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FULL INDEFINITE STIELTJES MOMENT PROBLEM AND PADÉ

APPROXIMANTS

VOLODYMYR DERKACH AND IVAN KOVALYOV

Dedicated to Yu. M. Arlinskii on the occasion of his 70th birthday

Abstract. Full indefinite Stieltjes moment problem is studied via the step-by-step
Schur algorithm. Naturally associated with indefinite Stieltjes moment problem are
generalized Stieltjes continued fraction and a system of difference equations, which,
in turn, lead to factorization of resolvent matrices of indefinite Stieltjes moment prob-
lem. A criterion for such a problem to be indeterminate in terms of continued fraction
is found and a complete description of its solutions is given in the indeterminate case.
Explicit formulas for diagonal and sub-diagonal Padé approximants for formal power

series corresponding to indefinite Stieltjes moment problem and convergence results
for Padé approximants are presented.

1. Introduction

The classical Stieltjes moment problem consists in the following: given a sequence of
real numbers sj (j ∈ Z+ := N ∪ {0}) find a positive measure σ with a support on R+,
such that

(1.1)

∫

R+

tjdσ(t) = sj , j ∈ Z+.

It follows easily from (1.1) that the inequalities

(1.2) Sn := (si+j)
n−1
i,j=0 ≥ 0 and S+

n := (si+j+1)
n−1
i,j=0 ≥ 0, n ∈ Z+,

are necessary for solvability of the moment problem (1.1). Moreover, the inequalities (1.2)
are also sufficient for solvability of the moment problem (1.1), see [1, Appendix, Sec-
tion A1]. Let

(1.3) Dn := det Sn and D+
n := det S+

n , n ∈ Z+.

For every solution σ of the Stieltjes moment problem its Stieltjes transform

(1.4) f(z) =

∫

R+

dσ(t)

t− z
, z ∈ C\R+

belongs to the class N of functions holomorphic on C\R with nonnegative imaginary

part in C+ and such that f(z) = f(z) for z ∈ C+. Moreover, f belongs to the Stieltjes
class S of functions f ∈ N, which admit holomorphic and nonnegative continuation to
R−. By M. G. Krein’s criterion [27]

f ∈ S ⇐⇒ f ∈ N and zf ∈ N.
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Notice, that by the Hamburger–Nevanlinna theorem [1, Theorem 3.2.1] the Stieltjes
moment problem can be reformulated as the following interpolation problem at ∞ for

the Stieltjes transform f(z) =
∫
R+

dσ(t)
t−z of the measure σ

(1.5) f(z) = −
s0
z

−
s1
z2

− · · · −
s2n

z2n+1
+ o

(
1

z2n+1

)
, z→̂∞.

The notation z→̂∞ means that z → ∞ nontangentially, that is inside the sector ε <
arg z < π − ε for some ε > 0.

In the pioneering paper [40] by T. Stieltjes it was shown that if Dn, D
+
n are positive

for all n ∈ Z+ and

(1.6) ln :=
D2

n

D+
nD

+
n−1

, mn :=
(D+

n−1)
2

DnDn−1
, n ∈ N,

then the Laurent series −
∑∞

j=0
sj

zj+1 can be uniquely developed in the continued fraction

(1.7)
1

−zm1 +
1

l1 + . . .
1

−zmn +
1

ln + . . .

.

The moment problem (1.1) is called determinate, if it has unique solution, and indeter-
minate otherwise. A solution σ of (1.1) is called canonical, if the set of polynomials is
dense in L2(σ). As was shown in [40] the moment problem (1.1) is indeterminate, if and
only if

(1.8) M :=

∞∑

i=1

mi < ∞ and L :=

∞∑

i=1

li < ∞.

As was shown in [27, Appendix, 13.2◦], in the indeterminate case there exists an
entire matrix valued function W (z) = (wi,j(z))

2
i,j=1 such that the set of all solutions of

the problem (1.1) can be parametrised by the formula

(1.9)

∫

R+

dσ(t)

t− z
= TW (z)[τ(z)] :=

w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
,

where τ ranges over the Stieltjes class S. A subset of its canonical solutions was described
already in [40].

Now let us remind the indefinite versions of the classes N and S, see [30].

Definition 1.1. ([30]) A function f meromorphic on C\R with the set of holomorphy hf
is said to be in the generalized Nevanlinna class Nκ (κ ∈ N), if for every set zj ∈ C+∩hf
(zi 6= zj , i, j = 1, . . . , n) the form

n∑

i,j=1

f(zi)− f(zj)

zi − zj
ξiξj

has at most κ and for some choice of zj (j = 1, . . . , n) exactly κ negative squares. A
functions f ∈ Nκ is said to belong to the generalized Stieltjes class N+

κ , if zf ∈ N.

Similarly, in [9, 10] the class Nk
κ (κ, k ∈ N) was introduced as the set of functions

f ∈ Nκ, such that zf(z) belongs to the class Nk, see also [18, 20], where the class Nk
0

was studied.
In the present paper we consider the following problems.

Full indefinite moment problemMPκ(s). Given κ ∈ Z+, and an infinite sequence s =
{sj}

∞

j=0 of real numbers, describe the set Mκ(s) of functions f ∈ Nκ, which satisfy (1.10)

for all ℓ ∈ N.
Full indefinite moment problem MP k

κ (s). Given κ, k ∈ Z+, and an infinite sequence
s = {sj}

∞

j=0of real numbers, describe the set Mk
κ(s) := Mκ(s) ∩Nk

κ.



FULL INDEFINITE STIELTJES MOMENT PROBLEM 3

Indefinite moment problems MPκ(s) and MP+
κ (s) were studied in [31], [32] by the

methods of extension theory of Pontryagin space symmetric operators developed in [30],
[31]. In particular, it was shown in [31] that the moment problem MP+

κ (s) is solvable
if and only if the number ν−(Sn) of negative eigenvalues of Sn does not exceed κ and
S+
n > 0 for all n ∈ N. Further applications of the operator approach to the moment

problem MP k
κ (s) were given in [10]. A reproducing kernel approach to the moment

problems MPκ(s) was presented in [21]. A step-by-step algorithm of solving the moment
problems MPκ(s) was elaborated in [6], [7] and [2]. Applications of the Schur algorithm
to degenerate moment problem in the class Nκ were given in [14].

The step-by-step algorithm reduces the moment problems MPκ(s) and MP k
κ (s) to

the following truncated moment problems:
Truncated indefinite moment problem MPκ(s, ℓ). Given ℓ, κ ∈ Z+, and a finite

sequence s = {sj}
ℓ
j=0 of real numbers, describe the set Mκ(s, ℓ) of functions f ∈ Nκ,

which satisfy the asymptotic expansion

(1.10) f(z) = −
s0
z

− · · · −
sℓ

zℓ+1
+ o

(
1

zℓ+1

)
, z = iy, y↑∞.

Truncated indefinite moment problem MP k
κ (s, ℓ). Given ℓ, κ, k ∈ Z+, and a se-

quence s = {sj}
ℓ
j=0 of real numbers, describe the set Mk

κ(s, ℓ) of functions f ∈ Nk
κ,

which satisfy (1.10). A truncated moment problem is called even or odd regarding to the
oddness of the number ℓ+ 1 of given moments.

Let H be the set of all infinite real sequences s = {sj}
∞
j=0 and let Hκ be the set of

sequences s ∈ H, such that

(1.11) ν−(Sn) = κ for all n big enough.

Denote by Hk
κ the set of real sequences s ∈ Hκ, such that {sj+1}

∞
j=0 ∈ Hk, i.e.

(1.12) ν−(S
+
n ) = k for all n big enough.

A number nj ∈ N is said to be a normal index of the sequence s ∈ H, if detSnj
6= 0.

The ordered set of normal indices

n1 < n2 < · · · < nN

of the sequence s is denoted by N (s).
As was shown in [7] for every s ∈ Hκ there exists a sequence of real numbers bi ∈

R\{0}, i ∈ N and real monic polynomials

(1.13) ai(z) = zℓi + a
(i)
ℓi−1z

ℓi−1 + · · ·+ a
(i)
1 z + a

(i)
0

of degree ℓi = ni+1 − ni, i ∈ N, such that the convergents of the continued fraction

(1.14)
−b0

a0(z)−
b1

a1(z)− · · · −
bn

an(z)− . . .

for sufficiently large n have the asymptotic expansion (1.10) for every ℓ ∈ N. This fact was
known already to L. Kronecker [33] and then it was reinvented in [6]. The pairs (ai, bi)
are called atoms, see [24] and the continued fraction (1.14) is called the P–fraction, [36].

Consider the three-term recurrence relation

(1.15) bjyj−1(z)− aj(z)yj(z) + yj+1(z) = 0,

associated with the sequence of atoms {ai, bi}, i ∈ N, and define polynomials Pj(z) and
Qj(z) as solutions of the system (1.15) subject to the initial conditions

(1.16) P−1(z) ≡ 0, P0(z) ≡ 1, Q−1(z) ≡ −1, Q0(z) ≡ 0.
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The polynomials Pj and Qj are called Lanzcos polynomials of the first and second kind.
Moreover, the n-th convergent of the continued fraction (1.14) takes the form (see [24,
Section 8.3.7]).

f [n](z) = −
Qn(z)

Pn(z)
, n ∈ N.

