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ANALYTICITY AND OTHER PROPERTIES OF FUNCTIONALS

I (f, p) =
∫

A
|f(t)|pdt AND n(f, p) =

(
1

µ(A)

∫

A
|f(t)|pdt

) 1
p

AS FUNCTIONS OF

VARIABLE p

D. M. BUSHEV AND I. V. KAL’CHUK

Abstract. We showed that for each function f(t), which is not equal to zero almost

everywhere in the Lebesgue measurable set, functionals I (f, z) =
∫
A
|f(t)|zdt as

functions of a complex variable z = p+ iy are continuous on the domain and analytic
on a set of all inner points of this domain. The functions I(f, p) as functions of a

real variable p are strictly convex downward and log-convex on the domain.
We proved that functionals n(f, p) as functions of a real variable p are analytic

at all inner points of the interval, in which the function n(f, p) 6= 0 except the point
p = 0, continuous and strictly increasing on this interval.

Let us consider the functional n(f, p) =
(

1
µ(A)

∫

A
|f(t)|

p
dt
) 1

p

, where A is an arbitrary

Lebesgue measurable set, µ(A) is its Lebesgue measure and p is an arbitrary nonzero
real number. These functionals define the spaces of functions, which are normalized if
p ≥ 1 with the norm ‖f‖Lp(A)

= n(f, p), are Euclidean if p = 2, and for arbitrary p > 0

contain the spaces of the continuous functions defined on a closed bounded set A.
We always use the functional n(f, p) in the definitions of the main approximative char-

acteristics of functions and functional classes in these spaces. For example, n(f−A(f), p)
is the approximation of the function f by the given operator A : f → A(f) or
inf

u∈Un

n (f − u, p) is the best approximation of the function f by the finite-dimensional

subspace Un.
The functional n(f, p) can be regarded as the main approximative characteristic of

the function f , the value of which is equal to the deviation of f from the zero function.
This functional is used not only in the theory of approximation of functions, but also in
other areas of mathematics.

If p = 2, then according to Parseval’s equality for finding the value of the functional
n (f, 2) we only need to find a sum of a numerical series with the terms that are the squares
of the Fourier coefficients of the function f with respect to the complete orthonormal
sequence of functions on the set A. For all other fixed p 6= 2 the value of the main
approximative characteristic is estimated by means of inequalities, which are called upper
and lower estimates. So approximative characteristics as functions of the variable p
are estimated using the tabular procedure of setting of the function. But the tabular
procedure of setting of the function makes it impossible to establish even the simplest
its properties such as monotonicity, continuity and other.

If p < 1, then the space of functions defined by a functional n(f, p) is not normalizable,
which creates some inconvenience not only in approximation theory. Therefore, if p < 1
and especially when p < 0 in many cases properties of the approximative characteristics
are not considered.
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Remark. If 0 < µB0 = µ {t ∈ A : f(t) = 0} < µ(A), then for an arbitrary p > 0, using
the additive property of the integral, we obtain

(1)

(

n(f, p) =

(

1−
µ(B0)

µ(A)

) 1
p

(

1

µ(A \B0)

∫

A\B0

|f(t)|pdt

) 1
p
)

∧

(

0 < 1−
µ(B0)

µ(A)
= a < 1

)

∧

(

(a
1
p )

′
= −

1

p2
(ln a)a

1
p > 0

)

∧

(

lim
p→0+0

a
1
p = 0

)

∧

(

lim
p→0−0

a
1
p = +∞

)

∧

(

lim
p→+∞

a
1
p = 1

)

∧

(

lim
p→−∞

a
1
p = 1

)

.

From (1) follows that the function a
1
p is analytic in the intervals (−∞, 0), (0,+∞) and

strictly increasing on these intervals. Therefore, the intervals of analyticity and strict
increase of the function n(f, p) coincide with intervals of analyticity and strict increase

of the function
(

1
µ(A\B0)

∫

A\B0
|f(t)|

p
dt
) 1

p

.

So, we can consider measurable functions f(t), which are not equal to zero nearly
everywhere in the Lebesgue measurable set A, that is, for which µB0 = 0. Then the
functional n(f, p) can be defined also for p < 0, and the functional I (f, z) =

∫

A
|f(t)|

z
dt,

z = p+ iy, – for complex values of the variable z.
If |f(t)| is a constant k almost everywhere on the set A, then for any p 6= 0 equality

n(f, p) = k holds and this trivial case we do not consider.
Let’s denote by

Lp(A) =

{(

f(t) : n(f, p) =

(
1

µ(A)

∫

A

|f(t)|
p
dt

) 1
p

<∞

)

∧ (p ∈ R \ {0})

∧

(

n(f, 0 + 0) = lim
p→0+0

n(f, p)

)

∧

(

n(f, 0− 0) = lim
p→0−0

n(f, p)

)

∧

(

n(f,+∞) = lim
p→+∞

n(f, p)

)}

,

L∞(A) =

{

f(t) : ‖f‖L
∞(A)

def
= inf

E:µE=0
sup

t∈A\E
{|f(t)|} <∞}

}

the spaces of measurable essentially bounded functions.
It is known that (see [1, p. 143])

(2) lim
p→+∞

n(f, p) = ‖f‖L
∞(A)

, lim
p→0+0

n(f, p) = e
1

µ(A)

∫

A
ln |f(t)|dt = n(f, 0 + 0).

For any p 6= 0 the following equality holds

(3) n(f, p) =
1

n
(

1
f ,−p

) .

From equalities (2) and (3) we obtain

(4)

n(f,−∞) = lim
p→−∞

n(f, p) =
1

‖1/f‖L
∞(A)

,

n(f, 0− 0) =
1

lim
−p→0+0

n
(

1
f ,−p

) =
1

e
1

µ(A)

∫

A
ln| 1

f(t) |dt
= e

1
µ(A)

∫

A
ln |f(t)|dt.

From formulas (2), (4) we get that if the function n(f, p) is defined in the neighborhood
of 0, then it is continuous at this point.
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If the integral
∫

A
|f(t)|pdt is divergent for p > 0, then f /∈ Lp(A) and we will assume

that n(f, p) = +∞. If f /∈ Lp(A) and
1
f /∈ Lp(A) for arbitrary p > 0, then we will assume

that n(f, 0) = e
1

µ(A)

∫

A
ln |f(t)|dt. If

∫

A
ln |f(t)|dt = −∞, then according to the equalities

(2), (4) we have n(f, 0) = 0. If p < 0 then 1
µ(A)

∫

A
|f(t)|−pdt = k or

∫

A
|f(t)|−pdt = +∞.

Therefore, according to the formula (2) we obtain

n(f, p) =
1

(
1

µ(A)

∫

A
|f(t)|

−p
dt
)− 1

p

= k
1
p or n(f, p) =

(
1

∞

)

= 0.

Thus, for p < 0 all measurable functions belong to the space Lp(A).
In this paper we proved that function f(t) may not belong to any of the spaces Lp(A)

for p > 0, but the function n(f, p), which is defined for all negative values of the variable p,
is analytic at all inner points of the interval in which the value of the function n(f, p) 6= 0
except the point p = 0, and it is strictly increasing and continuous on this interval.

These remarkable properties of the function n(f, p) allow us to determine for the
functions of the spaces Lq(A), 0 < q ≤ ∞, that their basic approximative characteristics
on interval [0, q] are continuous, non-decreasing, and, in some cases, analytic. This
makes it possible to avoid the use of a simple tabular method of estimation of these
characteristics.

1. Analyticity of integrals dependent on a parameter

Let us prove auxiliary statements about analyticity of the integrals depending on a
parameter. Note, that these statements can be of independent interest.

Lemma 1 (On the analyticity of integrals depending on a parameter). Let the
function g(z, t) of two complex variables z and t be analytic with respect to the variable

z for almost all values t belonging to the rectifiable curve
⌣

AB, and the integral of the

modulus of the function g(z, t) along the curve
⌣

AB is bounded on an arbitrary simple
rectifiable closed curve γ which is contained in G, that is

(5) sup
u∈γ

∫

⌣

AB

|g(u, t)|dt ≤Mγ .

Then the integral
∫

⌣

AB
g(z, t)dt = F (z), depending on the parameter z is an analytic func-

tion in the domain G and in each point z ∈ G, for each natural n the derivative of the

n-th order of the integral is equal to the integral along a curve
⌣

AB of the derivative of
the n-th order in the variable z of the integrand g(z, t), that is

(6) (∀n ∈ N) ∧ (∀z ∈ G) ⇒

(

F (n)(z) =

∫

⌣

AB

g
(n)
zn (z, t)dt

)

.

