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NON-AUTONOMOUS SYSTEMS ON LIE GROUPS AND THEIR

TOPOLOGICAL ENTROPY

M. FATEHI NIA AND F. MOEINADDINI

Abstract. In the present paper we introduce and study the topological entropy

of non-autonomous dynamical systems and define the non-autonomous dynamical
system on Lie groups and manifolds. Our main purpose is to estimate the topo-
logical entropy of the non-autonomous dynamical system on Lie groups. We show
that the topological entropy of the non-autonomous dynamical system on Lie groups

and induced Lie algebra are equal under topological conjugacy, and a method to
estimate the topological entropy of non-autonomous systems on Lie groups is given.
To illustrate our results, some examples are presented. Finally some discussions and
comments about positive entropy on nil-manifold Lie groups for non-autonomous

systems are presented.

1. Introduction

In mathematics, the topological entropy of a topological dynamical system is a non-
negative extended real number that is a measure of the system. Topological entropy was
first introduced in 1965 by Adler, Konheim and Mc. Andrew [1]. For continuous maps
from compact topological space to itself, it is very closely analogous to measure theoretic
entropy. On metric spaces, an alternate definition was given by Bowen [3], for uniformly
continuous maps and it was proved that, on compact metric spaces, these two definitions
are equivalent [4, 6]. The second definition clarified the meaning of the topological en-
tropy. For a system given by an iterated function, the topological entropy represents the
exponential growth rate of the number of distinguishable orbit of the iterates.

Choang Peng, discussed the topological entropy of continuous function on Lie groups
and proved their shift properties [8]. He proves that, entropy is invariant with isometric
endomorphisms of Lie groups. Also he consider algebraic entropy of elementary Abelian
groups and Lie groups, and proved that the topological entropy is preserved when pro-
jected from Lie group R to its quotient space compact Lie group S1 from continuous
function lifted from the quotient space [8].

While a discrete autonomous or classical dynamical system is given by the iterations of
single map f : X → X the dynamics of a non-autonomous system is generated by Kolyade
and Snoha, in 1996, who extended the concept of topological entropy by composition of
different maps [13], they gave two definitions also based on open cover, and separated
and spanning sets, separately and proved that these two definitions are equivalent for
non-autonomous systems, too. They studied some relations of non-autonomous system
and proved that topological entropy is an invariant value of topological equiconjugacy.
Although calculating the topological entropy for non-autonomous dynamical systems is
not a easy task, one can give the estimation of the topological entropy for some special
non-autonomous systems. For example in [14] Kolyada, et al showed that if f1,∞ is a
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finite piecewise monotone, or a bounded totally long-lapped, or a Markov interval non-
autonomous dynamical system, then

h(f1,∞) = lim
n−→∞

sup
1

n
log(c1,n).

Where h(f1,∞) denote entropy and c1,n is the number of the laps of fn1 . The authors
[20] proved that for a sequence of equicontinuous monotone maps on circles,

h(f1,∞) = lim
n−→∞

sup
1

n
log

n
∏

i=1

|deg fi|),

where deg fi is the degree of fi. They also showed that if f1,∞ is a family of homeomor-
phisms on a finite graph X, then h(f1,∞) = 0 [11].

In this article, our main purpose is to describe the topological entropy of non-autono-
mous dynamical systems on Lie groups. At first we remind the definitions and main
properties of topological entropy and dynamical non-autonomous systems. Then we
introduce the entropy of non-autonomous dynamical systems and some of it’s properties.
Section 3 is devoted to introduce the topological entropy of non-autonomous dynamical
system on non-compact spaces. In Section 4, after reminding the Lie groups, we define
the non-autonomous dynamical systems on a Lie group and by the exponential map
of a Lie group and of the topological conjugacy we introduce induced non-autonomous
system on a Lie algebra. Also, topological entropy of non-autonomous systems on simply
connected nilpotent Lie groups is considered. In Section 5 we mention linear maps and
prove our main theorem which is the relation between the topological entropy of manifold
and it’s tangent space according to the explained topological conjugate then we calculate
it according to the eigenvalues in Theorems 5.2 and 5.1. To illustrate our results some
examples, especially on Heisenberg and SO(2) Lie groups, are presented. Finally we end
this paper with conclusions and recommendations about positive topological entropy of
a flow on a nil-manifold, as a future research work.

2. Preliminaries

In this section we give some basic definitions and notations which are known and we
need in the following.

Given a compact metric space (X, d) and a map f : X −→ X, we define the function
dn : X ×X −→ R by dn(x, y) = max(fk(x), (fk(y)). For each n, dn is a metric on X,
since d to be a metric on X.