As was shown in [7] the set Mκ(s, 2nj − 2) can be described in terms of the Lanzcos
polynomials of the first and second kind.

A sequence s ∈ Hk
κ is called regular (see [15]), and is designated as s ∈ Hk,reg

κ , if

(1.17) D+
nj

= detS+
nj

6= 0 for all j ∈ N.

In [16] it was shown that an even indefinite Stieltjes moment problems MP k
κ (s, 2nN − 1)

for regular sequence s is solvable if and only if

(1.18) κN := n−(SnN
) ≤ κ and k+N := n−(S

+
nN

) ≤ k.

For this problem one step of the Schur algorithm was split in [16] into two substeps and
this leads to the expansion of f ∈ Mk

κ(s, 2nN − 2) into a generalized Stieltjes continued
fraction

(1.19) f(z) =
1

−zm1(z) +
1

l1 + · · ·+
1

−zmN (z) +
1

lN + fN (z)

,

where mj are polynomials, lj ∈ R\{0} and fN is a function from the generalized Stieltjes

class Nk−kN

κ−κN
, such that fN (z) = o(1) as z→̂∞. If f ∈ Mk

κ(s) then fN has an induced
asymptotic expansion

(1.20) fN (z) = −
s
(N)
0

z
−

s
(N)
1

z2
− · · · −

s
(N)
2n

z2n+1
+ o

(
1

z2n+1

)
, z→̂∞,

i.e. fN is a solution of an induced moment problem MP k−kN

κ−κN
(s(N)) generated by the

sequence s(N) = (s
(N)
i )∞i=0. Then fN ∈ Mk

κ(s
(N)).

Generalized Stieltjes continued fractions were studied in [15]. Associated to the con-
tinued fraction (1.19) there is a system of difference equations (see [42, Section 1])

(1.21)

{
y2j−1 − y2j−3 = −zmj(z)y2j−2,
y2j − y2j−2 = ljy2j−1,

j ∈ N.

Define the generalized Stieltjes polynomials P+
j and Q+

j of the first and second kind

as solutions of the system (1.21) subject to the initial conditions

(1.22) P+
−1(z) ≡ 0, P+

0 (z) ≡ 1, Q+
−1(z) ≡ 1, Q+

0 (z) ≡ 0.

The formula (1.19) for the set of solutions of the truncated Stieltjes moment problem

MP k
κ(s, 2nN − 1) can be rewritten in terms of the generalized Stieltjes polynomials P+

j

and Q+
j , j = 2N − 1, 2N .

Theorem 1.2. ([17]) Let a sequence s = {si}
∞
i=0 ∈ Hk

κ be regular, N (s) = {nj}
∞
j=1, and

let P+
j and Q+

j be generalized Stieltjes polynomials of the first and second kind. Then

(i) A nondegenerate even moment problem MP k
κ (s, 2nN − 1) is solvable, if and only

if (1.18) holds.
(ii) f ∈ Mk

κ(s, 2nN − 1) if and only if f admits the representation

(1.23) f(z) =
Q+

2N−1(z)fN (z) +Q+
2N (z)

P+
2N−1(z)fN (z) + P+

2N (z)
,

where fN (z) satisfies the conditions

(1.24) fN ∈ N
k−k+

N

κ−κN
and fN (z) = o(1), z→̂∞.
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In what follows for every 2×2 matrix W = (wij)
2
i,j=1 we associate the linear-fractional

transformation

(1.25) TW [τ ] :=
w11τ + w12

w21τ + w22
.

Denote by W2N (z) the coefficient matrix of the linear fractional transform (1.23):

(1.26) W2N (z) =

(
Q+

2N−1(z) Q+
2N (z)

P+
2N−1(z) P+

2N (z)

)
.

Then the formula (1.23) can be rewritten as

(1.27) f(z) = TW2N (z)[fN (z)].

The structure of the continued fraction (1.19) leads to the following factorization of the
matrix valued function W2N (z):

W2N (z) = M1(z)L1 . . .MN (z)LN ,

where the matrices Mj(z) and Lj are defined by

(1.28) Mj(z) =

(
1 0

−zmj(z) 1

)
and Lj =

(
1 lj
0 1

)
, j ∈ N.

Continued fractions of the form (1.19) with positive and negative masses mj were
studied by Beals, Sattinger and Szmigielski [4] in connection with the theory of multi-
peakon solutions of the Camassa-Holm equation. In [22] Eckhardt and Kostenko showed
that inverse spectral problem for multi-peakon solutions of the Camassa-Holm equation
is solvable in the class of continued fractions of the form (1.19) with polynomials mj(z) =
djz+mj of formal degree 1. In [23] the spectral theory of continued fractions (1.19) was
treated within a classical Hamburger moment problem associated with this sequence.

The full indefinite Stieltjes moment problem MP k
κ (s) for regular sequences s ∈ Hk,reg

κ

was considered in [17] via the operator approach. The moment problem MP k
κ (s) was

treated in [17] as a problem of extension theory for a symmetric operator generated by
this generalized Jacobi matrix. In that paper we used quite advanced tools: the theory
of boundary triples developed in [25, 18, 19], and the M. G. Krĕın theory of resolvent
matrices extended in [9, 12] to the case of indefinite inner spaces.

In the present paper we are going to use elementary tools in order to make the presen-
tation available for a wider audience. The main idea is to use the factorization formula
for the coefficients matrix W2j(z)

(1.29) W2j(z) = W2N (z)W
(N)
2(j−N)(z), j > N, j,N ∈ N,

which allows to reduce the indefinite Stieltjes moment problemMP k
κ (s, 2j) to some classi-

cal Stieltjes moment problem MP 0
0 (s

(N), 2(j−N)) with the resolvent matrixW
(N)
2(j−N)(z).

Then all the known results for the classical Stieltjes moment problem can be translated
to the indefinite Stieltjes moment problem. In particular, in Theorem 4.2 it is shown
that the problem MP k

κ (s) is indeterminate if and only if

(1.30) M :=

∞∑

j=1

mj(0) < ∞ and L :=

∞∑

j=1

lj < ∞.

In the classical case, polynomials mj(z) are constants and the criterion (1.30) coincides
with the well known Stieltjes criterion, see [1, Theorem 0.4].

If (1.30) is in force, then the matrix valued functions W2j(z) converge to an entire
matrix valued functionW+

∞(z) of order 1/2 and the linear fractional transformation (1.27)
generated by the matrix valued function W∞(z) provides a description of the set Mk

κ(s).
In Section 5 Padé approximants for formal power series corresponding to an indefi-

nite Stieltjes moment problem are calculated. As was shown in [8] the diagonal Padé
approximants for formal power series corresponding to an indefinite Hamburger moment
problem are represented as a ratio of the Lanzcos polynomials of the 2-nd and the 1-st
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kind, [8]. In Theorem 5.4 we show that the sub-diagonal Padé approximants of the cor-
responding formal power series is a ratio of the generalized Stieltjes polynomials of the
2-nd and the 1-st kind. In Theorem 5.6 convergence of Padé approximants is derived
from the classical results using the formula (1.29).

In Section 6 the results are illustrated by an example of indefinite moment problem
associated with Laguerre polynomials Ln(z, α) in the non-classical case α < −1.

2. Preliminaries

2.1. Generalized Nevanlinna functions. A function f ∈ Nκ is said to belong to the
class Nκ,−ℓ (κ, ℓ ∈ Z+ := N∪ {0}) if f admits the asymptotic expansion (1.10) for some
real numbers s0, . . . , sℓ. Let us also set

(2.1) Nκ,−∞ :=
⋂

n≥0

Nκ,−2n.

Every real polynomial P (z) = pνz
ν+ · · ·+p1z+p0 of degree ν belongs to a class Nκ−(P ),

where the index κ−(P ) can be evaluated by (see [30, Lemma 3.5])

(2.2) κ−(P ) =

{ [
ν+1
2

]
, if pν < 0; and ν is odd ,[

ν
2

]
, otherwise .

Recall, that a function f ∈ Nκ is said to be from the generalized Stieltjes class N±k
κ ,

if z±1f(z) belongs to Nk (κ, k ∈ Z+). Let us collect some properties of generalized
Nevanlinna functions, see [30], [9].

Proposition 2.1. ([30]) Let κ, κ1, k ∈ Z+. Then the following statements hold:

(i) f ∈ Nκ ⇐⇒ − 1
f ∈ Nκ;

(ii) f ∈ Nk
κ ⇐⇒ − 1

f ∈ N−k
κ ;

(iii) f ∈ Nk
κ ⇐⇒ zf(z) ∈ N−κ

k ;
(iv) if f ∈ Nκ, f1 ∈ Nκ1

then f + f1 ∈ Nκ′ , where κ′ ≤ κ + κ1. If, in addition,
f(iy) = o(y) as y → ∞ and f1 is a polynomial, then f + f1 ∈ Nκ+κ1

;
(v) if a function f ∈ Nκ has an asymptotic expansion (1.5) for every n ∈ N, then

there exists κ′ ≤ κ, such that {sj}
∞
j=0 ∈ Hκ′ .