Proof. Let γ be an arbitrary simple closed rectifiable curve that is contained in G and it
is the boundary of the domain D contained in G, that is γ = ∂D. Let us prove that for
the function F (z) the Cauchy integral formula holds at each point z ∈ D, that is

(7) (∀z ∈ D) ⇒

(

F (z) =

∫

⌣

AB

g(z, t)dt =
1

2πi

∫

γ

F (u)

u− z
du

)

.

Let ρ = inf
u∈γ

{|u− z|} be the distance from the point z to the curve γ. Then at each

point u ∈ γ the inequality

(8)
1

|u− z|
≤

1

ρ
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holds.
Using the inequalities (8) and (5) we have

(9)

∫

γ

|F (u)|

|u− z|
du =

∫

γ

∣
∣
∣
∣

∫
⌣

AB
g(u, t)dt

∣
∣
∣
∣

|u− z|
du

≤
1

ρ

∫

γ

(
∫

⌣

AB

|g(u, t)|dt

)

du ≤
1

ρ

∫

γ

Mγdu =
1

ρ
Mγ l(γ),

where l(γ) is the length of curve γ. From the inequality (9) follows that for every curve
γ there exists a repeated integral

(10)

∫

γ

(
∫

⌣

AB

∣
∣
∣
∣

g(u, t)

u− z

∣
∣
∣
∣
dt

)

du.

From (10) using the corollary to Fubini theorem on the change of the order of inte-
gration in repeated integrals (see, e.g. [2, p. 298–300]), we get

(11)
1

2πi

∫

γ

F (u)

u− z
du =

1

2πi

∫

γ

(

1

u− z

∫

⌣

AB

g(u, t)dt

)

du =

∫

⌣

AB

(
1

2πi

∫

γ

g(u, t)du

u− z

)

dt.

Since the function g (z, t) is analytic almost for all t ∈
⌣

AB, then taking into account
the Cauchy integral formula, at each point z ∈ D we have

(12)
1

2πi

∫

γ

g(u, t)du

u− z
= g(z, t).

From equalities (11), (12) follows (7).
Let us prove that at each point z ∈ D we have the equality

(13) F ′(z) =
1

2πi

∫

γ

F (u)du

(u− z)2
.

It follows from the definition of the domain that for each point z ∈ D there is a curve
γ1 that is a circle with center at a point z such that γ1 ⊂ D and γ1 = ∂D1, where D1 is
the disk contained in D. Then the equality (13) is valid at every point z ∈ D. Therefore,
according to the definition of the analyticity of a function, the function F (z) is analytic
on D, and because of the arbitrariness of the curve γ, and hence of the domain D, the
function F (z) is also analytic on G.

Using the equality(7), we get

(14)

F ′(z) = lim
∆z→0

F (z +∆z)− F (z)

∆z
= lim

∆z→0

1

2πi

1

∆z

(
∫

γ

F (u) du

(u− (z +∆z))

−

∫

γ

F (u) du

u− z

)

=
1

2πi
lim

∆z→0

1

∆z

∫

γ

F (u)∆zdu

(u− (z +∆z)) (u− z)

=
1

2πi
lim

∆z→0

∫

γ

F (u)du

(u− (z +∆z)) (u− z)
.

It follows from the equalities (13), (14) that it is sufficient to prove equality

(15) lim
∆z→0

∫

γ

F (u)du

(u− (z +∆z))(u− z)
=

∫

γ

F (u)du

(u− z)
2 .
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The equality (15), according to the properties of limits and properties of integrals, is
equivalent to the equalities

(16)

(

lim
∆z→0

(
∫

γ

F (u) du

(u− (z +∆z)) (u− z)
−

∫

γ

F (u) du

(u− z)
2

)

= 0

)

⇔

(

lim
∆z→0

∆z

∫

γ

F (u) du

(u− z −∆z) (u− z)
2 = 0

)

⇔

(

lim
∆z→0

|∆z|

∣
∣
∣
∣
∣

∫

γ

F (u)du

(u− z −∆z) (u− z)
2

∣
∣
∣
∣
∣
= 0

)

.

Since ∆z → 0, we can assume that

(17) |∆z| <
ρ

2
.

Using the inequalities (5), (8) and (17), we have

(18)

∣
∣
∣
∣
∣

∫

γ

F (u)du

(u− z −∆z)(u− z)
2

∣
∣
∣
∣
∣
≤

∫

γ

∣
∣
∣
∣

∫
⌣

AB
g (u, t) dt

∣
∣
∣
∣
du

|(u− z)−∆z| |u− z|
2

≤

∫

γ

∫
⌣

AB
|g (u, t)| dt

ρ2| |u− z| − |∆z| |
du ≤

∫

γ

Mγdu

ρ2|ρ− |∆z| |

=
Mγ l(γ)

ρ2 (|ρ− |∆z| |)
<
Mγ l(γ)

ρ2 ρ
2

=M1.

From (18), according to the theorem on the product of an infinitesimal function by
a bounded one, the equalities (14)–(16) follow and thus the analyticity of the function
F (z) on the domain G is proved.

Let us prove that at each point z ∈ G we have the equality

(19) F ′(z) =

∫

⌣

AB

g′z(z, t)dt.

Using the inequalities (5), (8), we obtain that at each point z ∈ G the inequalities

(20)

∫

γ

∣
∣
∣
∣

F (u)du

(u− z)
2

∣
∣
∣
∣
≤

∫

γ

(
∫

⌣

AB

|g(u, t)|dt

|u− z|
2

)

du ≤
Mγ l (γ)

ρ2

hold.
From (20), using the corollary to Fubini theorem on the change of the order of inte-

gration in repeated integrals, we have that at each point z ∈ G

(21)

F ′(z) =
1

2πi

∫

γ

F (u)du

(u− z)
2 =

1

2πi

∫

γ

1

(u− z)
2

(
∫

⌣

AB

g(u, t)dt

)

du

=

∫

⌣

AB

(

1

2πi

∫

γ

g (u, t)

(u− z)
2 du

)

dt.

Since the function g (z, t) is analytic in the variable z for almost all t, at each point
z ∈ G, using the Cauchy integral formula for its derivative, we obtain

(22)
1

2πi

∫

γ

F (u)du

(u− z)
2 = g′z(u, z).

It follows from the equalities (21) and (22) that at each point z ∈ G the equality (19)
holds.
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Similar to the proof of the equality (19), using the Cauchy integral formula for the
n-th order derivative of the function g(z, t) analytic in the domain G, namely

g
(n)
zn (z, t) =

n!

2πi

∫

γ

g(u, t)du

(u− z)
n+1 ,

using the method of mathematical induction, we prove the equality (6). Lemma 1 is
proved. �

Remark. In Lemma 1, the curve
⌣

AB can be replaced by an arbitrary set A ⊂ R which
is Lebesgue measurable and the function g(z, t) of the complex variable t by the function
g(z, t) of the real variable t ∈ A. Moreover, the proof of Lemma 1 does not change.

Since every closed simple rectifiable curve γ ⊂ G is a closed and bounded set, the
curve γ can be replaced by an arbitrary closed bounded set F ⊂ G.

Thus, the following statement is true.

Corollary 1 (On the analyticity of the integral depending on a parameter).
Let the function g(z, t) of a complex variable z and a real variable t for almost all values
t, which belong to the Lebesgue measurable set A, is analytic in the variable z on the
domain G and the integral of the modulus of the function with respect to the set A is
bounded on an arbitrary closed bounded set F ⊂ G, that is

sup
z∈F

∫

A

|g(z, t)|dt ≤MF .

Then the integral depends on the parameter z

Φ(z) =

∫

A

g(z, t)dt

is an analytic function on the domain G and for each n ∈ N and for each z ∈ G the
following equality holds

Φ(n)(z) =

∫

A

g
(n)
zn (z, t)dt.

2. Properties of the functions I(f, z) = I(f, p+ iy) =
∫

A
|f(t)|

p+iy
dt and

I(f, p)

Let I(f, z) = I(f, p + iy) =
∫

A
|f(t)|

p+iy
dt be the function of complex variable z =

p+iy, I(f, p) =
∫

A
|f(t)|pdt =

∫

A\B0
|f(t)|pdt be its restriction on the set of real numbers,

where µB0 = µ {t ∈ A : f(t) = 0} = 0.