Fix ǫ > 0. Let n ∈ N. A set A ⊆ X is a (n, ǫ)−spanning set if for every x ∈ X there
exists y ∈ A such that dn(x, y) < ǫ. A set A ⊆ X is an (n, ǫ)−separated set if for all
distinct points x, y ∈ A we have dn(x, y) ≥ ǫ.

Let span(n, ǫ, f) be the minimum cardinality of a (n, ǫ)− spanning set, and sep(n, ǫ, f)
be the maximum cardinality of a (n, ǫ) − separated set [3]. So we have the following
notation of metric entropy for f .

Lemma 2.1. [7] The metric entropy of a map f : X → X is:

h(f) = lim
ǫ−→0+

lim
n−→∞

1

n
log(sep(n, ǫ, f)) = lim

ǫ−→0+
lim

n−→∞

1

n
log(span(n, ǫ, f)).

Let X and Y be metric spaces. If the continuous maps f : X −→ X and g : Y −→ Y

satisfy the relation foh = hog, for some homeomorphism h : Y −→ X, then we say
that f is topologically conjugated to g. When the relation foh = hog holds for some
continuous surjection h : Y −→ X, we say that f is topologically semi-conjugate to g.

We can use of some properties of topological entropy to more easily determine when
two systems are not the same.

Some basic properties of topological entropy are [16]:
1− h(fn) = n.h(f) for any n ≥ 0.
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2− If Y ⊆ X is an invariant closed set then h(f |Y ) ≤ h(f).
3− If g is conjugate to f , then h(g) = h(f).
4− h(f1 × f2) = h(f1) + h(f2).
After the classical entropy definition, we consider definition and characteristics of

topological entropy of non-autonomous dynamical systems which is an extension of this
notion.

Let X be a compact topological space and f1,∞ = {fi}
∞
i=1 a sequence of continuous

maps from X to X. The identity map on X will be denoted by idX . Let f0i = f−0
i = idX ,

and set fni = fi+(n−1)o . . . ofi+nofi and f
−n
i = (fni )

−1 = f−1
i of−1

i+1 . . . of
−1
i+(n−1), for all

i, n ∈ N. Also denote by fn1,∞ the sequence of maps {fnin+1}
∞
i=0 and by f−1

1,∞ the sequence

{f−1
i }∞i=1 [13].
Let (X, d) be a compact metric space and f1,∞ be a non-autonomous dynamical system

on X. The function dn given by dn(x, y) = max0≤j<n d(f
j
1 (x), f

j
1 (y)), for each n ≥ 1, is

a metric equivalent to d [13].
A subset E of the space X is said to be (n, ǫ)−separated if for any two points x, y ∈ E,

dn(x, y) > ǫ or x = y. Let sep(n, ǫ, f1,∞) be the largest cardinality of (n, ǫ)−separated
set of X.

A subset F of the space X is called (n, ǫ)−spanning if for every x ∈ X, there exists
y ∈ F, such that dn(x, y) ≤ ǫ. Take span(n, ǫ, f1,∞) is the smallest cardinality of (n, ǫ)−
spanning set of X.

Definition 2.1. Let f1,∞ be a sequence of continuous maps from X to X

h(f1,∞) = lim
ǫ−→0+

lim
n−→∞

1

n
log(sep(n, ǫ, f1,∞))(1)

= lim
ǫ−→0+

lim
n−→∞

1

n
log(span(n, ǫ, f1,∞)).(2)

Denote by h(f1,∞) and called topological entropy of f1,∞ [13].

Now, we give some basic properties of the topological entropy for non-autonomous
dynamical systems [13]:

1− For any K ⊆ X with K =
⋃k
i=1Ki, h(f1,∞,K) = maxh(f1,∞,Ki).

2− h(fn1,∞) ≤ n.h(f1,∞), for any n ≥ 1.
3− If f1,∞ be periodic with period n then h(fn1,∞) = n.h(f1,∞).
4− If (X, d) be a compact metric space then h(fn1,∞) = n.h(f1,∞), for all n ≥ 1.

3. Topological entropy of non-autonomous systems on noncompact spaces

Topological conjugacy is an important concept for determining when two systems are
dynamically equivalent. Suppose that π1,∞ is a sequence of equicontinuous maps from
X to Y , such that the following diagram is commutative [13].

X
fi

//

πi

��

X
fi+1

//

πi+1

��

X...

πi+2

��

Y
gi

// Y
gi+1

// Y...

.

There are two special cases for π1,∞:
1− When π1,∞ is a sequence of equicontinuous surjective maps from X onto Y. In this
case we say that π1,∞ is an equisemiconjugacy between f1,∞ and g1,∞.