The notions of generalized poles of non-positive type of a function f ∈ Nκ were
introduced in [32]. The following definitions are based on [34]. A point α ∈ R is called a
generalized pole of non-positive type (GPNT) of the function f ∈ Nκ with multiplicity
κα(f) if

(2.3) −∞ < lim
z→̂α

(z − α)2κα+1f(z) ≤ 0, 0 < lim
z→̂α

(z − α)2κα−1f(z) ≤ ∞.

Similarly, the point ∞ is called a generalized pole of f of nonpositive type (GPNT) with
multiplicity κ∞(f) if

(2.4) 0 ≤ lim
z→̂∞

f(z)

z2κ∞+1
< ∞, −∞ ≤ lim

z→̂∞

f(z)

z2κ∞−1
< 0.

The following fundamental result was proved in [32, Theorem 3.5].

Proposition 2.2. Let f ∈ Nκ. Then the total multiplicity of the poles of f in C+ and
the generalized poles of negative type of f in R ∪ {∞} is equal to κ.

2.2. Regular sequences and step–by–step algorithm. In the present paper we will
consider so-called regular sequences s from Hk

κ introduced in [15].

Definition 2.3. The sequence s is called regular (and is denoted as s ∈ Hk,reg
κ ), if one

of the following equivalent conditions holds:

(i) Pj(0) 6= 0 for every j ∈ N;
(ii) D+

nj
:= detS+

nj
6= 0 for every j ∈ N;

(iii) D+
nj−1 6= 0 for every j ∈ N.
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The following step–by–step algorithm of solving the indefinite Stieltjes moment prob-
lem for regular sequences s ∈ Hk,reg

κ was developed in [17]. For an indefinite Hamburger
moment problem such an algorithm was elaborated in [6, 7].

Let f ∈ Mk
κ(s) and let n1 be the first normal index, i.e.

s0 = · · · = sn1−2 = 0, sn1−1 6= 0.

By Proposition 2.1 (4) −1/f ∈ N−k
κ and

(2.5) −
1

f(z)
= P1(z) + o(1) as z→̂∞,

where P1(z) is the Lanzcos polynomial of degree: degP1 = n1. Since s is regular, then
−l−1

1 := P1(0) 6= 0 and hence (2.5) can be rewritten as

(2.6) −
1

f(z)
= zm1(z)−

1

g1(z)
= zm1(z)−

1

l1 + f1(z)
.

Let κ1=κ−(zm1), k1=κ−(m1), k
+
1 = k1 + κ−(zl1). Then by Proposition 2.1 (2), (4)

zm1 ∈ N−k1
κ1

⇒ −
1

g1
= −

1

f
− zm1 ∈ N

−(k−k1)
κ−κ1

⇒ g1 ∈ Nk−k1
κ−κ1

⇒ f1 ∈ N
k−k+

1
κ−κ1

.

The formula (2.6) yields the following representation of f ∈ Mk
κ(s):

(2.7) f(z) =
1

−zm1(z) +
1

l1 + f1(z)

,

where f1 ∈ N
k−k+

1
κ−κ1

satisfies the asymptotic expansion

(2.8) f1(z) = −
s
(1)
0

z
−

s
(1)
1

z2
− · · · −

s
(1)
2n

z2n+1
+ o

(
1

z2n+1

)
, z→̂∞

with some real numbers s
(1)
i , i ∈ Z+. Explicit formulas for calculation of the sequence

s(1) = {s
(1)
i }∞i=0 are presented in [17, Remarks 3.4, 3.6], the polynomial m1(z) and the

number l1 can be found by (see [17, (2.16), (3.27)]):

(2.9) m1(z) =
(−1)n1+1

Dn1

∣∣∣∣∣∣∣∣∣

0 . . . 0 sn1−1 sn1

... . . . . . .
...

sn1−1 . . . . . . . . . s2n1−2

1 z . . . zn1−2 zn1−1

∣∣∣∣∣∣∣∣∣
,

(2.10) l1 = (−1)n1+1sn1−1
Dn1

D+
n1

, Dν := detSν , D+
ν := detS+

ν .

This completes the first step of the Schur algorithm.

Applying this algorithm repeatedly N times one obtains a function fN ∈ N
k−k+

N

κ−κN
,

with κN and kN given by (1.18), connected with f by the formula (1.19). Moreover, the
function fN satisfies the asymptotic expansion

(2.11) fN (z) = −
s
(N)
0

z
−

s
(N)
1

z2
− · · · −

s
(N)
2n

z2n+1
+ o

(
1

z2n+1

)
, z→̂∞

with some real s
(N)
i , i ∈ Z+.
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Lemma 2.4. ([15]) Let s ∈ Hk,reg
κ . Then there exist sequences of polynomials mj(z)

and numbers lj such that the 2j−th convergent
u2j

v2j
of the continued fraction

(2.12)
1

−zm1(z) +
1

l1 + . . .
1

−zmj(z) +
1

lj + . . .

coincides with the j−th convergent of the P−fraction (1.14) corresponding to the sequence
s. Let functions f and fN (N ∈ N) be connected by (1.19) and let s(N) is the N−th
induced sequence. Then

(2.13) f ∈ Mk
κ(s, ℓ) ⇐⇒ fN ∈ M

k−k+
N

κ−κN
(s(N), ℓ− 2nN ),

(2.14) f ∈ Mk
κ(s) ⇐⇒ fN ∈ M

k−k+
N

κ−κN
(s(N)),

where κN and k+N are given by (1.18).

In the case of a regular sequence s ∈ Hk
κ the parameters lj and mj(z) in (2.12) can be

calculated recursively by the above Schur algorithm in terms of the sequence s:

(2.15) mj(z) =
(−1)ν+1

D
(j−1)
ν

∣∣∣∣∣∣∣∣∣

0 . . . 0 s
(j−1)
ν−1 s

(j−1)
ν

... . . . . . .
...

s
(j−1)
ν−1 . . . . . . . . . s

(j−1)
2ν−2

1 z . . . zν−2 zν−1

∣∣∣∣∣∣∣∣∣
,

where D
(j)
ν := detS

(j)
ν , ν = nj − nj−1 and

(2.16) lj = (−1)ν+1 D
(j−1)
ν(

D
(j−1)
ν

)+ , j = 1, . . . , N − 1.

The N−th induced sequence s(N) can be found as the sequence of coefficients of the

series expansion −
∑∞

i=0 s
(N)
i z−(i+1) corresponding to the continued fraction

(2.17)
1

−zmN+1(z) +
1

lN+1 +
1

−zmN+2(z) +
1

. . .

.

2.3. Generalized Stieltjes continued fractions. In [15] the expansion (2.12) of f ∈
Mk

κ(s) into a generalized Stieltjes fraction for s ∈ Hk,reg
κ was derived from the expansion

of its unwrapping transform zf(z2) into the P−fraction.

Theorem 2.5. ([15]) Let s ∈ Hk,reg
κ and let the P−fraction (1.14) and the generalized

S−fraction (2.12) correspond to the sequence s. Then the parameters lj and mj(z)
(j ∈ Z+) of the generalized S−fraction (2.12) are connected with the parameters bj and
aj(z) (j ∈ N) of the P−fraction (1.14) by the equalities

(2.18) b0 =
1

d1
, a0(z) =

1

d1

(
zm1(z)−

1

l1

)
,

(2.19) bj =
1

l2jdjdj+1
, aj(z) =

1

dj+1

(
zmj+1(z)−

(
1

lj
+

1

lj+1

))
,

where dj is the leading coefficient of mj(z) (j = 1, . . . , N − 1).
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In the case when mj(z) ≡ mj are constants the generalized S−fraction reduces to the
classical S-fraction (1.7) and the formulas (2.18) and (2.19) coincide with the well known
classical formulas from [40], see also [1, Appendix, (3), (4)].

Conversely, mj and lj can be represented in terms of the P−fractions, see [15, Corol-
lary 4.1].

Corollary 2.6. Let s ∈ Hk,reg
κ , let s be associated with the S−fraction (2.12), let di be

the leading coefficient of the polynomial mi(z) and let

(2.20) b̃i = b0b1 . . . bi, i ∈ Z+.

Then

(2.21) di =
P 2
i−1(0)

b̃i−1

, li = −
b̃i−1

Pi−1(0)Pi(0)
, mi(z) = di

ai−1(z)− ai−1(0)

z
, i ∈ N.

Remark 2.7. If N (s) = N, then deg(mi) = 0 for all i ∈ N, and di = mi, li can be found
by (2.21). Alternatively, mi, li can be found by (1.6).