Then the equality I(f, 0) =
∫

A
|f(t)|

0
dt = µ(A) holds for each function f(t) measur-

able on the set A and the inequality I(f, p) > 0 holds for every real p of the domain of
I(f, p).

Since the value of the functional I(f, p) does not change with the change of the set
B0, then without loss of generality we can assume that for almost every t ∈ A and an
arbitrary p ∈ R the inequality |f(t)|

p
> 0 is valid.

Lemma 2 (On the properties of the functions I (f, z) and I(f, p) on the intervals
[0, q], [0, q), [0,+∞)). The statements I–III are valid.

I. If the function f(t) ∈ Lq(A) and for each p > q > 0 the function f(t) /∈ Lp(A), then
the statements I1–I3 hold.

I1. The function I(f, z) is analytic on the domain G(0,q) =
{
z = p + iy : (p ∈

(0, q))∧(y ∈ R)
}
and at each point z ∈ G(0,q) for each n ∈ N the following equality holds:

(23) I(n)(f, z) =

∫

A

|f(t)|z lnn |f(t)| dt.
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I2. The function I(f, z) is continuous on the closure of this domain Ḡ(0,q) = G[0,q] =
{z = p+ iy : (p ∈ [0, q]) ∧ (y ∈ R)} .

I3. The function I(f, p) is strictly convex downward and logarithmic convex on the
segment [0, q], that is (∀p ∈ (0, q)) ⇒ (I ′′(f, p) > 0) ∧ (ln I(f, p))′′ > 0).

II. If the function f(t) /∈ Lq(A) and for each p ∈ [0, q) the function f(t) ∈ Lp(A), then
the statements I1, II1–II3 hold.

II1. The function I(f, z) is continuous on the set G[0,q) =
{
z = p+ iy : (p ∈ [0, q)) ∧

∧ (y ∈ R)
}
.

II2. The function I(f, p) is strictly convex downward and logarithmic-ally convex on
the [0, q).

II3. lim
p→q−0

I(f, p) = +∞.

III. Let f(t) ∈ L∞(A). Then the statements III1–III5 are valid.

III1. The function I(f, z) is analytic on the domain G(0,+∞) =
{
z = p+iy : (p ∈ (0,+∞))∧

(y ∈ R)
}
and at each point of this domain the equality (23) holds.

III2. The function I(f, z) is continuous on the set G[0,+∞).
III3. The function I(f, p) is strictly convex downward and logarithmic-ally convex on

the [0,+∞).
III4. If ‖f‖L

∞(A)
> 1, then lim

p→+∞
I(f, p) = +∞.

III5. If ‖f‖L
∞(A)

≤ 1, then lim
p→+∞

I(f, p) = µ(B1), where B1 = {t ∈ A :

|f(t)| = 1}, and for each p ∈ (0,+∞) and for any n ∈ N the following inequality holds:

(−1)
n
I(n)(f, p) > 0,

that is the function I(f, p) is regularly monotone on (0,+∞) (see, e.g. [3, p. 156]).

Proof. Let’s prove the statement I1. To do this, it is sufficient to establish that the
function

(24) g(z, t) = |f(t)|z = |f(t)|p+iy = |f(t)|p (cos y ln |f(t)|+ i sin y ln |f(t)|)

satisfies the conditions of Corollary 1 on the domain G(0,q).
For each t ∈ A the function |f(t)|z is analytic on the entire complex plane. We prove

that the function

(25) |g(z, t)| = ||f(t)|p| |cos y ln |f(t)|+ i sin y ln |f(t)|| = |f(t)|p

is bounded on the set A by an integrable function ϕ(t).
If 0 ≤ p ≤ q, then for each t ∈ A the following relations hold

(26) |f(t)|
p
≤ max {1, |f(t)|p} ≤ ϕ(t) =

{
1, t ∈ B−

1 = {t ∈ A : |f(t)| < 1}
|f(t)|q, t ∈ A \B−

1

.

Using the additive property of the integral, the properties of the integrals associated
with the inequalities and the relations (25), (26), we have

(27)

sup
z∈G[0,q]

{
∫

A

|g(z, t)|dt

}

= sup
p∈G[0,q]

{
∫

A

|f(t)|pdt ≤

∫

A

ϕ(t)dt

}

=

∫

B−

1

1dt+

∫

A\B−

1

|f(t)|qdt ≤ µ
(
B−

1

)
+

∫

A

|f(t)|qdt =MG[0,q]
=MF .

Since the function |f(t)|z is analytic for all complex z, then for each n ∈ N and for
each z the equality

(28) (|f(t)|z)
(n)

= |f(t)|z lnn |f(t)|

is valid. From the relations (27), (28) it follows that the function g(z, t) satisfies the
conditions of Corollary 1. Therefore, by Corollary 1, the statement I1 holds.
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Let’s prove the statement I2.
It follows from the relations (26) that the conditions of the theorem on an exchanging

the limit and the Lebesgue integral are satisfied (see, e.g. [4, p. 120]).
Therefore

(29)

(

lim
p→0+0

I(f, p) =

∫

A

lim
p→0+0

|f(t)|pdt =

∫

A

dt = µ(A) = I(f, 0 + 0)

)

∧

(

lim
p→q−0

I(f, p) =

∫

A

lim
p→q−0

|f(t)|pdt = I(f, q)

)

.

From the equalities (24), (25), we have

(30)

(

lim
Rez=p→0+0

I (f, z) = lim
p→0+0

∫

A

|f(t)|p (cos y ln |f(t)|+ i sin y ln |f(t)|) dt

=

∫

A

lim
p→0+0

|f(t)|p (cos y ln |f(t)|+ i sin y ln |f(t)|) dt

=

∫

A

(cos y ln |f(t)|+ i sin y ln |f(t)|) dt = I (f, 0 + iy)

)

∧

(

lim
Rez=p→q−0

I(f, z) =

∫

A

lim
p→q−0

|f(t)|p(cos y ln |f(t)|+ i sin y ln |f(t)|)dt

=

∫

A

|f(t)|q(cos y ln |f(t)|+ i sin y ln |f(t)|)dt = I(f, q + iy)

)

.

From the equalities (30), the analyticity of the function I(f, z) on the domain G(0,q)

and the definition of the continuity of a function on the set, implies the statement I2.
Let’s prove the statement I3.
For each p ∈ (0, q) using the equality (23), we get

(31) I ′′(f, p) =

∫

A

|f(t)|p ln2 |f(t)|dt.

Let B1 = {f ∈ A : |f(t)| = 1} ⊆ A. Let us prove that µ (B1) < µ(A). If µ (B1) =
µ(A), then almost everywhere on the set A |f(t)| = 1, but this case is excluded. Thus
µ (B1) < µ(A).

Using the additive property of the integral and the properties of integrals associated
with inequalities, we obtain

(32)

∫

A

|f(t)|p ln2 |f(t)|dt =

∫

B1

|f(t)|p ln2 |f(t)|dt+

∫

A\B1

|f(t)|p ln2 |f(t)|dt

=

∫

A\B1

|f(t)|2 ln2 |f(t)|dt > 0.

It follows from (31), (32) that for each p ∈ (0, q) the inequality

(33) I ′′(f, p) > 0

holds.
It follows from the inequality (33) that the function I(f, p) is strictly convex down-

wards on (0, q). Therefore, because I(f, p) is continuous on the segment [0, q], the function
I(f, p) is strictly convex downward on [0, q].
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Since I(f, p) > 0, for each p ∈ (0, q) using the equality (23), we obtain

(34)

(ln I(f, p))
′′
=
I ′′(f, p) · I(f, p)− (I ′(f, p))2

I2(f, p)

=

∫

A
|f(t)|p ln2 |f(t)|dt ·

∫

A
|f(t)|pdt−

( ∫

A
|f(t)|p ln |f(t)|dt

)2

I2(f, p)
.

Using the Cauchy–Bunyakovskii inequality, we have

(35)

(∫

A

|f(t)|p ln |f(t)|dt

)2

=

(∫

A

|f(t)|
p
2 |f(t)|

p
2 ln |f(t)|dt

)2

≤

∫

A

|f(t)|pdt ·

∫

A

|f(t)|p ln2 |f(t)|dt.

In the Cauchy–Bunyakovskii inequality, we have the equality sign if and only if the
equalities

(36)
(

λ|f(t)|
p
2 = |f(t)|

p
2 ln2 |f(t)|

)

⇔
(
ln2 |f(t)| = λ

)
⇔
(

|f(t)| = e
√
λ
)

are valid almost everywhere on the set A.
It follows from the equalities (36) that the function |f(t)| almost everywhere on A is

equal to the constant k = e
√
λ, but this trivial case is not considered.