2− Also when π1,∞ and π−1
1,∞ are two equicontinuous sequence of homeomorphisms. In

this case we say that π1,∞ is an equiconjugacy between f1,∞ and g1,∞.
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Theorem 3.1. [13] Let (X, ρ) and (Y, τ) be compact metric spaces, f1,∞ be a sequence
of continuous maps from X into itself, g1,∞ be a sequence of continuous maps from Y

into itself. If the system (X; f1,∞) is the equisemiconjugate with (Y ; g1,∞) then

h(Y ; g1,∞) ≤ h(X; f1,∞).

Corollary 3.1. [13] Let (X, ρ) and (Y, τ) be a compact metric space, f1,∞ be a sequence
of continuous maps from X into itself and g1,∞ be a sequence of continuous maps from
Y into itself. If the system (X; f1,∞) is equiconjugate with (Y ; g1,∞) then

h(Y ; g1,∞) = h(X; f1,∞).(3)

In the following, topological entropy of non-autonomous dynamical systems on non-
compact metric spaces is investigated. In [19] Walter defined topological entropy for
dynamical systems on noncompact metric spaces. Now, we use of this idea and give
similar argument for non-autonomous dynamical systems.

Let (X, d) be a metric space and f1,∞ be a non-autonomous system on X.

Definition 3.1. Let n ∈ N , ǫ > 0 and K be a compact subset of X.
A subset E of K is said to be (n, ǫ) separated subset of K with respect to f1,∞ if for

every distinct points x, y ∈ E, dn(x, y) > ǫ.
A subset F of K is said to be (n, ǫ) spanning subset of K with respect to f1,∞ if for

every x ∈ K, there exists y ∈ F such that dn(x, y) ≤ ǫ.

Let span(n, ǫ, f1,∞,K) denote the smallest cardinality of any (n, ǫ) spanning sets and
sep(n, ǫ, f1,∞,K) denote the largest cardinality of any (n, ǫ) separated sets for K with
respect to f1,∞.

By a similar arguments of Chapter 7 of [19] we can obtain the following result.

Lemma 3.1. Let (X, d) be a metric space and f1,∞ be a non-autonomous system on X
and K be a compact subset of X. For every n ∈ N and ǫ > 0, span(n, ǫ, f1,∞,K) < ∞
and

span(n, ǫ, f1,∞,K) ≤ sep(n, ǫ, f1,∞,K) ≤ span(n,
ǫ

2
, f1,∞,K).

Also, if ǫ < δ then sep(n, ǫ, f1,∞,K) ≤ sep(n, δ, f1,∞,K).

Then we can introduce the following definition of topological entropy on noncompact
metric spaces.

Definition 3.2. Let f1,∞ be a sequence of continuous maps from X to X and K be a
compact subset of X.

h(K; f1,∞) = lim
ǫ−→0+

lim
n−→∞

1

n
log(sep(n, ǫ, f1,∞,K)),

= lim
ǫ−→0+

lim
n−→∞

1

n
log(span(n, ǫ, f1,∞,K)).

The topological entropy of f1,∞ (on X) is h(X; f1,∞) = supK h(K; f1,∞). Where the
supremum is taken over the collection of all compact subsets of X.

In the following theorem we show that under a simple assumption Theorem 3.1 is
satisfied for noncompact metric spaces.

Theorem 3.2. Suppose that (X, ρ) and (Y, τ) are metric spaces, f1,∞ is a sequence of
continuous maps from X into itself, g1,∞ is a sequence of continuous maps from Y into
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itself. If the system (X; f1,∞) is the semiconjugate with (Y ; g1,∞) as the following

X
fi

//

π

��

X
fi+1

//

π

��

X...

π

��

Y
gi

// Y
gi+1

// Y...

where π : X → X is a continuous map. Then

h(Y ; g1,∞) ≤ h(X; f1,∞).

Proof. Let K be a compact subset of Y and consider the numbers ǫ > 0 and n ∈ N .
Take an (n, ǫ) separated subset E of K with the largest cardinality sep(n, ǫ, f1,∞,K). By

axiom of choice, we can construct the set E
′

⊂ X containing only one point from each
π−1(e), e ∈ E and no other points. This is clear that E

′

is a finite and consequently

compact subset of X. This implies that there exists δ < ǫ such that for every a, b ∈ E
′

,
if τ(π(a), π(b)) > ǫ then ρ(a, b) > δ. Hence E

′

is an (n, ǫ) separated subset of itself as a
compact subset of X. Then h(K; g1,∞) ≤ h(X; f1,∞). Since K is an arbitrary compact
subset of Y , we easily conclude that h(Y ; g1,∞) ≤ h(X; f1,∞). �

4. Topological entropy of Lie group

In this section, we introduce non-autonomous dynamical system on Lie groups and
estimate their topological entropy. Lie group theorems on entropy of classical dynami-
cal system have been discussed [3], our aims is to consider topological entropy of non-
autonomous systems on Lie groups.