If D+
i > 0 for all i ∈ N, then deg(mi) ≤ 1 for all i ∈ N, and mi(z) = diz +mi, li can

be found by (2.21). The parameters di, mi and li can be also expressed in terms of Di

and D+
i , see [32, Section 5.3], [15, Remark 4.1].

3. Truncated indefinite moment problems

3.1. A system of difference equations and generalized Stieltjes polynomials.

Let us consider a system of difference equations associated with the continued fraction
(2.12)

(3.1)

{
y2j−1 − y2j−3 = −zmj(z)y2j−2,
y2j − y2j−2 = ljy2j−1,

j ∈ N.

If the j–th convergent of this continued fraction is denoted by
uj

vj
, then uj , vj can be

found as solutions of the system (3.1) (see [42, Section 1]) subject to the following initial
conditions

(3.2) u−1 ≡ 1, u0 ≡ 0; v−1 ≡ 0, v0 ≡ 1.

The first two convergents of the continued fraction (2.12) take the form

u1

v1
=

1

−zm1(z)
= TM1

[∞],
u2

v2
=

l1
−zl1m1(z) + 1

= TM1L1
[0].

Definition 3.1. ([16]) Let s ∈ Hk,reg
κ . Define polynomials P+

i (z), Q+
i (z) by

P+
−1(z) ≡ 0, P+

0 (z) ≡ 1, Q+
−1(z) ≡ 1, Q+

0 (z) ≡ 0,

P+
2i−1(z) = −

1

b̃i−1

∣∣∣∣
Pi(z) Pi−1(z)
Pi(0) Pi−1(0)

∣∣∣∣ and P+
2i (z) =

Pi(z)

Pi(0)
,

Q+
2i−1(z) =

1

b̃i−1

∣∣∣∣
Qi(z) Qi−1(z)
Pi(0) Pi−1(0)

∣∣∣∣ and Q+
2i(z) = −

Qi(z)

Pi(0)
.

(3.3)

The polynomials P+
i (z), Q+

i (z) are called the generalized Stieltjes polynomials corre-
sponding to the sequence s.

As was noticed in [16] the generalized Stieltjes polynomials coincide with the solutions
ui and vi of the system (3.1).
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Proposition 3.2. Let s ∈ Hk,reg
κ and let P+

j (z) and Q+
j (z) be the generalized Stieltjes

polynomials defined by (3.3). Then the solutions {uj}
N
j=0 and {vj}

N
j=0 of the system (3.1),

(3.2) take the form

uj = Q+
j (z), vj = P+

j (z), j = −1, 0, . . . , N.

Remark 3.3. The Stieltjes polynomials satisfy the following properties

(3.4) P+
2i−1(0) = 0, P+

2i−2(0) = 1 and Q+
2i−1(0) = 1.

Obviously, by Definition 3.1

(3.5) P+
2i−1(0) = −

1

b̃i−1

∣∣∣∣
Pi(0) Pi−1(0)
Pi(0) Pi−1(0)

∣∣∣∣ = 0 and P+
2i−2(0) =

Pi(0)

Pi(0)
= 1.

By (3.7)

(3.6) Q+
2i−1(0) =

1

b̃i−1

∣∣∣∣
Qi(0) Qi−1(0)
Pi(0) Pi−1(0)

∣∣∣∣ =
Qi(0)Pi−1(0)−Qi−1(0)Pi(0)

b̃i−1

= 1.

Here we used the generalized Liouville-Ostrogradsky formula (see [17, (2.9)])

(3.7) Qi(z)Pi−1(z)−Qi−1(z)Pi(z) = b̃i−1, i ∈ N.

Lemma 3.4. Let P+
i and Q+

i be the Stieltjes polynomials defined by (3.3). Then

(3.8) P+
2i (z)Q

+
2i−1(z)−Q+

2i(z)P
+
2i−1(z) = 1.

Proof. By Definition 3.1 and (3.7) we obtain

P+
2i (z)Q

+
2i−1(z)−Q+

2i(z)P
+
2i−1(z) =

Pi(z)

b̃i−1Pi(0)
(Qi(z)Pi−1(0)− Pi(0)Qi−1(z))−

−
Qi(z)

b̃i−1Pi(0)
(Pi(z)Pi−1(0)− Pi(0)Pi−1(z))

=
Qi(z)Pi−1(z)− Pi(z)Qi−1(z)

b̃i−1

= 1.

This completes the proof. �

Lemma 3.5. Let s ∈ Hk,reg
κ and let Pi(z) and Qi(z) (i ∈ Z+) be Lanczos polynomials

of the first and second kind and let lj and mj(z) (j ∈ N) be parameters of the generalized
S−fraction (2.12). Then

(i) The constants li can be calculated by

(3.9) li = −
Qi(0)

Pi(0)
+

Qi−1(0)

Pi−1(0)
, i ∈ N;

(ii) For every N ∈ N the following formulas hold

(3.10)

N∑

i=1

li = −
QN (0)

PN (0)
,

N∑

i=1

di =

N−1∑

i=0

|P 2
i (0)|̃b

−1
i ,

(3.11)
N∑

i=1

mi(0) = −P+
′

2N−1(0).

Proof. 1) Let Q+
i (z) be Stieltjes polynomials defined by (3.3). Substituting in (3.1)

yj = Q+
j and z = 0, we obtain

Q+
2i(0)−Q+

2i−2(0) = liQ
+
2i−1(0).
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By Definition 3.1 and by the generalized Liouville-Ostrogradsky formula (3.7)

Q+
2i−1(0) =

1

b̃i−1

(Qi(0)Pi−1(0)−Qi−1(0)Pi(0) = 1.

This implies (3.9).
2) Summing the equalities (3.9) for i = 1, . . . , N one obtains the first equality in (3.10).

The second equality in (3.10) is implied by the relation (see [15, Corollary 4.1])

(3.12) di+1 = |P 2
i (0)|̃b

−1
i .

3) Differentiating the first equality in (3.1) one obtains

P+
′

2i−1(z) = −mi(z)P
+
2i−2(z)− z(mi(z)P

+
2i−2(z))

′ + P+
′

2i−3(z).

Substituting z = 0 and using the equality P+
2i−2(0) = 1, one obtains

mi(0) = P+
′

2i−3(0)− P+
′

2i−1(0).

Hence

N∑

i=1

mi(0) = P+
′

−1(0)− P+
′

1 (0) + · · ·+ P+
′

2N−3(0)− P+
′

2N−1(0) = −P+
′

2N−1(0).

This proves (3.11). �

3.2. The class Uk
κ (J) and linear fractional transformations. Let J and Z be the

2× 2 matrices

J =

(
0 −i
i 0

)
and Z =

(
z 0
0 1

)
.

Definition 3.6. Let W (z) be a 2×2 matrix valued function meromorphic in C+ and let
h
+
W be the domain of holomorphy of W in C+, κ ∈ Z+. Then W (z) is called a generalized

J-inner matrix valued function from the class Uκ(J), if

(i) the kernel

(3.13) K
W
ω (z) =

J −W (z)JW (ω)∗

−i(z − ω̄)

has κ negative squares in h
+
W × h

+
W ;

(ii) J −W (µ)JW (µ)∗ = 0 for a.e. µ ∈ R.

A matrix valued function W ∈ Uκ(J) is said to belong to the class Uk
κ (J), κ, k ∈ Z+, if

(3.14) ZWZ−1 ∈ Uk(J).

Consider the linear fractional transformation

(3.15) TW [τ ] = (w11τ(z) + w12)(w21τ(z) + w22)
−1

associated with the matrix valued function W (z) = (wi,j(z))
2
i,j=1. The linear fractional

transformation associated with the product W1W2 of two matrix valued functions W1(z)
and W2(z), coincides with the composition TW1

◦ TW2
.

The following statement is an easy corollary of Definition 3.6.

Lemma 3.7. Let W ∈ Uk1
κ1
(J) and τ ∈ Nk2

κ2
, κ1, κ2, k1, k2 ∈ Z+. Then TW [τ ] ∈ Nk′

κ′ ,
where κ′ ≤ κ1 + κ2, k

′ ≤ k1 + k2.
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Proof. The proof of the inclusion TW [τ ] ∈ Nκ′ for some κ′ ≤ κ1 + κ2 is similar to that
in [13, Lemma 3.4].

Let us denote f(z) = TW (z)[τ(z)]. Then

zf(z) = TZW (z)Z−1 [zτ(z)].

Since ZWZ−1 ∈ Uk1
and zτ ∈ Nk2

then f ∈ Nk′ for some k′ ≤ k1 + k2. This proves

that TW [τ ] ∈ Nk′

κ′ for some κ′ ≤ κ1 + κ2, k
′ ≤ k1 + k2. �

In the present paper two special types of matrix valued functions from Uk
κ (J) play an

important role (see [17, Lemma 2.11, Lemma 2.12]).

Lemma 3.8. Let m(z) be a real polynomial such that κ−(zm(z)) = κ1, κ−(m(z)) = k1,
let M(z) be a 2× 2 matrix valued function

(3.16) M(z) =

(
1 0

−zm(z) 1

)

and let τ be a meromorphic function, such that

(3.17) τ(z)−1 = o(z) as z→̂∞.