Thus, in the inequality (35) equality is impossible. Therefore, it follows from (34),
(35) that for each p ∈ (0, q) the inequality

(37) (ln I(f, p))
′′
> 0

holds.
It follows from the inequality (37) that the function ln I(f, p) is strictly convex down-

ward on (0, q). Therefore, by the continuity of the function ln (I(f, p)) on the segment
[0, q] and by definition, the function I(f, p) is logarithmic convex on [0, q]. The statement
I3 is proved.

Let’s prove the statement II.
Since for every r ∈ (0, q) the function f(t) ∈ Lr(A), then according to the statement I,

the function I(f, z) is analytic on the domainG(0,r) =
{
z = p+iy : (p ∈ (0, r))∧(y ∈ R)

}
,

and equality (23) holds at each point of this domain.
The function I (f, z) is continuous on the set G[0,r] =

{
z = p + iy : (p ∈ [0, r]) ∧

(y ∈ R)
}
and the function I(f, p) is strictly convex downward and logarithmic convex on

the segment [0, r]. Therefore, because of the arbitrariness of r, the statements I1, II1, II2
are valid.

It remains to prove the statement II3.
Since the function I(f, p) is strictly convex downwards and continuous on [0, q), there

exists δ > 0 such that the function I(f, p) is strictly monotonic on the (q − δ, q) ⊂ [0, q).
Therefore, by the theorem on the limit of a monotonic function, there exists

lim
p→q−0

I(f, p) =

{
+∞,
I (f, q) = K <∞.

If I (f, q) = lim
p→q−0

I(f, p) = K, then the function f(t) ∈ Lq(A), which contradicts the

condition of statement II. Thus lim
p→q−0

I(f, p) = +∞ and the statement II3 is proved.

Let’s prove the statement III.
Let us prove that if f ∈ L∞(A), then for each r > 0 the function f ∈ Lr(A). Using the

definition of the norm of the space L∞(A) and the properties of integrals associated with
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inequalities, we have

I(f, r) =

∫

A

|f(t)|rdt = ‖f‖
r
L

∞(A)

∫

A

(
|f(t)|

‖f‖L
∞(A)

)r

dt

≤ ‖f‖rL
∞(A)

∫

A

1rdt = ‖f‖rL
∞(A)

µ(A).

Owing to the arbitrariness of r ∈ (0,+∞), arguing in the same way as in the proof of
the statement II, we establish the validity of the statements III1-III3.

Let’s prove the statement III4.
Let

(38) AM =
{

t ∈ A : 1 < M ≤ |f(t)| ≤ ‖f‖L
∞(A)

}

.

Let us prove that there exists M such that the inequality

(39) µ (AM ) > 0

holds. Assume that for every M such that 1 < M ≤ |f(t)| ≤ ‖f‖L∞(A) equality

(40) µ (AM ) = 0

is true.
From the equalities (38), (40), using properties of the Lebesgue measure, we obtain

µ(A\AM ) = µ(A)− µ (AM ) = µ(A)

and the following inequality holds almost everywhere on the set A:

(41) |f(t)| < M.

From (38), (41), on account of the arbitrariness ofM , it follows that almost everywhere
on A the inequalities |f(t)| ≤ 1 and ‖f‖L

∞(A)
≤ 1 are valid, which contradicts the

condition of the statement III4. Thus, the inequality (39) holds.
Using the additive property of the integral, the properties of the integral associated

with the inequalities and (38), (39), we obtain

(42)

lim
p→+∞

I(f, p) = lim
p→+∞

(∫

AM

|f(t)|pdt+

∫

A\AM

|f(t)|pdt

)

≥ lim
p→+∞

∫

AM

|f(t)|pdt

≥ lim
p→+∞

Mp

∫

AM

dt = µ (AM ) lim
p→+∞

Mp = +∞.

From (42) follows the statement III4.
Let us now prove the statement III5.
Using the additive property of the integral, we have

(43)

∫

A

|f(t)|pdt =

∫

B1

|f(t)|pdt+

∫

A\B1

|f(t)|pdt

=

∫

B1

1pdt+

∫

A\B1

|f(t)|pdt = µ (B1) +

∫

A\B1

|f(t)|pdt.

Since ‖f‖L
∞(A)

≤ 1, then for each p > 0 almost everywhere on the set A\B1 the

following inequality holds

(44) |f(t)|p < 1.
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From (43), (44), using the theorem on an exchanging the limit and the Lebesgue
integral, we obtain

(45)

lim
p→+∞

I(f, p) = lim
p→+∞

µ(B1) + lim
p→+∞

∫

A\B1

|f(t)|pdt

= µ(B1) +

∫

A\B1

lim
p→+∞

|f(t)|pdt = µ(B1) +

∫

A\B1

0dt = µ(B1).

For each p > 0, using the equalities (23), we have

(46)

I(n)(f, p) =

∫

A

|f(t)|p lnn |f(t)|dt =

∫

B1

|f(t)|p lnn |f(t)|dt

+

∫

A\B1

|f(t)|p ln |f(t)|dt =

∫

A\B1

|f(t)|p lnn |f(t)|dt.

Since ‖f‖L
∞(A)

≤ 1, then almost everywhere on the set A \B1 the inequalities

(47) (|f(t)| < 1) ∧ ((−1)n lnn |f(t)| > 0)

are true.
From the equality (46) and inequality (47), we get that for each p ∈ (0,+∞) and any

n ∈ N, the following inequality holds

(48) (−1)n
∫

A

|f(t)|p lnn |f(t)|dt = (−1)nI(n)(f, p) > 0.

From (45) and (48) follows the validity of the statement III5. Lemma 2 is proven. �

Remark. The analyticity of the function I(f, p) could be established using the criterion
of analyticity of an infinitely differentiable function of a real variable (see, e.g. [3, p. 142,
143]). But the proof of the infinite differentiability of the function I(f, p), that is n ∈ N

the equality I(n)(f, p) =
∫

A
|f(t)|p lnn |f(t)|dt,n ∈ N, which is a special case of the

equality (23), turned out to be more difficult than the proof of the analyticity of the
function I(f, z), from which its infinite differentiability follows.

To give examples satisfying the conditions of Lemma 2, we use the following functions
defined on the set (0, 1]:

g1(t) =
1

t
1
q

(
ln t

e

) 2
q

, g2(t) =
1

t
1
q

, g3(t) = e−
1
tγ ,

where q > 0 and γ > 0.

Then I(g1, q) =
∫ 1

0
|g1(t)|

q
dt =

∫ 1

0
dt

t(− ln t
e )

2 = 1 and for each p > q we have
∫ 1

0
|g1(t)|

p
dt = +∞. Thus, g1 ∈ Lq((0,1]) and for each p > q the function g1 /∈ Lp((0,1]).

For function g2 the integral I(g2, q) =
∫ 1

0
|g2(t)|

qdt =
∫ 1

0
dt
t = +∞ and for each p < q

we have I(g2, p) =
∫ 1

0
dt

t
p
q

= q
q−p . Thus, g2 /∈ Lq((0,1]) and for each p < q the function

g2 ∈ Lp((0,1]).

The function g3 ∈ L∞((0,1]) and ‖f‖L
∞((0,1])

= e−1. For each p > 0, after changing the
variables, we obtain

I(g3,−p) =

∫ 1

0

|g3(t)|
−p
dt =

∫ 1

0

e
p
tγ dt =

1

γ

∫ +∞

1

epu

u1+
1
γ

du = +∞.

Example 1. Let us prove that the function f1(t) =

{
g3(t), t ∈ (0, 1]
g1(t− 1), t ∈ (1, 2]

, which is

defined on the set A = (0, 2], satisfies the conditions of statement I of Lemma 2. Using
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the additive property of the integral and changing the variables, we have

(49)

I (f1, p) =

∫

A

|f1(t)|
pdt =

∫ 1

0

|g3(t)|
pdt+

∫ 2

1

|g1(t− 1)|pdt

=

∫ 1

0

e−
p
tγ dt+

∫ 1

0

|g1(t)|
pdt =

∫ 1

0

e−
p
tγ dt+

∫ 1

0

dt

t
p
q

(
− ln t

e

) 2p
q

.

From (49), according to the examples given earlier, it follows that function f1 ∈ Lq(A)

and I(f1, p) = +∞ for each p ∈ (−∞, 0) ∪ (q,+∞).
Similarly, we can show the validity of the following examples.