A Lie group is a smooth manifold G that is also a group in the algebraic sense, with
the property that the multiplication mapm : G×G −→ G and inversion map i : G −→ G

given by m(g, h) = gh and i(g) = g−1 are differentiable [15].
Suppose that G is a Lie group and g ∈ G. Consider the maps

lg : G −→ G

h 7−→ gh,

rg : G −→ G

h 7−→ hg−1.

These are both diffeomorphisms by the definition of Lie group[18]. The Lie algebra of all
smooth left-invariant vector field on Lie group G(i.e. vector fields X such that lg∗X = X

for all g ∈ G) is called the Lie algebra of G, and denote by g. The dimension of g is finite
as well as the dimension of G.

Let G be a Lie group, the evaluation map ε : g −→ TeG, given by ε(x) = xe, is a
vector space isomorphism.

Given a Lie group G with Lie algebra g, define map exp : g −→ G, called the ex-
ponential map of G, by letting expX = F (1), where F is the one parameter subgroup
generated by X, or equivalently the integral curve of X starting at the identity. For
example the exponential of gl(n,R) is given by expA = eA, if V is a finite dimensional
real vector, then the exponential map of GL(V ) can be written as follows:

expA =

∞
∑

k=0

1

k!
Ak.

Now, we remember some properties of exponential map that are needed in the rest of
the paper [15]:
1− The exponential map is a smooth map from g to G.
2− For any X ∈ g, exp(s+ t)X = exp(sX)exp(tX).
3−The exponential map for a Lie group does not necessarily injective or surjective. But,
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it is locally injective and surjective, indeed the exponential map is a diffeomorphism from
some neighborhood of 0 in g to a neighborhood of e in G.

Recall that given a smooth map between manifolds ψ : X −→ N we get a linear map
called pushing forward along ψ: ψ∗ = dψx : TxX −→ Tψ(x)N [10]. We use the following
lemma to prove Theorem 4.1.

Lemma 4.1. If A is an endomorphism of a Lie group G and d is a right invariant
metric such that

TeG
dA

//

exp

��

TeG

exp

��

G
A

// G

then hd(RgoA) = hd(A) = hd(dA | TeG) [3].

Now, by Theorem 3.2 we have the following generalization of Corollary 3.1 which is
one of the main results of this paper. This theorem obtains that topological entropy is an
invariant object under topological conjugacy of non-autonomous system on Lie groups
and associated non-autonomous system on Lie Algebra.

Theorem 4.1. Suppose that G is a Lie group and TeG tangent space its. Let A1,∞ =
{Ai}i>1 be a non-autonomous system on G, where Ai is an endomorphism of a Lie group
G and dAi is the push-forward of the map Ai, for i ≥ 1, let f1,∞ = dA1, dA2 . . . and
g1,∞ = A1, A2, . . ., then

TeG
dA1

//

exp

��

TeG
dA2

//

exp

��

TeG...

exp

��

G
A1

// G
A2

// G...

(4)

consequently, we have

h(G; g1,∞) ≤ h(TeG; f1,∞).

Moreover, the equality holds, if the exponential map is bijective.

Proof. Let G be a Lie group and TeG be it’s tangent space which is isomorphism with
associated Lie algebra. This is clear that exp : TeG −→ G from some neighborhood of
0 in TeG to a neighborhood of e in G is injective and homeomorphism [15, 2]. Then for
every i ≥ 1 the following commutative diagram

TeG
dAi

//

exp

��

TeG

exp

��

G
Ai

// G

(5)

satisfied in Proposition 10 of [3] and Lemma 4.1. Then Diagram 4 is commutative and
exp is an equi-semiconjugacy between g1,∞ and f1,∞.

From this fact together with Theorem 3.2, we have that h(G; g1,∞) ≤ h(TeG; f1,∞).
�

In [17], the author consider the topological entropy for automorphisms of simply con-
nected nilpotent Lie groups and proved the following theorem.

Theorem 4.2. [17] Let f : G −→ G be an automorphism, where G is a simply connected
nilpotent Lie group. Then this implies that h(f) = 0.
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By the above theorems, topological entropy of a Lie group is equal to topological
entropy of the related Lie algebra, hence the entropy on the nilpotent Lie group is zero.
In the next theorem we introduce a category of nontrivial non-autonomous systems on
Lie groups with zero entropy.

Theorem 4.3. Let fi : G −→ G be an automorphism for all i ≥ 1 and the sequence {fi}
converging uniformly to f , where G is a simply connected nilpotent Lie group. Then it
follows that h(f1,∞) = 0.