Then M ∈ Uk1
κ1
(J) and the following equivalences hold:

(3.18) τ ∈ Nκ2
⇐⇒ TM [τ ] ∈ Nκ1+κ2

,

(3.19) τ ∈ Nk2
κ2

⇐⇒ TM [τ ] ∈ Nk1+k2
κ1+κ2

.

Lemma 3.9. Let l(z) be a real polynomial such that κ−(l(z)) = κ1, κ−(zl(z)) = k1, let
L(z) be the 2× 2 matrix valued function

(3.20) L(z) =

(
1 l(z)
0 1

)

and let φ be a meromorphic function, such that

(3.21) φ(z) = o(1) as z→̂∞.

Then L ∈ Uk1
κ1
(J) and the following equivalences hold:

(3.22) φ ∈ Nκ2
⇐⇒ TL[φ] ∈ Nκ1+κ2

,

(3.23) φ ∈ Nk2
κ2

⇐⇒ TL[φ] ∈ Nk1+k2
κ1+κ2

.

3.3. Truncated indefinite moment problem and resolvent matrices. As was men-
tioned in Theorem 1.2 the matrix valued function W2N (z) defined by (1.26) is the re-
solvent matrix of a truncated even indefinite moment problem MP k

κ (s, 2N − 1) with
κ ≥ κN and k ≥ k+N , where κN and k+N are defined by (1.18). The resolvent matrix
W2N (z) provides an example of generalized J−inner matrix valued function from the

class U
k+
N

κN (J).

Theorem 3.10. ([17]) Let s = {si}
∞
i=0 ∈ Hk,reg

κ , let P+
j (z) and Q+

j (z) be general-

ized Stieltjes polynomials of the first and second kind, let mi(z), li be defined by (2.15)
and (2.16) and let W2N (z), Mi(z) and Li be given by (1.26) and (1.28). Then

(i) The matrix valued function W2N (z) admits the factorization

(3.24) W2N (z) = M1(z)L1 . . .MN (z)LN ;

(ii) W2N ∈ U
k+
N

κN (J).
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Proof. It follows from (3.1) that

(3.25) W2N (z) = W2N−2(z)MN (z)LN .

Applying (3.25) N times one obtains (3.24).
By [17, Theorem 4.3 (4)]

κN =

N∑

j=1

κ−(zmj), k+N =

N∑

j=1

k−(mj) +

N∑

j=1

κ−(zlj).

Since by Lemmas 3.8, 3.9 Mi ∈ U
κ−(mi)
κ−(zmi)

, Li ∈ U
κ−(zli)
0 , i ∈ N, one obtains from the

factorization formula (3.24) W2N ∈ Uk′

κ′ (J), where

(3.26) κ′ ≤ κN , k′ ≤ k+N .

On the other hand it follows from Lemma 3.7 that f := TW2N [0] ∈ N
k+
N

κN . Therefore, by
Lemma 3.7

(3.27) κN ≤ κ′, k+N ≤ k′.

The statement (ii) follows from (3.26) and (3.27). �

Let us formulate an analog of Theorems 1.2 and 3.10 for the odd truncated indefinite
moment problem (see [17]).

Theorem 3.11. Let s = {si}
2nN−2
i=0 ∈ Hk,reg

κ , let P+
j (z) and Q+

j (z) (0 ≤ j ≤ 2N − 1) be

generalized Stieltjes polynomials, let Mi(z) and Li be given by (1.28) and let the matrix
valued function W2N−1 be defined by

(3.28) W2N−1(z) =

(
Q+

2N−1(z) Q+
2N−2(z)

P+
2N−1(z) P+

2N−2(z)

)
.

Then

(i) The odd moment problem MP k
κ (s, 2nN − 2) is solvable, if and only if

(3.29) κN := ν−(SnN
) ≤ κ and kN := ν−(S

+
nN−1) ≤ k.

(ii) f ∈ Mk
κ(s, 2nN − 2) if and only if f admits the representation

(3.30) f(z) = TW2N−1(z)[τ(z)] =
Q+

2N−1(z)τ(z) +Q+
2N−2(z)

P+
2N−1(z)τ(z) + P+

2N−2(z)
,

where τ ∈ Nk−kN

κ−κN
and τ(z)

−1
= o(z) as z→̂∞.

(iii) The matrix valued function W2N−1(z) belongs to the class UkN
κN

(J) and admits
the factorization

(3.31) W2N−1(z) = M1(z)L1 . . . LN−1MN (z).

Substituting in (3.30) τ(z) = ∞ one obtains from Theorem 3.11 the following:

Corollary 3.12. The function
Q+

2N−1(z)

P+
2N−1(z)

belongs to the class NkN
κN

.

Similarly, substituting in (1.23) τ(z) ≡ 0 one obtains from Theorem 1.2.

Corollary 3.13. The function
Q+

2N (z)

P+
2N (z)

belongs to the class N
k+
N

κN .
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3.4. Two lemmas about linear fractional transformations TM and TL. The state-
ments of Lemmas 3.8 and 3.9 fail to hold if the conditions

(3.32) τ(z)−1 = o(z) as z→̂∞,

(3.33) φ(z) = o(1) as z→̂∞

are not satisfied. In these cases the number of moments interpolating by the linear
fractional transformations TW [τ ] can be reduced and also their indices can decrease. We
will start with the linear fractional transformations TM in the simplest cases when m is
a positive constant and hence M ∈ U0

0 (J).

Lemma 3.14. Let M(z) be a 2× 2 matrix valued function

(3.34) M(z) =

(
1 0

−zm 1

)
, m > 0,

let τ ∈ Nk
κ be a function from Nk

κ, such that τ(z)−1 6= o(z) as z→̂∞ and let φ = TM [τ ].
Then

(i) either φ ∈ Nk
κ and φ(z) = o(1) as z→̂∞,

(ii) or φ ∈ Nk
κ−1.

Proof. 1. Verification of (i) for τ ∈ Nk
κ, such that:

(3.35) lim
z→̂∞

−1

zτ(z)
= −∞.

By Lemma 2.1 −τ−1 ∈ N−k
κ . If (3.35) holds then mz − τ(z)−1 has GPNT (generalized

pole of negative type) at ∞ of the same multiplicity as −τ(z)−1, i.e.

(3.36) κ∞

(
mz −

1

τ(z)

)
= κ∞

(
−

1

τ(z)

)
.

Since also

(3.37) κ∞

(
m−

1

zτ(z)

)
= κ∞

(
−

1

zτ(z)

)
,

one obtains by Theorem 2.2 mz − τ(z)−1 ∈ N−k
κ . Hence φ(z) = −1

mz−τ(z)−1 ∈ Nk
κ by

Lemma 2.1 and, moreover, φ(z) = o(1) as z→̂∞, since

lim
z→̂∞

φ(z) = lim
z→̂∞

1/z

m− (zτ(z))−1
= 0.

2. Verification of (i) for τ ∈ Nk
κ, such that:

(3.38) lim
z→̂∞

−1

zτ(z)
= a

and a ≥ 0. In this case κ∞(−τ(z)−1) = 0 and −τ(z)−1 admits the representation

(3.39) −τ(z)−1 = az − τ1(z)
−1,

where lim
z→̂∞

−1
zτ1(z)

= 0. Then the function mz − τ(z)−1 = (m + a)z − τ1(z)
−1 has no

GPNT at ∞ since

lim
z→̂∞

(
m−

1

zτ(z)

)
= m+ a > 0.

Then (3.36) and (3.37) hold and by Theorem 2.2 mz − τ(z)−1 ∈ N−k
κ . Moreover,

(3.40) lim
z→̂∞

φ(z) = lim
z→̂∞

1/z

m+ a− (zτ(z))−1
= 0.

and hence (i) holds.
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3. Verification of (i) for τ ∈ Nk
κ, such that (3.38) holds and a < −m : In this case

lim
z→̂∞

(
m−

1

zτ(z)

)
= m+ a < 0

and hence

κ∞

(
mz −

1

τ(z)

)
= κ∞

(
−

1

τ(z)

)
= 1.

Since also (3.37) holds then by Theorem 2.2 mz − τ(z)−1 ∈ N−k
κ , and by (3.40) φ(z) =

o(1) as z→̂∞. Hence (i) holds.
4. Verification of (ii) for τ ∈ Nk

κ, such that (3.38) holds and a ∈ [−m, 0) : In this
case

κ∞

(
mz −

1

τ(z)

)
= 0, κ∞

(
−

1

τ(z)

)
= 1

and since (3.37) holds then mz − τ(z)−1 ∈ N−k
κ−1 by Theorem 2.2. Therefore, φ(z) =

−1
mz−τ(z)−1 ∈ Nk

κ−1 by Lemma 2.1. This proves (ii). �

Lemma 3.15. Let L be the 2× 2 matrix

(3.41) L =

(
1 l
0 1

)
, where l > 0,

let φ be a function from Nk
κ, such that

(3.42) φ(z) 6= o(1) as z→̂∞

and let τ = TL[φ] = l + φ. Then

(i) either τ ∈ Nk
κ and τ(z)−1 = o(z) as z→̂∞,

(ii) or τ ∈ Nk−1
κ .