Example 2. The function f2(t) =

{
g3(t), t ∈ (0, 1]
g2(t− 1), t ∈ (1, 2]

, which is defined on the set

A = (0, 2], satisfies the conditions of statement II of Lemma 2.

Example 3. The function f3(t) = 3g3(t), which is defined on the set A = (0, 1], satisfies
the conditions of statements III1-III4 of Lemma 2.

Example 4. The function f4(t) = g3(t), which is defined on the set A = (0, 1], satisfies
the conditions of statements III1-III3, III5 of Lemma 2.

Example 5. The function f5(t) =

{
g3(t), t ∈ (0, 1]
1, t ∈ (1, 2]

, which is defined on the set

A = (0, 2], satisfies the conditions of statements III1-III3, III5 of Lemma 2.
We denote by [0, q〉 the intervals [0, q] or [0, q), where 0 < q < ∞, and [0,+∞) if

q = +∞. Then the following relations hold:

(p ∈ [0, q〉) ⇔ (−p ∈ 〈−q, 0]) ,

(50)

(
z = p+ iy ∈ G[0,q〉 = {p+ iy : (p ∈ [0, q〉) ∧ (y ∈ R)}

)

⇔
(
z = −p+ iy ∈ G〈−q,0] = {−p+ iy : (−p ∈ 〈−q, 0]) ∧ (y ∈ R)}

)
,

(51)

(

I(f,−p) = I

(
1

f
, p

))

⇔

(

I

(
1

f
,−p

)

= I(f, p)

)

.

If under the conditions of Lemma 2 the function f(t) is replaced by the function 1
f(t) ,

then, according to the relations (50), (51), the following statement is true.

Corollary 2 (on the properties of the function I (f, p) on the intervals 〈−q, 0]).
For the function I (f, p) the statements I-III are valid.

I. Let the function 1
f ∈ Lq(A) and for each p > q > 0 the function 1

f /∈ Lp(A). Then

the statements I1-I3 hold.
I1. The function I(f, z) = I(f, p + iy) =

∫

A
|f(t)|zdt is analytic on the domain

G(−q,0) = {z = p+ iy : (p ∈ (−q, 0)) ∧ (y ∈ R)} and for every z ∈ G(−q,0) and for any
natural n following equality holds

(52) I(n) (f, z) =

∫

A

|f(t)|
z
lnn |f(t)| dt.

I2. The function I (f, z) is continuous on the set G[−q,0] =
{
z = p + iy :

(p ∈ [−q, 0]) ∧ (y ∈ R)
}
.

I3. The function I(f, p) is strictly convex downward and logarithmic convex on the
segment [−q, 0].

II. Let the function 1
f /∈ Lq(A) and for each p ∈ (0, q) the function 1

f ∈ Lp(A). Then

the statements I1, II2-II4 is true.
II2. The function I (f, z) is continuous on the set

G(−q,0] = {z = p+ iy : (p ∈ (−q, 0]) ∧ (y ∈ R)} .
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II3. The function I (f, p) is strictly convex downward and logarithmic convex on
(−q, 0].

II4. lim
p→−q+0

I (f, p) = +∞.

III. Let the function 1
f ∈ L∞(A). Then we have the statements III1-III5.

III1. The function I (f, z) is analytic on the domain G(−∞,0) =
{
z = p + iy :

(p ∈ (−∞, 0)) ∧ (y ∈ R)
}

and for arbitrary z ∈ G(−∞,0) and each n ∈ N the equality
(52) holds.

III2. The function I (f, z) is continuous on the set

G(−∞,0] = {z = p+ iy : (p ∈ (−∞, 0]) ∧ (y ∈ R)} .

III3. The function I (f, p) is strictly convex downward and logarithmic convex on
(−∞, 0].

III4. If
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

> 1, then lim
p→−∞

I (f, p) = +∞.

III5. If
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

≤ 1, then lim
p→−∞

I (f, p) = µ(B1) and for each p ∈ (−∞, 0) and any

n ∈ N the inequality

(53) I(n) (f, p) > 0,

holds, that is the function I (f, p) is absolutely monotone on (−∞, 0), (see, e.g. [3,
p. 156]).

It remains to prove only inequality (53).
Since the function 1

f(t) satisfies the conditions of statement III5 of Lemma 2, using

this statement and statement III1, we obtain for any p ∈ (0,+∞)

(54)

(−1)
n
I(n)

(
1

f
, p

)

= (−1)
n
∫

A

∣
∣
∣
∣

1

f(t)

∣
∣
∣
∣

p

lnn
∣
∣
∣
∣

1

f(t)

∣
∣
∣
∣
dt

= (−1)
2n
∫

A

|f(t)|
−p

lnn |f(t)| dt = I(n) (f,−p) > 0.

From (54) the inequality (53) follows.
From the conditions of Lemma 2 and Corollary 2 it follows that the functions, which

satisfy the conditions of Corollary 2, are the functions of a kind ϕi(t) = 1
fi(t)

, where

fi(t) are functions which satisfy the conditions of Lemma 2 and i ∈ {1, 2, 3, 4, 5}. In

consequence of the equality I (ϕi,−p) = I
(

1
fi
,−p

)

=
∫

A
|fi(t)|

p
dt = I (fi, p), the graphs

of the functions I (ϕi,−p) are symmetric about the y-axis to the graphs of the functions
I (fi, p).

Let for each p > 0 the function f(t) /∈ Lp(A) and the function 1
f(t) /∈ Lp(A), that is

I (f, p) = +∞ and I
(

1
f , p
)

= +∞. Then the function I (f, p) is defined only at the point

p = 0 and I (f, 0) = µ(A). In what follows the example of such function is given.

Example 6. f6(t) =

{

f3(t) = e−
1
tγ , γ > 0, t ∈ (0, 1]

1
f3(t−1) , t ∈ (1, 2]

.

We denote by 〈−q1, q〉 an arbitrary intervals [−q1, q], (−q1, q), [−q1, q), (−q1, q] ,
(−∞, q),(−∞, q], (−q1,+∞), [−q1,+∞), (−∞,+∞), where q ≥ 0 and q1 ≥ 0,
G〈−q1,q〉 = {z = p+ iy : (p ∈ 〈−q1, q〉) ∧ (y ∈ R)} are the sets of complex numbers and
G(−q1,q) = {z = p+ iy : (p ∈ (−q1, q)) ∧ (y ∈ R)} are the sets of the interior points of the
sets G〈−q1,q〉. If the conditions of Lemma 2 and Corollary 2 are fulfilled simultaneously,
then combining these statements, we obtain.
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Theorem 1(on properties of the functions I (f, z) and I (f, p)). The domain of
the function I (f, z) = I (f, p+ iy) as a function of the complex variable z can only be
the sets G〈−q1,q〉. The function I (f, z) is continuous on a domain of definition, analytic
at each point of the domain G(−q1,q) and for each n ∈ N and any z ∈ G(−q1,q), we have
the equality

I(n) (f, z) =

∫

A

|f(t)|
z
lnn |f(t)| dt.

The function I (f, p) as a function of the real variable p is strictly convex downwards and
logarithmic convex on the domain 〈−q1, q〉.

If the end of the interval q does not belong to the domain of definition of the func-
tion I (f, p), that is, f /∈ Lq(A) and for each p ∈ [0, q) the function f ∈ Lp(A), then
lim

p→q−0
I (f, p) = +∞. If the end of the interval −q1 does not belong to the domain of

definition of the function I (f, p), that is, 1
f /∈ Lq1(A) and for each p ∈ [0, q1) the function

1
f ∈ Lp(A), then lim

p→−q1+0
I (f, p) = +∞. If ‖f‖L

∞(A)
> 1, then lim

p→+∞
I (f, p) = +∞. If

‖f‖L
∞(A)

≤ 1, then lim
p→+∞

I (f, p) = µ(B1), where B1 = {t ∈ A : |f(t)| = 1} and for each

p > 0 and any n ∈ N the following inequality holds:

(55) (−1)
n
I(n) (f, p) = (−1)

n
∫

A

|f(t)|
p
lnn |f(t)| dt > 0.

If
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

> 1, then lim
p→−∞

I (f, p) = +∞. If
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

≤ 1, then lim
p→−∞

I (f, p) =

µ(B1) and for each n ∈ N and any p < 0 the following inequality holds:

(56) I(n) (f, p) =

∫

A

|f(t)|
p
lnn |f(t)| dt > 0.