Proof. Theorem 4.2 implies that h(f) = 0, as a classic discrete dynamical system and by
Theorem E of [13] we have that, h(f1,∞) ≤ h(f), consequently h(f1,∞) = 0. �

5. Topological entropy of linear non-autonomous systems

We start this section by introducing linear maps theorems on non-autonomous dy-
namical systems, which are satisfied for autonomous dynamical systems. Then we apply
the results to calculate the entropy of linear maps. In the rest of the paper we assume
that all matrices are diagonalizable.

The explanation of some definitions and lemmas are necessary in the process of proving
of Theorem 5.1.

Remark 5.1. Let M be a manifold of dimension m and TxM be its tangent space.
Suppose that Ti : M −→ M is a differentiable map and {A1, . . . , At} is the set of all
functions where Ti ∈ {A1, . . . , At}. Consider

ai = sup
x∈M

‖dAi|AixM‖, bi = sup
x∈M

‖dTi|TixM‖ for all 1 ≤ i ≤ t.

Since Tn1 = TnoTn−1o . . . oT1, then

|d(Tn1 )| = |dTnoTn−1o . . . oT1| ≤ |dTn||dTn−1| . . . |dT1| < bnbn−1 . . . b1.

Also, lim
n−→∞

(bnbn−1 . . . b1)
1
n = (an1

1 . . . ant

t )
1
n = a

n1
n

1 . . . a
nt
n

t = aN1

1 . . . aNt

t = a.

Where nk = {|i| such that 1 ≤ i ≤ n , Ti = Ak}. And put Nt be density presence of At

in {Ti}
∞
i=1, in other words lim

n−→∞

nk

n
= Nk. It is obvious that

∑t

k=1Nk = 1.

The concepts introduced in this remark are used in the rest of this paper.

Lemma 5.1. Suppose that {A1, . . . , At} is the set of all functions in T1,∞. With the
assumptions given in the previous remark

d(Tn1 (x), T
n
1 (y)) ≤ an1

1 . . . ant

t d(x, y) = αnd(x, y).

Where nk = {i : 1 ≤ i ≤ n, Ti = Ak}.

Proof. Let bi ∈ {an1

1 , . . . , anm
m }, where ai = sup

x∈M

‖dAi|AixM‖, Ti ∈ {A1, . . . , At}, and

T1,∞ = T1, T2, . . . By choose of bi, we prove with induction

d(T1(x), T1(y)) ≤ b1d(x, y),

d(T2oT1(x), T2oT1(y)) ≤ b2d(T1(x), T1(y)) ≤ b2b1d(x, y),

so, by induction on n, we have

d(Tn1 (x), T
n
1 (y)) ≤ bn. . . . b1d(x, y) = an1

1 . . . ant

t d(x, y) = αnd(x, y).

Hence we obtain d(Tn1 (x), T
n
1 (y)) ≤ αnd(x, y). �

Next Theorem is one of main results of this paper. This theorem gives an estimate of
topological entropy of non-autonomous systems. The basic idea of the proof comes from
Theorem 4.1 of [3].
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Theorem 5.1. Let M be a m−dimensional Riemannian manifold and T1,∞ = {Ti}
∞
i=1

be a non-autonomous system such that, Ti : M −→ M is a differentiable map, for all
i ≥ 1. Assume that all maps Ti are from the set {A1, . . . , At}. then

h(T1,∞) ≤ max{o,m [N1 log a1 + · · ·+Nt log at]}.

Proof. If ai = ∞ for some 1 ≤ i ≤ t then it is nothing to prove. Suppose that ai < ∞
for all 1 ≤ i ≤ t and K ⊆ M is a compact set. Let f1, . . . , fr : B3(0) ⊆ R

m −→ M

are differentiable maps such that the fi(B1(0)) cover K and choose A > 0 such that
d(fi(x), fi(y)) ≤ Ad(x, y) for all x, y ∈ B2(0) and 1 ≤ i ≤ r.

As in Remark 5.1, put a = aN1

1 . . . aNt

t , if a ≤ 1, then Lemma 5.1 implies that, for all
n ≥ 1 and for each x, y ∈ X,

d(Tn1 (x), T
n
1 (y)) ≤ ad(x, y) ≤ d(x, y).

Then T1,∞ never expands distances, in this case every (1, ǫ)-spanning set is a
(n, ǫ)-spanning set and we get h(T1,∞) = 0.

Thus we may assume that a ≥ 1. Let E(δ) = {(r1δ, . . . , rmδ)|ri ∈ Z, |ri| < 2}, for each

0 < δ ≤ 1. Then cardE(δ) ≤ (
5

δ
)m and there is a constant β > 0 (depending on metrice

d used for Rm) such that for each y ∈ B1(0), there is a x ∈ E(δ) with d(x, y) ≤ βδ.