Proof. 1. Verification of (i) for φ ∈ Nk
κ, such that zφ(z) has a GPNT at ∞ and:

(3.43) lim
z→̂∞

φ(z) = −∞.

The function zτ(z) = lz + zφ(z) has GPNT at ∞ of the same multiplicity as zφ(z) and
by Theorem 2.2 zτ(z) ∈ Nk. Hence τ ∈ Nk

κ and the equality

lim
z→̂∞

1

zτ(z)
= lim

z→̂∞

1

lz + zφ(z)
= 0

implies that τ(z)−1 = o(z) as z→̂∞. Thus (1) holds.
2. Verification of (i) for φ ∈ Nk

κ, such that lim
z→̂∞

φ(z) = a and a > 0: In this case

zφ(z) admits the representation

(3.44) zφ(z) = az + zφ1(z),

where lim
z→̂∞

φ1(z) = 0 and φ1 ∈ Nk
κ by Theorem 2.2. The function zτ(z) = lz + zφ(z)

has no GPNT at ∞ and therefore τ ∈ Nk
κ. Moreover,

(3.45) lim
z→̂∞

1

zτ(z)
= lim

z→̂∞

1

(l + a)z + zφ(z)
= 0.

and hence (i) holds.
3. If φ ∈ Nk

κ, lim
z→̂∞

φ(z) = a and a < −l, then also (i) holds: In this case

κ∞(zφ) = 1 and κ∞(zτ) = 1,

that is the functions zφ(z) and zτ(z) have GPNT at ∞ of the same multiplicity. By
Theorem 2.2 τ ∈ Nk

κ and by (3.45) τ(z)−1 = o(z) as z→̂∞. Hence (i) holds.
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4. If lim
z→̂∞

φ(z) = a and a ∈ [−l, 0) then (ii) holds: In this case

κ∞(zφ) = 1 and κ∞(zτ) = 0,

and hence zτ ∈ Nk−1 by Theorem 2.2. Thus τ ∈ Nk−1
κ . �

Corollary 3.16. Let a matrix valued function W2n(z) of the form (1.26) belong to the
class U0

0 (J), let φ ∈ Nk
κ, (3.33) fails to hold, let n ≥ min {κ, k} and let f = TW2n

[φ].
Then there exists r ∈ Z+ (r ≤ min {κ, k}), such that

(i) either f ∈ Mk−r
κ−r(s, 2(n− r)− 2);

(ii) or f ∈ Mk−r−1
κ−r (s, 2(n− r)− 3).

In particular, f(z) = o(1) as z→̂∞.

Proof. By Theorem 3.11 the matrix valued function W2n(z) admits the factorization

(3.46) W2n(z) = M1(z)L1 . . .Mn(z)Ln.

Let us denote τ1 := TLn
[φ]. By Lemma 3.15 there are three possibilities

(a1) either τ1 ∈ Nk
κ and τ−1

1 (z) = o(z);
(a2) or τ1 ∈ Nk−1

κ and τ−1
1 (z) = o(z);

(a3) or τ1 ∈ Nk−1
κ and τ−1

1 (z) 6= o(z).

In the case (a1) one obtains by Theorem 3.11 f ∈ Mk
κ(s, 2n − 2), which gives (i) with

r = 0.
In the case (a2) by Theorem 3.11 f ∈ Mk−1

κ (s, 2n−2) ⊂ Mk−1
κ (s, 2n−3), which gives

(ii) with r = 0.
In the case (a3) we apply Lemma 3.14 to the function φ1(z) = TMn

[τ1(z)] and then
again there are three possibilities:

(b1) φ1 := TMn
[τ ] ∈ Nk−1

κ and φ1(z) = o(1);

(b2) φ1 := TMn
[τ ] ∈ Nk−1

κ−1 and φ1(z) = o(1);

(b3) φ1 := TMn
[τ ] ∈ Nk−1

κ−1 and φ1(z) 6= o(1).

In the case (b1) by Theorem 1.2 one obtains f∈Mk−1
κ (s, 2n−3) which gives (2) with r=0.

In the case (b2) by Theorem 1.2 f ∈ Mk−1
κ−1(s, 2n− 3) ⊂ Mk−1

κ−1(s, 2n− 4) which gives
(i) with r = 1.

In the case (b3) one should continue this process based on Lemma 3.14, Lemma 3.15,
Theorem 1.2 and Theorem 3.11.

If, for instance, k ≤ κ and if the process will not stop until the step r = k, then when
applying Lemma 3.15 to φk ∈ N0

κ−k one obtains only one possibility: τk+1 ∈ N0
κ−k and

τk+1(z)
−1 = o(z) as z→̂∞. Then the process stops and f ∈ M0

κ−k(s, 2(n − k) − 2) by
Theorem 3.11.

Similarly, one can treat the case κ < k by using Lemma 3.14 and Theorem 1.2. �

4. Full indefinite moment problem MP k
κ (s)

4.1. Indefinite moment problem MP k
κ (s) for s ∈ H0

0. Recall, that the moment
problem MP k

κ (s) is called indeterminate if it has more then one solution. A sequence s

is called nondegenerate, if

(4.1) there is N ∈ N, such that Dn 6= 0, D+
n 6= 0 for all n ≥ N.

In this subsection we consider the indefinite moment problem MP k
κ (s) for a nondegen-

erate sequence s ∈ H0
0. As is known, see [1, Theorem 0.5], for a nondegenerate sequence

s ∈ H0
0 the corresponding moment problem MP 0

0 (s) is indeterminate, if and only if

(4.2)
∞∑

i=1

mi < ∞ and
∞∑

i=1

li < ∞.
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Theorem 4.1. Let s be a nondegenerate sequence from H0
0 and let (4.2) holds. Then

(i) The moment problem MP k
κ (s) is solvable and indeterminate for any pair of κ, k ∈

Z+.
(ii) The sequence of resolvent matrices W2n(z) converges to an entire matrix valued

function W+
∞(z) = (w+

ij(z))
2
i,j=1 of order ≤ 1/2.

(iii) The formula

(4.3) f(z) =
w+

11(z)τ(z) + w+
12(z)

w+
21(z)τ(z) + w+

22(z)

establishes a one-to-one correspondence between the class Mk
κ(s) and the set of

functions τ ∈ Nk
κ.

Proof. 1. Verification of (ii): Due to [27, Appendix II.13] the Stieltjes moment prob-
lem M0

0(s
(N)) is indeterminate if and only if (4.2) holds and in this case the sequence

W2N (z) (see (1.26)) of its resolvent matrices converges to an entire matrix valued function
W+

∞(z) = (w+
ij(z))

2
i,j=1 of order ≤ 1/2.

2. Verification of the implication f ∈ Mk
κ(s) =⇒ τ ∈ Nk

κ : Since f ∈ Mk
κ(s) then

f ∈ Mk
κ(s, 2n− 1) for every n ∈ N. By Theorem 1.2 there exists a sequence of functions

φN (z) ∈ Nk
κ such that (3.33) holds and

(4.4) f(z) = TW2N (z)[φN (z)] for every N ∈ N.

It follows from (4.4) that

−(Q+
2N−1(z)− f(z)P+

2N−1(z))φN (z) = Q+
2N (z)− f(z)P+

2N (z).

Notice that Q+
2N−1(z) − f(z)P+

2N−1(z) 6≡ 0, since otherwise we would have Q+
2N (z) −

f(z)P+
2N (z) ≡ 0, which contradicts the generalized Liouville-Ostrogradsky identity (3.7).

As was mentioned above the matrix valued functions W2N (z) converges locally uni-
formly in C to W+

∞(z) = (w+
ij(z))

2
i,j=1, in particular,

w+
11(z) = lim

N→∞
Q+

2N−1(z), w+
21(z) = lim

N→∞
P+
2N−1(z).

By Corollary 3.12
Q+

2N−1

P+
2N−1

∈ N0
0 = S. Hence the limiting function

w+
11(z)

w+
21(z)

belongs to

N0
0 = S and it corresponds to φ = ∞ in the linear fractional transformation f = TW+

∞

[τ ].
Apart from this case the function

(4.5) w+
11(z)− f(z)w+

21(z) = lim
N→∞

(Q+
2N−1(z)− f(z)P+

2N−1(z))

is not identically equal to 0. Let Ω be the open set of points in C+ such that w+
11(z) −

f(z)w+
21(z) 6= 0. Then for every point z ∈ Ω the sequence of functions

φN (z) :=
Q+

2N (z)− f(z)P+
2N (z)

Q+
2N−1(z)− f(z)P+

2N−1(z)

is correctly defined in a neighborhood of z and converges locally uniformly in Ω to a
function φ(z). Since φN ∈ Nk

κ then φ ∈ Nk′

κ′ with κ′ ≤ κ and k′ ≤ k. It follows
from (4.4) that

(4.6) f(z) = TW+
∞(z)[φ(z)]

and by Lemma 3.7 f ∈ Nk′′

κ′′ with κ′′ ≤ κ′ ≤ κ and k′′ ≤ k′ ≤ k. Since f ∈ Nk
κ this

implies κ′′ = κ′ = κ and k′′ = k′ = k and hence τ ∈ Nk
κ.