If the function I (f, p) is defined on (−∞,+∞), that is f ∈ L∞(A) and 1
f ∈ L∞(A),

then the statements I− III are true:

I. If ‖f‖L
∞(A)

> 1 and
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

> 1, then lim
p→+∞

I (f, p) = +∞ and lim
p→−∞

I (f, p) =

+∞.

II. If ‖f‖L
∞(A)

> 1 and
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

≤ 1, then lim
p→+∞

I (f, p) = +∞, lim
p→−∞

I (f, p) =

µ(B1) and for each p ∈ (−∞,+∞) and any n ∈ N the inequality (56) holds.

III. If ‖f‖L
∞(A)

≤ 1 and
∥
∥
∥

1
f

∥
∥
∥
L

∞(A)

> 1, then lim
p→+∞

I (f, p) = µ (B1), lim
p→−∞

I (f, p) =

+∞ and for each p ∈ (−∞,+∞) and any n ∈ N the inequality (55) holds.

Remark. Let us prove that the inequalities ‖f‖L∞(A) ≤ 1 and
∥
∥
∥

1
f

∥
∥
∥
L∞(A)

≤ 1 can not

be true simultaneously. If ‖f‖L∞(A) ≤ 1, that is, almost everywhere on A the inequality

|f(t)| ≤ 1 holds, then almost everywhere on A we have

(57)

∣
∣
∣
∣

1

f(t)

∣
∣
∣
∣
≥ 1.

Since µ(B1) = µ {t ∈ A : |f(t)| = 1} < µ(A), then it follows from (57) that almost

everywhere on A \ B1 the inequalities
∣
∣
∣

1
f(t)

∣
∣
∣ > 1 are valid and

∥
∥
∥

1
f

∥
∥
∥
L∞(A)

> 1. If
∥
∥
∥

1
f

∥
∥
∥
L∞(A)

≤ 1, then we similarly prove that ‖f‖L∞(A) > 1.

Example 7. Let us prove that the function h1(t) = t+ 1
2 satisfies conditions of statement

I on the set A = [0, 1].
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Since ‖h1‖L∞(A) = 3
2 > 1 and

∥
∥
∥

1
h1

∥
∥
∥
L∞(A)

= 2 > 1, then the function h1(t) satis-

fies conditions of statement I of Theorem 1: I(h1, p) =
∫ 1

0

∣
∣t+ 1

2

∣
∣
p
dt = 1

p+1

( (
3
2

)p+1
−

(
1
2

)p+1 )
, p 6= −1 and µ(A) = 1, µ(B1) = 0,

I(h1, p) =

∫ 1

0

∣
∣
∣
∣
t+

1

2

∣
∣
∣
∣

p

dt = ln 3, p = −1.

Similarly, we can show the validity of the following examples.

Example 8. The function h2(t) = 1
2 (t + 1) satisfies conditions of statement II on the

set A = [0, 1].

Example 9. The function h3(t) =
1

h2(t)
satisfies conditions of statement III of Theorem

1 and the graph of the function y = I(h3, p) is symmetric to the graph of the function
y = I(h2, p) with respect to the y-axis.

Remark. Since all the functions I(f, p) and ln I(f, p) are strictly convex downward on
the domains of definition D(I (f)), which can be arbitrary intervals, then using Jensen’s
inequality for strictly convex downward functions, we obtain the inequalities:

(∀{x1, ..., xn} ⊂ D(I (f)) ∧
(

∀αk ∈ (0, 1) :

n∑

k=1

αk = 1
)

⇒

((

I
(

f,

n∑

k=1

αkxk

)

<
n∑

k=1

αkI (f, xk)
)

⇔
(∫

A

|f(t)|

n
∑

k=1

αkxk

dt <
n∑

k=1

αk

∫

A

|f(t)|
xkdt

))

∧

((

ln I
(

f,
n∑

k=1

αkxk

)

<
n∑

k=1

αk ln I
(

f, xk

))

⇔
(

ln

∫

A

|f(t)|

n
∑

k=1

αkxk

dt <
n∑

k=1

αk ln

∫

A

|f(t)|
xkdt

))

.

Remark. In connection with the analyticity of the functions I(f, z), interesting questions
arise in the constructive theory of functions of a complex variable. Let’s formulate one
of them.

Let the function ϕ(z) be analytic in the domain (0, q) × R, continuous on the set
[0, q]×R, ϕ(p) be its restriction to the set of real numbers p ∈ [0, q],, where 0 < q ≤ ∞.
The function ϕ(p) is strictly convex downward, logarithmic convex on the segment [0, q]
and all derivatives of even order of the function ϕ(p) are positive on the interval (0, q).

From statement I of Lemma 2 it follows that for each function f ∈ Lq(A), the function

I(f, z) =
∫

A
|f(t)|zdt has the properties of the function ϕ(z). Is there a function ϕ(z)

that is not represented by the integral I(f, z), that is, ϕ(z) 6= I(f, z)?

3. Properties of the function n(f, p)

Recall that if f ∈ Lq(A) and q > 0, then lim
p→0+0

n(f, p) = e
1

µ(A)

∫

A
ln|f(t)|dt.

Lemma 3 (on the properties of the function n(f, p) in the case 1
f /∈ Lp(A) for

an arbitrary p > 0). If for an arbitrary p > 0 the function 1
f /∈Lp(A), then for all p < 0

the function n(f, p) = 0 and the statements I-IV are true.
I. Let the function f ∈ Lq(A) where q > 0 and for arbitrary p > q the function

f /∈ Lp(A). Then the statements I1-I3 hold.
I1. The function n(f, p) is analytic on (0, q).
I2. The function n(f, p) is strictly increasing and continuous on [0, q].
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I3. If n(f, 0 + 0) = 0, then the function n(f, p) is continuous on (−∞, q].
II. Let the function f /∈ Lq(A) and for any p ∈ (0, q) the function f ∈ Lp(A). Then

lim
p→q−0

n(f, p) = +∞ and statements I1, II1, II2 hold.

II1. The function n(f, p) is strictly increasing and continuous on [0, q).
II2. If n(f, 0 + 0) = 0, then the function n(f, p) is continuous on (−∞, q).
III. Let f ∈ L∞(A). Then lim

p→+∞
n(f, p) = ‖f‖L∞(A) and statements III1-III3 are true.

III1. The function n(f, p) is analytic on (0,+∞).
III2. The function n(f, p) is strictly increasing and continuous on [0,+∞).
III3. If n(f, 0 + 0) = 0, then the function n(f, p) is continuous on (−∞,+∞).
IV. If for each p > 0 the function f /∈ Lp(A), then for p > 0 the function n(f, p) = +∞.

Proof. If for each −p > 0 the function 1
f /∈ L−p(A), that is n

(
1
f ,−p

)

= +∞, then for all

p < 0 we have n (f, p) = 1

n( 1
f
,−p)

=
(

1
∞
)
= 0.

Let us prove the statement I1. If f ∈ Lq(A) and q > 0, then from statement I of
Lemma 2 follows, that the function y = I(f, p) is analytic on (0, q). Since the function
et is analytic on (−∞,+∞), the function 1

p is analytic on (−∞, 0) and (0,+∞), the

function ln y is analytic on (0,+∞) and y = I(f, p) > 0, then from the theorem on
the analyticity of a composite function and the analyticity of the product of analytic

functions it follows that the function n (f, p) = e
1
p
ln 1

µ(A)

∫

A
|f(t)|pdt is analytic on (0, q).

Let us prove the statement I2. If f ∈ Lq(A), then (see, e. g. [1, p. 143–145]), the
function n (f, p) is continuous and strictly increasing on [0, q].

Let us prove the statement I3. Since for each p < 0 the function n (f, p) = 0,
n (f, 0 + 0) = 0 and n (f, p) is the continuous function on [0, q], then n (f, p) is con-
tinuous function on (−∞, q] .

Let us prove the statement II. Since for each segment [0, r] ⊂ [0, q) the function
f ∈ Lr(A), that is, the conditions of statement I hold, then according to I, the function
n (f, p) is analytic on (0, r), continuous and strictly increasing on [0, r]. As a consequence
of arbitrariness of r the statements I1, II1, II2 hold.

It remains to prove that lim
p→q−0

n(f, p) = +∞.

Since the function n (f, p) is strictly increasing on [0, q), then, by the theorem on the
boundary of a monotonic function, we have

(58) lim
p→q−0

n (f, p) = sup
p∈[0, q)

{n (f, p)}

Since the function n (f, p) is continuous on [0, q) and f /∈ Lq(A), then from (58) it
follows, that lim

p→q−0
n (f, p) = +∞.