Since d(fi(x), fi(y)) ≤ Ad(x, y) and d(x, y) ≤ βδ, by Lemma 5.1 we have that

d(Tn1 (x), T
n
1 (y)) ≤ αnd(x, y).

Thus d(Tn1 (x), T
n
1 (y)) ≤ αnABδ = ǫ, this is clear that T (δ) =

⋃

1≤i≤r fiE(δ) is a

(n, αnABδ)-spanning set for K and cardT (δ) ≤ r(
5

δ
)m.

Hence, considering δ =
ǫ

αnAB
. These statements imply that

cardT (δ) ≤ r







5
ǫ

αnAB







m

= r(
5αnAB

ǫ
)m = r

[

5AB

ǫ

]

αmn

and T is a spanning set, therefore rn(ǫ,K) ≤

[

5AB

ǫ

]

αmn . Consequently, by Remark 5.1

we have

h(T1,∞) =
1

n
log rn(ǫ,K) ≤

1

n
log

[

(
5AB

ǫ
)m

]

αmn

= log(

[

(
5AB

ǫ
)m

]

)

1

n (an1

1 . . . ant

t )

m

n = m(log a

n1

n
1 + · · ·+ log a

nt

n
t )

= m(log aN1

1 + · · ·+ log aNt

t ) = m(N1 log a1 + · · ·+Nt log at).

This implies that, we have the following inequality, which is a strong tool to estimate a
upper bounded for topological entropy of a non-autonomous systems:

h(T1,∞) ≤ max{0,m [N1 log a1 + · · ·+Nt log at]}.

�

Let A be a matric and e1, . . . , en are eigenvectors corresponding to the eigenvalues
λ1, . . . , λn, respectively and λ1 = λ be the maximum eigenvalue. Then for all vector,
V = v1e1 + v2e2 + v3e3 + · · ·+ vnen we have

‖AV ‖ = (λ1v1)
2
+ (λ2v2)

2
+ · · ·+ (λnvn)

2
≤ λ1(v

2
1 + v22 + · · ·+ v2n) ≤ λ1.

So, we reach to the following result, that estimate the topological entropy of a linear
non-autonomous system by maximum eigenvalue of matrices that construct our non-
autonomous system.
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Corollary 5.1. Consider the non-autonomous system T1,∞ = {Ti}
∞
i=1, such that each

Ti : R
m −→ R

m is a linear map belong to the set {A1, . . . , At}. Put µj is an eigenvalue
of Aj with maximum absolute value, for all 1 ≤ j ≤ t, then

h(T1,∞) ≤ max{0,m
t

∑

i=1

Ni log|µi|}.(6)

Proof. Let µj be an eigenvalue of Aj with maximum absolute value. Since Aj is linear
then dAj = Aj . As for Theorem 5.1, we have

h(T1,∞) ≤ max{0,m [N1 log a1 + · · ·+Nt log at]}, where ai = sup‖dAj‖.

Then it is not difficult to show that

h(T1,∞) ≤ max{0,m [N1 log‖a1‖+ · · ·+Nt log‖at‖]}

≤ max{0,m [N1 log|µ1|+ · · ·+Nt log|µt|]}.

Thus we have the following important inequality:

h(T1,∞) ≤ max{0,m

t
∑

i=1

Ni log|µi|}. �

In [12] the authors introduce product of non-autonomous systems and prove the fol-
lowing proposition.

Proposition 5.1. [12] If (X, f1,∞) and (Y, g1,∞) be topological space then for product
system (X × Y, f1,∞ × g1,∞) defined

h(f1,∞ × g1,∞) ≤ h(f1,∞) + h(g1,∞).

For example suppose that f1,∞ = (2x, 3x, 2x, 3x, . . .) and g1,∞ = (4x, 5x, 4x, 5x, . . .),
then

f1,∞ × g1,∞ = ((2x, 4x), (3x, 5x), (2x, 4x), (3x, 5x), . . .).

Now we use this proposition to prove the following theorem which is the main result
of this paper. In this theorem we consider linear maps with the same eigenspaces.

Theorem 5.2. Suppose that {A1, A2, . . . , At} is a finite set of matrices and µji is eigen-
value of Ai with multiplicity mj and the same associated eigenspace Ej, for all 1 ≤ i ≤ t.
Assume that f1,∞ = f1, f2, . . . is a non-autonomous system consists of {A1, A2, . . . , At}
and N1, . . . , Nt are multiplicity A1, . . . , At in f1,∞, respectively. Then

h(f1,∞) ≤

s
∑

j=1

mj(

t
∑

i=1

Ni log µ
j
i ),(7)

where the summation is on all eigenvalues with value greater than one.