3. Proof of the fact that TW+
∞

[τ ] satisfies (3.33) for every τ ∈ Nk
κ, κ, k ∈ Z+.

Application of the Schur algorithm to the Stieltjes moment problem Mk
κ(s) gives on the

N−th step an induced sequence s(N), which can be found as the sequence of coefficients
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of the series expansion −
∞∑
i=0

s
(N)
i z−(i+1) corresponding to the continued fraction (2.17).

Denote by W
(N)
2j (z) the resolvent matrix of the corresponding Stieltjes moment problem

M0
0(s

(N), 2j − 1).

(4.7) W
(N)
2j (z) =

(
QN,+

2j−1(z) QN,+
2j (z)

PN,+
2j−1(z) PN,+

2j (z)

)
, j ∈ N.

Then for every j ∈ N the resolvent matrix W2j(z) admits the factorization (see [17,
Proposition 4.7])

(4.8) W2j(z) = W2N (z)W
(N)
2(j−N)(z).

Taking the limit as j → ∞ one obtains the following factorization of the entire matrix
valued function W+

∞(z)

(4.9) W+
∞(z) = W2N (z)W (N)

∞ (z),

whereW
(N)
∞ (z) is the resolvent matrix of the induced Stieltjes moment problemM0

0(s
(N)).

Then f = TW+
∞

[τ ] admits the representation

(4.10) f = TW2N
[φN ], where φN = T

W
(N)
∞

[τ ] ∈ Nk′

κ′ , with κ′ ≤ κ and k′ ≤ k.

Since W2N ∈ U0
0 by Corollary 3.16 one obtains f = o(1), if N > min {κ, k}.

4. Verification of the implication τ ∈ Nk
κ =⇒ f = TW+

∞

[τ ] ∈ Mk
κ(s): Due to the

above item 3 the function φN from (4.10) satisfies the condition (3.33).

Next By Theorem 1.2 f ∈ Mk′

κ′(s, 2N − 1). Since N can be chosen arbitrarily large

f ∈ Mk′

κ′(s). Now it follows from the item 2 that τ ∈ Nk′

κ′ and hence κ′ = κ and k′ = k.
5. Verification of (i): Solvability of the indefinite Stieltjes moment problem MP k

κ (s)
for any pair of κ, k ∈ Z+ follows from the item 4. The formula (4.3) gives two different
solutions of the problem MP k

κ (s) for different parameter functions τ1, τ2 ∈ Nk
κ and thus

the problem MP k
κ (s) is indeterminate. �

4.2. Indefinite moment problem MP k
κ (s), general case.

Theorem 4.2. Let s be a nondegenerate sequence from Hk0,reg
κ0

, κ0, k0 ∈ N and let lj
and mj(z) (j ∈ N) be parameters of the generalized S−fraction (2.12). Then the moment
problem MP k0

κ0
(s) is indeterminate, if and only if

(4.11)
∞∑

i=1

mi(0) < ∞ and
∞∑

i=1

li < ∞.

If (4.11) holds, then

(i) The sequence of resolvent matrices W2n(z) converges to an entire matrix valued
function W+

∞(z) = (w+
ij(z))

2
i,j=1 of order ≤ 1/2.

(ii) The moment problem MP k
κ (s) is solvable, if and only if

(4.12) κ0 ≤ κ, and k0 ≤ k.

(iii) The formula

(4.13) f(z) =
w+

11(z)τ(z) + w+
12(z)

w+
21(z)τ(z) + w+

22(z)

establishes a one-to-one correspondence between the class Mk
κ(s) and the set of

functions τ ∈ Nk−k0
κ−κ0

.
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Proof. 1. Redaction of the indefinite moment problem MP k
κ (s) to a classical one: Let

us choose N big enough, so that

(4.14) ν−(Sj) = κ0 = ν−(SnN
), ν−(S

(1)
j ) = k0 = ν−(S

(1)
nN

) for all j ≥ nN .

Then the induced sequence s(N) which arises on the N−th step of the Schur algorithm
(see Section 2.2) belongs to the class H0

0. The corresponding Stieltjes moment problem
M0

0(s
(N)) is classical. By Lemma 2.4

(4.15) f ∈ Mk
κ(s) ⇐⇒ fN = TW2nN

[f ] ∈ Mk−k0
κ−κ0

(s(N)).

In particular,

(4.16) f ∈ Mk0
κ0
(s) ⇐⇒ fN = TW2nN

[f ] ∈ M0
0(s

(N)).

Hence the problem Mk0
κ0
(s(N)) is indeterminate if and only if the Stieltjes moment prob-

lem M0
0(s

(N)) is indeterminate. The latter is equivalent to (4.11).

2. Verification of (i): Let PN,+
j (z) and QN,+

j (z) be generalized Stieltjes polynomials

associated with the moment problem M0
0(s

(N)) and let W
(N)
2j (see (4.7)). If (4.11) holds,

then the Stieltjes moment problem M0
0(s

(N)) is indeterminate and the sequence W
(N)
2j

converges to an entire matrix valued function W
(N)
∞ (z) = (w

(N)
ij (z))2i,j=1 of order ≤ 1/2.

The resolvent matrices W2j(z) of the indefinite moment problem MP k0
κ0

(s, 2j − 1)

are connected with the resolvent matrices W
(N)
2(j−N)(z) of the induced moment problem

MP 0
0 (s

(N), 2(j − N) − 1) by the formula (4.8). Therefore, the sequence of matrix val-
ued functions W2n−1(z) also converges to an entire matrix valued function W+

∞(z) =

(w+
ij(z))

2
i,j=1 of order ≤ 1/2, which is connected with W

(N)
∞ (z) by the formula (4.9).

3. Verification of (ii) and (iii) : By Proposition 2.1 (v) the inequalities (4.12) are
necessary for solvability of the problem Mk

κ(s).

Now assume that (4.12) holds, let τ ∈ Nk−k0
κ−κ0

and let f = TW+
∞

[τ ]. Then by Theo-
rem 4.1

(4.17) fN = T
W

(N)
∞

[τ ] ∈ Mk−k0
κ−κ0

(s(N)).

By (4.9) and Lemma 2.4

(4.18) f = TW2N
[fN ] ∈ Mk

κ(s).

Conversely, let f ∈ Mk
κ(s). Then by Lemma 2.4 there is a function fN ∈ Mk−k0

κ−κ0
(s(N))

such that f = TW2N
[fN ]. Hence by Theorem 4.1 there exists a function τ ∈ Nk−k0

κ−κ0
, such

that fN = T
W

(N)
∞

[τ ]. Therefore, f = TW+
∞

[τ ] for τ ∈ Nk−k0
κ−κ0

. �

Proposition 4.3. Let s = {sj}
∞

j=0 ∈ Hk,reg
κ , let Pi(z) and Qi(z) (i ∈ Z+) be Lanczos

polynomials of the first and second kind and let lj and mj(z) (j ∈ N) be parameters of
the generalized S−fraction (2.12). Assume additionally that

(4.19) lj > 0 for all j ∈ N.

Then the following statements are equivalent:

(i) the moment problem MPκ(s) is indeterminate;
(ii) the following series converge

(4.20)
∞∑

i=0

|Pi(0)|
2b̃−1

i < ∞ and
∞∑

i=0

|Qi(0)|
2b̃−1

i < ∞;
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(iii) the following series converges

(4.21) ,

∞∑

i=1

(l1 + l2 + · · ·+ li)
2di+1(0) < ∞.

Proof. By [8, 31] (i) and (ii) are equivalent.
Let us show, that (ii) and (iii) are equivalent. By the first equality in (3.10)

Qi(0) = −(l1 + l2 + · · ·+ li)Pi(0).

and hence by (3.11)

N∑

i=0

|Qi(0)|
2b̃−1

i =

N∑

i=0

(l1 + l2 + · · ·+ li)
2|Pi(0)|

2b̃−1
i =

N∑

i=1

(l1 + l2 + · · ·+ li)
2di+1(0).

This proves the implication (ii) ⇒ (iii).

Conversely, if
∞∑
i=0

|Qi(0)|
2b̃−1

i < ∞, then the convergence of the series
∞∑
i=0

|Pi(0)|
2b̃−1

i

follows from the inequality

l21

N∑

i=0

|Pi(0)|
2b̃−1

i ≤
N∑

i=0

(l1 + l2 + · · ·+ li)
2|Pi(0)|

2b̃−1
i =

∞∑

i=0

|Qi(0)|
2b̃−1

i .

This proves the implication (iii) ⇒ (ii). �

Remark 4.4. In the case κ = k = 0 the above criterion for the Hamburger moment
problem to be indeterminate is well known, see [1, Appendix, Theorem 0.5]. When
treating system (3.1) as a Stieltjes string with masses mj and lengths lj one can consider
series (4.21) as ”the moment of inertia” of the string.