Let us prove the statement III. The equality lim
p→+∞

n (f, p) = ‖f‖L
∞(A)

was proved

in work [1, p. 173]. If f ∈ L∞(A), then for each segment [0, r] ⊂ [0,+∞) the function
f ∈ Lr(A), that is the conditions of statement I are fulfilled. The statement III we prove
similarly to the statement II. Lemma 3 is proved. �

Since the conditions of Lemma 3 coincide with the conditions of Lemma 2, examples
that satisfy the conditions of Lemma 3 can be examples given for Lemma 2.

Example 1. The function f1 (t) =

{
g3 (t) , t ∈ (0, 1] ,
g1 (t− 1) , t ∈ (1, 2]

satisfies the conditions I.

Changing the variables and using the additive property of the integral for p ∈ (0, q]
we obtain

n (f1, p) =

(
1

2

∫ 2

0

|f1 (t)|
p
dt

) 1
p

=
(1

2

) 1
p
(∫ 1

0

e−
p
tγ dt+

∫ 1

0

(

t−
1
q

(

− ln
t

e

)− 2
q
)p

dt

) 1
p

,
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(59) n (f1, 0 + 0) = e
1
2

∫ 2
0
ln|f1(t)|dt = e

1
2

(

∫ 1
0
ln e

−
1
tγ dt+

∫ 1
0
ln t

−
1
q (−ln t

e )
−

2
q dt

)

,

(60)

∫ 1

0

ln e−
1
tγ dt = −

∫ 1

0

dt

tγ
=

{
−∞, γ ≥ 1
− 1

1−γ , 0 < γ < 1
.

Integrating by parts, we get

(61)

∫ 1

0

ln

(

t−
1
q

(

− ln
t

e

)− 2
q

)

dt = −
1

q

∫ 1

0

ln tdt−
2

q

∫ 1

0

ln

(

− ln
t

e

)

dt

= −
1

q

(

t ln t
∣
∣
∣

1

0
−

∫ 1

0

dt+ 2

(

t ln

(

− ln
t

e

) ∣
∣
∣

1

0
+

∫ 1

0

dt

− ln t
e

))

= −
1

q

(

− 1 + 2

∫ 1

0

dt

− ln t
e

)

.

Let us prove the inequality

(62)
1

2
<

∫ 1

0

dt

−ln t
e

=

∫ 1

0

f(t)dt < 1,

where f(t) =
(
− ln t

e

)−1
, f(1) = 1, f(0) = lim

t→0
f(t) = 0.

Since for t ∈ (0, 1] we have the relations

f ′(t) =
1

t
ln−2 t

e
> 0, f ′(1) = 1,

(

f ′′(t) = −
1

t2
ln−2 t

e

(

1 + 2 ln−1 t

e

)

< 0

)

⇔

(

0 < t <
1

e

)

,

(f ′′(t) > 0) ⇔

(
1

e
< t ≤ 1

)

,

then the function f(t) is strictly increasing on the segment [0, 1], strictly convex upwards
on the interval (0, 1e ), strictly convex downward on the interval ( 1e , 1] and the tangent to
the graph of the function at the point (1, 1) coincides with the line y = t. Therefore, for
any t ∈ (0, 1) the following inequality holds

(63) t < f(t) < 1.

From inequality (63), we obtain 1
2 =

∫ 1

0
tdt <

∫ 1

0
f(t)dt <

∫ 1

0
dt = 1. Thus, the inequality

(62) is true.
From inequalities (61) and (62) follows the inequality

(64) −
1

q
<

∫ 1

0

ln

(

t−
1
q

(

−ln
t

e

)− 2
q

)

dt < 0.

From equalities (59)–(61) and inequality (64) we obtain: if γ ≥ 1, then n (f, 0 + 0) = 0

and if 0 < γ < 1, then e−
1
2 (

1
1−γ

+ 1
q ) < n (f, 0 + 0) < e−

1
2(1−γ) .

Similarly, we can show the validity of the following examples.

Example 2. The function f2 (t) =

{
g3 (t) , t ∈ (0, 1] ,
g2 (t− 1) , t ∈ (1, 2]

satisfies the conditions of

statement II.

Example 3. The function f3 (t) = 3g3 (t) = 3e−1/tγ , t ∈ (0, 1] , γ > 0 satisfies the
conditions of statement III.

Example 4. The function f4 (t) =

{
g3 (t) = e−1/tγ , t ∈ (0, 1]
gγ1

(t− 1) , t ∈ (1, 2]
, where γ > 0,

gγ1
(t) = e1/t

γ1
, γ1 > 0, satisfies the conditions of statement IV.
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If under the conditions of Lemma 3 the function f(t) is replaced by the function 1
f(t)

and the interval [0, q〉 by the interval 〈−q, 0], then we obtain the following statement.

Corollary 3 (on property of function n (f, p) in the case f /∈ Lp(A) for an ar-
bitrary p > 0). If the function f /∈ Lp(A) for an arbitrary p > 0 and n (f, 0) =

e
1

µ(A)

∫

A
ln|f(t)| dt = k <∞, k > 0, then the statements I-III are valid.

I. Let the function 1
f ∈ Lq(A), where q > 0 and for each p > q the function 1

f /∈ Lp(A).

Then the statements I1-I3 hold.
I1. The function n (f, p) is analytic on (−q, 0).
I2. The function n (f, p) = 0 for each p < q.
I3. The function n (f, p) is strictly increasing and continuous on [−q, 0] .
II. Let the function 1

f /∈ Lq(A) and for each p ∈ (0, q) the function 1
f ∈ Lp(A). Then

the statements I1, II1-II3 are true.
II1. The function n (f, p) = 0 for each p < q.
II2. The function n (f, p) is strictly increasing on [−q, 0] .
II3. The function n (f, p) is continuous on (−∞, 0].
III. Let the function 1

f ∈ L∞(A). Then lim
p→−∞

n (f, p) = 1

‖ 1
f ‖L∞(A)

and the statements

III1, III2 are valid.
III1. The function n (f, p) is analytic on (−∞, 0).
III2. The function n (f, p) is strictly increasing and continuous on (−∞, 0] .

Proof. For the proof we use the relation (p ∈ [0, q〉) ⇔ (−p ∈ 〈−q, 0]) and equality

(65)

(

n(f, p) =
1

n
(

1
f ,−p

)

)

⇔

(

n (f,−p) =
1

n
(

1
f , p
)

)

.

From (65) it follows that

(66)

(

lim
p→−∞

n (f, p) =
1

lim
−p→+∞

n
(

1
f ,−p

) =
1

∥
∥
∥

1
f

∥
∥
∥
L∞(A)

)

∧

(

lim
p→−q+0

n (f, p) =
1

lim
−p→q−0

n
(

1
f ,−p

)

)

.

If for each −p > −q > 0 the function 1
f /∈ L−p(A), that is n

(
1
f ,−p

)

= +∞, then from

(65) we have: if p < q, then

(67) n (f, p) = 0.

If the function 1
f /∈ Lq(A), then from (66) it follows that

(68) n (f,−q) = 0.

If the function n
(

1
f ,−p

)

is analytic on the intervals (0, q) or (0,+∞), then from (66) it

follows that n (f, p) is analytic function on the intervals (−q, 0) or (−∞, 0), respectively.

If the function n
(

1
f ,−p

)

is strictly increasing and continuous on the intervals [0, q]

or [0,+∞), then from (66) it follows that the function n (f, p) is strictly increasing and
continuous on the intervals [−q, 0] or (−∞, 0], respectively.

Since 1
f satisfies the conditions of Lemma 3, than from the relations (57)–(68) and the

above considerations, according to Lemma 3, we have the validity of Corollary 3. �
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Examples of functions satisfying the conditions of Corollary 3 are functions of the kind
ϕi (t) =

1
fi(t)

, where fi (t) are functions satisfying the conditions of Lemma 3, i ∈ {1, 2, 3}

and 0 < γ < 1.

If i = 1, then ϕ1 (t) = 1
f1(t)

=

{

e
1
tγ , t ∈ (0, 1]

1
g1(t−1) , t ∈ (1, 2]

, where γ > 0, 1
g1(t)

=

t
1
q

(
−ln t

e

) 2
q . Using the additive property of the integral and changing the variables,

we obtain

(69) n (ϕ1, 0) = e
1
2

(

∫ 1
0

dt
tγ

+
∫ 1
0
ln t

1
q (−ln t

e )
2
q dt

)

.