Proof. Let Ej is the common associated eigenspace respect to eigenvalue µ
j
i , for all

1 ≤ i ≤ t. This is clear that Ai(Ej) ⊆ Ej , for all Ai and Ej , then we put Tij = fi|Ej
and

Tj,∞ = {T1j , T2j , T3j , . . .}. Hence,

fi = Ti1 × Ti2 × · · · × Tis : E1 × E2 × · · · × Es −→ E1 × E2 × · · · × Es

and f1,∞ = T1,∞ × T2,∞ × · · · × Ts,∞.

Proposition 5.1 implies that h(Tj,∞) ≤ mj

∑t

i=1Ni log|µ
j
i |, for all 1 ≤ j ≤ s.
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Consequently, Proposition 5.1 and Corollary 5.1 imply that

h(f1,∞) = h(T1,∞ × T2,∞ × · · · × Ts,∞) ≤(8)

h(T1,∞) + · · ·+ h(Ts,∞) ≤(9)

m1(N1 log(µ
1
1) +N2 log(µ

1
2) + · · ·+Nt log(µ

1
t ))+(10)

m2(N1 log(µ
2
1) +N2 log(µ

2
2) + · · ·+Nt log(µ

2
t )) + · · ·+(11)

ms(N1 log(µ
s
1) +N2 log(µ

s
2) + · · ·+Nt log(µ

s
t )).(12)

Therefore, we achieved an important and useful relationship, which is the main result of
this paper

h(f1,∞) ≤
s

∑

j=1

mj(
t

∑

i=1

Ni log µ
j
i ).

Then, the proof is completed. �

Corollary 5.2. Suppose that {A1, A2, . . . , At} is a finite set of endomorphisms of a
Lie group G such that their tangent maps on TeG have the previous theorem conditions.
Consider the non-autonomous system f1,∞ = f1, f2, . . . on G consists of {A1, A2, . . . , At}
Then

h(f1,∞) ≤

s
∑

j=1

mj(

t
∑

i=1

Ni log µ
j
i ),

where µji is eigenvalue of dAi|TeG with multiplicity mj and the same associated eigenspace
Ej, for all 1 ≤ i ≤ t.

6. Some examples

In this section we are going to introduce some examples of non-autonomous systems
on Lie groups and estimate their topological entropy.

Example 6.1. The set of all three dimensional real matrices A of the form

A =





1 a b

0 1 c

0 0 1



 ,

where a, b and c are real numbers, is the Heisenberg group, H. This is well known that
it is a simply connected and nilpotent Lie group. Consider the matrices

Bn =





1 2 + 1
n

3
0 1 −1
0 0 1



 , B =





1 2 3
0 1 −1
0 0 1





for all n ∈ N . The sequence {fn}n≥1 of automorphisms fn : H → H defined by fn(A) =
BnAB

−1
n is uniformly convergence to f : H → H defined by f(A) = BAB−1. Then,

by Theorem 4.3 the non-autonomous dynamical system f1,∞ on H has zero topological
entropy.

To use Theorem 4.1 it is necessary that the exponential map be a surjective map.
The exponential map is not always surjective, but if the Lie group G is connected and
compact or connected and nilpotent, then its exponential map is surely surjective.

Example 6.2. Let SO(2) denoted the set of all 2 × 2 orthogonal matrices with deter-
minant one. These group elements are often represented as two dimensional matrices of
the form

A(θ) =

(

cos θ − sin θ
sin θ cos θ

)

.
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The Lie algebra, so(2), is the set of 2×2 skew-symmetric matrices. The single generator
of so(2) corresponds to the derivative of 2−D rotation, evaluated at the identity:

E =

(

0 −1
1 0

)

.

Hence, elements of so(2) are represented as
(

0 −θ
θ 0

)

.(13)

The exponential map exp : SO(2) → so(2) is defined by

exp

(

0 −θ
θ 0

)

= I+

(

0 −θ
θ 0

)

+
1

2!

(

−θ2 0
0 −θ2

)

1

3!

(

0 θ3

−θ3 0

)

+ · · ·

=

(

cos θ − sin θ
sin θ cos θ

)

.

This Lie group is connected and compact, then its exponential map is surjective. Consider
the endomorphisms T, S : SO(2) → SO(2) defined by T (g) = gk and S(g) = gm, where
k,m are two positive integer numbers. Indeed for every

g =

(

cos θ − sin θ
sin θ cos θ

)

we have that

T (g) =

(

cos kθ − sin kθ
sin kθ cos kθ

)

, S(g) =

(

cosmθ − sinmθ
sinmθ cosmθ

)

.

Applying this fact, then we have that the tangent maps dT : R → R and dS : R → R

are defined by dT (θ) = kθ and dS(θ) = mθ. Now, consider a non-autonomous system
f1,∞ = {fn}n≥1 such that fn ∈ {T, S}, for all n ≥ 1. It is follows from Theorem 4.1 and
consequently Theorem 5.2 that h(f1,∞) ≤ NT log k + NS logm, where NT , NS denoted
the probability density of the functions T and S in f1,∞, respectively.

