinity with k → ∞.

By the Raabe criterion, it proves that series (32) is convergent. Therefore the infinite
product (29) is strongly positive.

Let now n > 2. Since inequality (27) is fulfilled only for a single coordinate, it
follows that inverse inequality is true for all other coordinates of vectors p1, r1, i.e., for
coordinates with indices different of i:

(33) p1i < r1i , i 6= i.
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Let us show that due to (33) each sequence pki , i 6= i, k = 1, 2, . . . is 0-converging, i.e.,

(34)

∞∑

k=1

pki < ∞.

With this aim we remark that from (30) it follows:

(35) pki = pk−1
i · cki = p1i

k∏

l=1

cli, cli =
1− rli
1− θl

.

By the Theorem of conflict (see [12, 20])) and due to (33), all coordinates rki , i 6= i

convergent to strongly positive meanings, but pki , i 6= i and θk tend to zero

rki → r∞i > 0, pki → 0, θk → 0, k → ∞, i 6= i.

Therefore, there is some natural T , such that for k = t > T all cki in (35) have the
estimation independent of k

cki ≤ ci < 1.

If T = 1, then we may replace cki by k-power of ci and get the estimation

pki < p1i c
k
i .

Therefore, series (34) is estimated by the sum of geometrical progression, i.e., it is finite
and does not exceed p1i /(1 − ci). If T > 1, then the series (34) is convergent also by
the same reason, because the sum of its first T − 1 terms is finite. Since the analogical
argumentation is valued for all i 6= i, we obtain

∑

i6=i

(

∞∑

k=1

pki ) =

∞∑

k=1

(
∑

i6=i

pki ) =

∞∑

k=1

(1− pk
i
) < ∞,

that is equivalent to (28). We proved that in the general case under condition (27), the
sequence pk

i
, k = 1, 2, . . . is 1-converging.

Now we can come back to our problem in terms of measures.
Using that due to (9),

µt=k(Ωi1...ik) = pi1...ik := p1i1 · · · p
k
ik

and inequalities (17), (20), and (27) are equivalent, we may conclude that the sequence
µk(Ωi . . .i

︸ ︷︷ ︸
k

), k ≥ 1 is 1-converging. Now, by virtue of (25), the inequalities (28) and (19)

are equivalent. This completes the proof of the theorem. �

Thus we proved that the limit measure µ∞ is pure point, µ∞ ∈ Mpp, if and only if
the opponent A chooses the strategy of a single priority, i.e., inequality µ(Ωi) > ν(Ωi) is
fulfilled for an unique fixed index 1 ≤ i ≤ n.

5. The point spectrum in models with attractive interaction

Here we consider the situation with a map > corresponding to the attractive interac-
tion. Now measures µt, νt are defined in the similar to previous constructions way

µt+1 = µt
> νt, νt+1 = νt > µt

with trajectories

(36) {µt, νt}
>,t
−→ {µt+1, νt+1}, t = 1, 2, . . .

All measure µt, νt, t ≥ 1 are uniformly distributed on regions Ωi1...ik (see the previous
subsections), and are defined by beforehand given measures µ, ν ∈ M(Ω) according to
the iterative rule

µt(Ωi1...ik) = pi1...ik := p1i1 · . . . · p
t
ik
,

νt(Ωi1...ik) = ri1...ik = r1i1 · . . . · r
t
ik
, t = k,
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with

(37) pti =
pt−1
i (1 + rt−1

i )

1 + θt−1
, rti =

rt−1
i (1 + pt−1

i )

1 + θt−1
, t = 1, . . . ,

where θt = (pt, rt) =
∑n

i=1 p
t
ir

t
i and p0i ≡ pi = µ(Ωi), r0i ≡ ri = ν(Ωi).

In [23] (see also [27]) it was proven the existence of the limit invariant measures µ∞ =
limt→∞ µt, ν∞ = limt→∞ νt. Here we find the sufficient conditions for µ∞, ν∞ ∈ Mpp.

Let us introduce the values

σt
i := pti + rti , ρti := pti · r

t
i , t ≥ 0.