Using the equality (61), we have

(70)

∫ 1

0

ln t
1
q

(

− ln
t

e

) 2
q

dt =
1

q

(

−1 + 2

∫ 1

0

dt

− ln t
e

)

.

Using the equalities (60), (61), (69), (70) and inequality (62), we obtain: if 0 < γ < 1,

then e
1
2 · 1

1−γ < n (ϕ1, 0) < e
1
2 (

1
1−γ

+ 1
q
); if γ ≥ 1, then n (ϕ1, 0) = +∞. Using examples 2

and 3, we similarly prove that if i ∈ {2, 3} and 0 < γ < 1, then n (ϕi, 0) < +∞, and if
γ ≥ 1, then n (ϕi, 0) = +∞.

If n (ϕi, 0) = +∞, then, similarly as in the proof of Corollary 3, we prove the validity
of the following statement.

Corollary 4. (on property of function n (f, p) in the case f /∈ Lp(A)). If the
function f /∈ Lp(A) for each p > 0 and n (f, 0) = +∞, then lim

p→0−0
n (f, p) = +∞ and the

statements I-III of Corollary 3, where the intervals (−q, 0] and (−∞, 0] are replaced by
intervals (−q, 0) and (−∞, 0).

Examples of functions satisfying the conditions of Corollary 4 are the functions ϕi (t),
where i ∈ {1, 2, 3} and γ ≥ 1.

If the conditions of Lemma 3 and Corollary 3 are satisfied simultaneously for the
function f (t), then combining these statements we obtain.

Theorem 2. (on the property of function n (f, p)). The statements I-III hold.
I. If the function f ∈ Lq(A), where q > 0, then the statements I1-I3 are valid.

I1. Let the function 1
f ∈ Lq1(A) and q1 > 0 and for each p > q1 the function 1

f /∈ Lp(A).

Then the statements I1 (1)-I1 (3) hold.
I1 (1). The function n (f, p) is analytic on (−q1, 0) and (0, q).
I1 (2). The function n (f, p) = 0 for each p < −q1.
I1 (3). The function n (f, p) is strictly increasing and continuous on [−q1, q].
I2. Let the function 1

f /∈ Lq1(A) and for each p ∈ (0, q1) the function 1
f ∈ Lp(A). Then

the statements I1 (1) , I2 (1)-I2 (3) are valid.
I2 (1). The function n (f, p) = 0 for each p ≤ −q1.
I2 (2). The function n (f, p) is strictly increasing on [−q1, q].
I2 (3). The function n (f, p) is continuous on (−∞, q].
I3. Let the function 1

f ∈ L∞(A). Then lim
p→−∞

n (f, p) = 1

‖ 1
f ‖L∞(A)

and the statements

I3 (1) , I3 (2) are true.
I3 (1). The function n (f, p) is analytic on the intervals (−∞, 0) and (0, q).
I3 (2). The function n (f, p) is strictly increasing and continuous on (−∞, q).
II. Let the function f /∈ Lq(A) and for each p ∈ (0, q) the function f ∈ Lp(A). Then

lim
p→q−0

n (f, p) = +∞ and the statements II1-II3 hold. The statements II1-II3 are similar

to the statements I1-I3, only the intervals (−q1, q] and (−∞, q] are replaced respectively
by intervals (−q1, q) and (−∞, q).
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III. If the function f ∈ L∞(A), then lim
p→+∞

n (f, p) = ‖f‖L∞(A) and statements III1-

III3 hold. The statements III1-III3 are similar to the statements I1-I3, only the intervals
[−q1, q] and (−∞, q] replaced respectively by intervals (−q1,+∞) and (−∞,+∞).

Here are some examples of functions that satisfy the conditions of statement II of
Theorem 2.

Example 1. Let

(71) ψ1 (t) =

{
g2 (t) =

1
tq , t ∈ (0, 1] , q > 0

geq1 (t− 1) , t ∈ (1, 2] , q1 > 0
,

where geq1 (t) = t
1
q1

(
− ln t

e

) 2
q1 .

It follows from (71) that the conditions II of Lemma 3 are fulfilled for the function
g2 (t) =

1
tq , and for the function geq1 (t) the conditions II of Corollary 3 are satisfied, that

is, the function ψ1(t) satisfies the conditions II1 of Theorem 2.
Similarly, we can show the validity of the following examples.

Example 2. The function ψ2 (t) =

{
g2 (t) =

1
tq , t ∈ (0, 1] , q > 0

gq1 (t− 1) , t ∈ (1, 2] , q1 > 0
, where gq1 (t) =

t
1
q1 , satisfies the condition of statement II2 of Theorem 2.

Example 3. For the function g2 (t) the conditions of statement II of Lemma 3 and of
statement III of Corollary 3 are satisfied, that is, the function satisfies the conditions II3
of Theorem 2.

Here are some examples of functions that satisfy the conditions of statement I of
Theorem 2.

Example 4. The function S1 (t) =

{

g1 (t) = t−
1
q

(
− ln t

e

)− 2
q , t ∈ (0, 1] , q > 0,

geq1 (t− 1) , t ∈ (1, 2] , q1 > 0
sa-

tisfies the condition of statement I1 of Theorem 2.

Example 5. The function S2 (t) =

{
g1 (t) , t ∈ (0, 1] ,
gq1 (t− 1) , t ∈ (1, 2]

satisfies the condition of

statement I2 of Theorem 2.

Remark. All the formulated and proved above statements are also valid for functions

I (f, p) =

∫

. . .

∫

︸ ︷︷ ︸

A

|f(t1, . . . , tn)|
p
dt1 . . . dtn,

I (f, z) =

∫

. . .

∫

︸ ︷︷ ︸

A

|f(t1, . . . , tn)|
z
d1 . . . dtn,

n (f, p) =

(

1

µ(A)

∫

. . .

∫

︸ ︷︷ ︸

A

|f(t1, . . . , tn)|
p
dt1 . . . dtn

) 1
p

,

that is, for functions f (t1, . . . , tn) of n variables measurable on the set A of the space Rn.

We denote by L̃n
∞, L̃

n
p̄ the spaces of functions defined on the n-dimensional cube A =

πn = [−π, π)
n
, which are 2π-periodic in each variable, not zero almost everywhere on
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the set A, essentially bounded and measurable respectively with norms:
∥
∥f̃
∥
∥
L

∞(A)
= sup vrai

x̄∈A
|f̃(x̄)|, x̄ = (x1, x2, . . . , xn),

n(f̃ , p) =

(
1

µ(A)

∫ π

−π

. . .

∫ π

−π

|f̃(x1, x2, . . . , xn)|
pdx1 . . . dxn

) 1
p

=

(
1

µ(A)

∫

A

|f̃(x̄)|
p
dx̄

) 1
p
<∞,

where p is an arbitrary real number that is not equal to zero and µ(A) = (2π)n. Then
for the functions

I(f̃ , z) =
1

µ(A)

∫

A

|f̃(x̄)|zdx̄, I(f̃ , p) =
1

µ(A)

∫

A

|f̃(x̄)|pdx̄,

n(f̃ , p) =

(
1

µ(A)

∫

A

|f̃(x̄)|pdx̄

) 1
p

all the previously formulated statements are valid.
It follows from Theorem 1 and the corollary of the paper [5] that if 1 ≤ p ≤ ∞, then

the spaces L̃n
p are isometric to the spaces of convolution of these spaces with non-negative

delta-like kernels, that is, to the spaces

L̃n
p ∗ K̃n

ȳk =

{

ṽ (x̄, ȳ) = ṽ (x, ȳ) =

{ (

f̃ ∗ K̃ȳk

)

(x), ȳ > 0̄,

f̃(x), ȳ = 0̄
: (f̃ ∈ L̃n

p )

}

and

(72) n(ṽ, p) = sup
ȳ≥0̄

(
1

µ(A)

∫

A

|ṽ(x̄, ȳ)|
p
dx̄

) 1
p
= n(f̃ , p) =

(
1

µ(A)

∫

A

∣
∣
∣f̃(x̄)

∣
∣
∣

p

dx̄

) 1
p
.

Then, on the basis of the equality (72), the statement of Theorem 2 holds for the

function n(ṽ, p) in the case f̃ ∈ L̃n
q , 1 ≤ q ≤ ∞, and in the case f̃ /∈ L̃n

q , where

1 < q ≤ ∞ and for each p ∈ (0, q), f̃ ∈ L̃n
p .
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