Example 6.3. Let

T : R4 −→ R
4,

(x, y, z, w) 7−→ (2x, 2y, 2z,−2w)

and

S : R4 −→ R
4,

(x, y, z, w) 7−→ (3x, 3y,−
1

2
z +

7

2
w,

7

2
z −

1

2
w).

By Theorem 5.1 for estimate the entropy of the linear non-autonomous systems we need
eigenvalues of their maps

T =









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −2









, S =

























3 0 0 0

0 3 0 0

0 0 −
1

2

7

2

0 0
7

2
−
1

2

























λT = 2,−2 where we have 2 three times and −2 once,
λS = 3,−4 where we have 3 three times and −4 once.
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Suppose that f1,∞ = T, S, T, S, T, S, . . . This is clear that for f1,∞ the probability density

of T and S is the same number
1

2
. By Relation 8 in Theorem 5.2 we have that

h(f1,∞) ≤ 1(
1

2
log|−2|+

1

2
log|−4|) + 3(

1

2
log|2|+

1

2
log|3|) · · ·

= 4 log 2 +
3

2
log 3 = log 24 + log 3

3

2 = log(24 × 3

3

2 ) ⋍ 1.9.

Now, consider the system f1,∞ = T, T, S, T, T, S, . . ., where T and S are defined before.

For this system the density of frequency T is
2

3
and density of frequency S is

1

3
hence

h(f1,∞) = 1(
2

3
log|−2|+

1

3
log|−4|) + 3(

2

3
log|2|+

1

3
log|3|)

=
10

3
log 2 + log 3 = log 2

10

3 + log 3 = log(2

10

3 × 3) ⋍ 1.5.

Now, we generalize the method for f1,∞ = T, T, . . . , T, S, T, T, . . . , S, . . . where the density

of frequency T is
n− 1

n
and density of frequency S is

1

n
, then we have

h(f1,∞) = 1(
n− 1

n
log|−2|+

1

n
log|−4|) + 3(

n− 1

n
log|2|+

1

n
log|3|)

=
4n− 2

n
log 2 +

3

n
log 3 = log 2

4n− 2

n + log 3

3

n = log(24n−2 × 33)

1

n .

Given the examples in which the multiplicity of a function extends to infinity, we
obtain a main result.

Corollary 6.1. The quantity is taken finite in this paper; however in infinite case when
in the non-autonomous system f1,∞ = T, T, . . . , T, S, T, T, . . . , S, . . . , the number n con-
vergence to infinitely the frequency of S is ignored in calculating the entropy. Because

probability density of S is
1

n
and lim

n−→∞

1

n
= 0. But the density of frequency T is

n− 1

n

that is lim
n−→∞

n− 1

n
= 1.

7. Discussions and future directions

In this work we introduced non-autonomous dynamical systems on Lie groups as well
as Lie algebras. The topological entropy for this type of systems is considered. This is
well known that topological entropy is a number which is usually taken as a measure
of complexity of a topological dynamical system. In particular, positive topological
entropy is an important property to characteristic feature of chaos. It is well-known that
positive topological entropy implies Li-Yorke chaos for any surjective continuous map
on a compact metric space. In accordance with what was said, zero topological entropy
implies that the system has a simple dynamical behavior.

So this is very interesting to investigate positive topological entropy and chaos for
non-autonomous dynamical systems on Lie groups. In this direction, considering non-
autonomous dynamical systems on nil-manifold Lie groups and studying their topological
entropy is an attractive topic for future studies. More precisely, Given a simply connected
nilpotent Lie groups G and a compact discrete subgroup Γ < G, the closed manifold
(Γ\G)k is called a nilmanifold. When G is K– step, the nilmanifold M is called K–
step. A metric g or magnetic field σ on M is called left–invariant if its pullback to G is
left–invariant.

Butler in [5] has shown that the topological entropy of a left-invariant geodesic flow
on a two-step nilmanifold vanishes.
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Also, Epstein In [9] has shown that there is a magnetic field on a two-step nilmanifold
that has positive topological entropy for arbitrarily high energy levels. More precisely,

Theorem 7.1. [9] There exists a 2–step nil-manifold Γ\G with left–invariant metric g
and left–invariant σ such that the flow of the magnetic system (Γ\G, g, σ) has positive
topological entropy on arbitrarily high energy levels.

We conjecture that the technique developed here for topological entropy of non-
autonomous systems could be applied for the topics mentioned above. But, Since this
requires a lot of definitions and preliminaries; We would prefer to do it in a separate
work.
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