Lemma 3. If there exist a single region Ωi, such that

(38) pi =
n

max
i=1

{pi}, ri =
n

max
i=1

{ri},

or

(39) σi = σmax =
n

max
i=1

{σi}, ρi = ρmax =
n

max
i=1

{ρi},

then the sequences pt
i
, rt

i
, t = 1, 2, . . . are 1-convergent, i.e.,

(40)
∞∏

t=1

pt
i
> 0,

∞∏

t=1

rt
i
> 0.

We note that (39) takes place, if (38) is true.

Proof. Assume condition (39) or (38) is fulfilled for a single i. It means that for all i 6= i

σi < σi, ρi < ρi

or

pi < pi, ri < ri.

Let us show that then each sequence {pti}
∞
t=1, i 6= i, is 0-convergent, i.e.,

(41)

∞∑

t=1

pti < ∞.

Due to results of Section 2.2 from [1]) under one of conditions (38), (39), all coordinates
pti, r

t
i , i 6= i converge to zero

pti → 0, rti → 0, θt → 1, t → ∞, i 6= i0.

From (37) we find that

(42) pt+1
i = pti · c

t
i = pi

∞∏

t=0

cti, cti =
1 + rti
1 + θt

.

If rti < θt, then ct+1
i < ct. However, if rti > θt, then we have ct+1

i > ct. Nevertheless,
since rti → 0 and θt → 1, all cti, t > T become less than unite for enough large T and
moreover, they monotonically decreases. Thus we may write

0 < cti ≤ c < 1, c := cTi .

Assume T = 1. Then series (41) is estimated by the series of geometrical progression
∑∞

l=1 pic
l, since each terms of our series is less then the corresponding term of the later

ones. This series is obviously converging due to its denominator c < 1. This proves that
the sum (41) is finite. If T > 1, then series (41) is also converging because the partly
sum of the first T − 1 terms of this series is finite.

So, we prove that
∞∑

t=1

(
∑

i6=i

pti) =

∞∑

t=1

(1− pt
i
) < ∞.

Therefore, the sequence {pt
i
}∞t=1 is 1-convergent, i.e.,

∏∞
t=0 p

t
i
> 0. �
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We recall that by theorem of the Jessen-Wintner type, measures µ∞, ν∞ are pure
point, if

(43)

∞∏

k=1

max
i1...ik

µ∞(Ωi1...ik) > 0,

∞∏

k=1

max
i1...ik

ν∞(Ωi1...ik) > 0,

where we have to take Ω♯
i1...ik

instead Ωi1...ik since in general µt(Ωi1...ik) 6= µ∞(Ωi1...ik)

and νt(Ωi1...ik) 6= ν∞(Ωi1...ik).

Theorem 3. The limit measures µ∞ and ν∞, constructed in according with formulas
(36)–(37) which describe the attractive interaction, are pure point, µ∞, ν∞ ∈ Mpp, if
there exists a single region Ωi, such that one of condition (38) or (39) is fulfilled.

Proof. We only remark that since conditions (40) and (43) are equivalent, the validity of
the theorem follows from Lemma 2. �

6. Discussion

By Theorems 2 and 3, the limit measure µ∞ is pure point and supported on the
countable set of points x̄ ∈ Γµ corresponding to all 1-convergent sequences. Exactly the
meanings of measure µ∞ on these points one can calculate by the products formula for
1-convergent sequences of elements from matrix P (see Theorem 1)

µ∞(x̄) = µx̄ =

∞∏

k=1

pkik .

All these sequences are equivalent (see Definition 1) and have only finite numbers of
multipliers different of pk

i
, where i is fixed. Let x̄(l), l = 1, 2, . . . means that a point x̄

corresponds to a sequence with l multipliers different of pk
i
. Obviously

L∑

l=0

µx̄(l) → 1, L → ∞.

This fact allows to establish some ranking of values µx̄ depending of the step of fractal
partition. In particular the main value of µx̄ corresponds to point x̄(l = 0) and admits
calculation as follows:

µx̄(0) =
∞∏

k=1

pk
i
.

Finally we remark that Γµ is dense in Ω. Therefore the support of µ∞ coincides with
all Ω. Nevertheless the essential support of µ∞ consists of only points from the set Γµ.
That is, this set is self-similar and has zero topological and Hausdorff dimensions.
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