5. Padé approximants

Definition 5.1. ([3]) The [L/M ] Padé approximant for a formal power series

(5.1) −
∞∑

j=0

sj
zj+1

is a ratio

(5.2) f [L/M ](z) =
A[L/M ](1/z)

B[L/M ](1/z)

of polynomials A[L/M ], B[L/M ] of formal degree L, M , respectively, such that B[L/M ](0) 6=
0 and

(5.3) f [L/M ](z) +

L+M∑

j=0

sj
zj+1

= O

(
1

zL+M+1

)
, z→̂∞.

The [n/n] Padé approximant is called diagonal and the [n/n − 1] Padé approximant
is called subdiagonal.

Remark 5.2. Notice, that for diagonal Padé approximants the representation (5.2) is
equivalent to the representation

f [n/n](z) =
znA[n/n](1/z)

znB[n/n](1/z)
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as a ratio, where the numerator znA[n/n](1/z) is a polynomial of formal degree n and
the denominator znB[n/n](1/z) is a polynomial of exact degree n. For subdiagonal Padé
approximants the representation (5.2) is equivalent to the representation

f [n/n−1](z) =
znA[n/n−1](1/z)

znB[n/n−1](1/z)

as a ratio, where the numerator is a polynomial of formal degree n and the denominator
is a polynomial of exact degree n vanishing at 0.

Explicit formula for diagonal Padé approximants for sequences s = {sj}
∞

j=0 ∈ Hκ was

found in [7], in the classical case s ∈ H0 see [3, 38]. In this section we will formulate the
corresponding statements for sequences s = {sj}

∞

j=0 ∈ Hk,reg
κ .

Proposition 5.3. Let s = {sj}
∞

j=0 ∈ Hk,reg
κ , κ, k ∈ Z+. Then the [n/n] Padé approxi-

mant for a formal power series (5.1) exists if n ∈ N (s) and

(5.4) f [nj/nj ](z) = −
Qj(z)

Pj(z)
=

Q+
2j(z)

P+
2j(z)

, j ∈ N.

Proof. We present a proof of this statement from [17] for the convenience of the reader.
It follows from (3.3) and Theorem 3.11 that the function

−
Qj(z)

Pj(z)
=

Q+
2j(z)

P+
2j(z)

= TW2j(z)[0]

belongs to M(s, 2nj − 1). Therefore, the function −Qj(z)
Pj(z)

has the asymptotic

(5.5) −
Qj(z)

Pj(z)
= −

s0
z

− · · · −
s2nj−1

z2nj
+O

(
1

z2nj+1

)
, z→̂∞.

Since Qj(z) is a polynomial of degree nj − n1 < nj and Pj(z) is a polynomial of exact

degree nj the function −Qj(z)
Pj(z)

is the [nj/nj ] Padé approximant for the formal power

series (5.1) due to Remark 5.2 and (5.5). �

In the following proposition stated in [16] without proof it is shown that the sub-
diagonal Padé approximants can be calculated in terms of generalized Stieltjes polyno-
mials.

Proposition 5.4. Let s = {sj}
∞

j=0 ∈ Hk,reg
κ , κ, k ∈ Z+. Then the [nj/nj − 1] Padé

approximants for the formal power series (5.1) exists and has the form

(5.6) f [nj/nj−1](z) =
Q+

2j−1(z)

P+
2j−1(z)

, j ∈ N.

Proof. It follows from (3.3) that

Q+
2j−1(z)

P+
2j−1(z)

= TW2j−1(z)[∞].

By Theorem 3.11 the function
Q+

2j−1(z)

P+
2j−1(z)

belongs to M(s, 2nj − 2), and hence it has the

asymptotic

(5.7)
Q+

2j−1(z)

P+
2j−1(z)

= −
s0
z

− · · · −
s2nj−2

z2nj−1
+O

(
1

z2nj+1

)
, z→̂∞.
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Since Q+
2j−1(z) is a polynomial of degree nj − n1 < nj and P+

2j−1(z) is a polynomial of

exact degree nj vanishing at 0 the function −
Q+

2j−1(z)

P+
2j−1(z)

is the [nj/nj−1] Padé approximant

for the formal power series (5.1) due to Remark 5.2 and (5.7). �

Lemma 5.5. Let s = {sj}
∞

j=0 ∈ Hk,reg
κ , κ, k ∈ Z+, let W2N (z) be given by (1.26), N ∈ N

and let s(N) be the induced sequence defined in Lemma 2.4, and let

(5.8) −
∞∑

j=0

s
(N)
j z−(j+1)

be the corresponding formal power series. Then

(i) the diagonal Padé approximants for the formal power series (5.1) are connected
with diagonal g[n/n] Padé approximants for the power series (5.8) by the formula

(5.9) f [nj/nj ](z) = TW2N (z)[g
[nj−nN/nj−nN ](z)], j > N, j ∈ N.

(ii) the subdiagonal Padé approximants for the power series (5.1) are connected with
subdiagonal g[n/n−1] Padé approximants for the power series (5.8) by

(5.10) f [nj/nj−1](z) = TW2N (z)[g
[nj−nN/nj−nN−1](z)], j > N, j ∈ N.

Proof. Consider the induced moment problem MP
k−k+

N

κ−κN
(s(N), 2(nj − nN )− 1) and let

(5.11) W
(N)
2(j−N)(z) =

(
QN,+

2(j−N)−1(z) QN,+
2(j−N)(z)

PN,+
2(j−N)−1(z) PN,+

2(j−N)(z)

)

be the resolvent matrix of this moment problem. Then the matrices W2j(z) and

W
(N)
2(j−N)(z) are connected by (see (4.8))

(5.12) W2j(z) = W2N (z)W
(N)
2(j−N)(z).

Similarly, the resolvent matrix

(5.13) W
(N)
2(j−N)−1(z) =

(
QN,+

2(j−N)−1(z) QN,+
2(j−N)−2(z)

PN,+
2(j−N)−1(z) PN,+

2(j−N)−2(z)

)

of the moment problem MP k−kN

κ−κN
(s(N), 2(nj − nN ) − 1) is connected with the matrix

W2j−1(z) by

(5.14) W2j−1(z) = W2N (z)W
(N)
2(j−N)−1(z).

By Proposition 5.3 diagonal Padé approximants g[nj−nN/nj−nN ](z) for the formal
power series (5.8) are given by

(5.15) g[nj−nN/nj−nN ](z) =
QN,+

2(nj−nN )(z)

PN,+
2(nj−nN )(z)

= T
W

(N)

2(j−N)
(z)

[0], j ∈ N.

It follows from the factorization formula (5.12) and (5.15) that

TW2N (z)[g
[nj−nN/nj−nN ](z)] = TW2j(z)[0].

Hence by Proposition 5.3 TW2N (z)[g
[nj−nN/nj−nN ](z)] coincides with the diagonal Padé

approximants f [nj/nj ](z) for the formal power series (5.1).
By Proposition 5.4 subdiagonal Padé approximants g[nj−nN/nj−nN−1](z) for the for-

mal power series (5.8) are given by

(5.16) g[nj−nN/nj−nN−1](z) =
QN,+

2(nj−nN )−1(z)

PN,+
2(nj−nN )−1(z)

= T
W

(N)

2(j−N)−1
(z)

[∞], j ∈ N.
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It follows from the factorization formula (5.14) and (5.16) that

TW2N (z)[g
[nj−nN/nj−nN ](z)] = TW2j(z)[∞].

Hence by Proposition 5.4 TW2N (z)[g
[nj−nN/nj−nN−1](z)] coincides with the subdiagonal

Padé approximants f [nj/nj−1](z) for the formal power series (5.1). �

Theorem 5.6. Let s = {sj}
∞

j=0 ∈ Hk,reg
κ , κ, k ∈ Z+. Then

(i) If the problem MP k
κ (s) is determinate, then diagonal and subdiagonal Padé

approximants converge to the unique solution of MP k
κ (s) locally uniformly on

C \ R+.
(ii) If the problem MP k

κ (s) is indeterminate, then the sequence f [n/n−1] of subdiago-
nal Padé approximants converges locally uniformly on C\R+, while the sequence
f [n/n] of diagonal Padé approximants is not convergent but precompact in the
topology of locally uniform convergence.

Proof. Let us choose N big enough, so that

(5.17) ν−(Sj) = κ = ν−(SnN
), ν−(S

(1)
j ) = k = ν−(S

(1)
nN

) for all j ≥ nN .

Then the induced sequence s(N) belongs to the class H0
0 and by Lemma 5.5 the prob-

lem of convergence of diagonal and subdiagonal Padé approximants is reduced to the
corresponding problem for diagonal and subdiagonal Padé approximants for the series

−
∞∑
j=0

s
(N)
j z−(j+1) corresponding to the classical Stieltjes moment problem M0

0(s
(N)).

The stated results for classical Stieltjes moment problems were proved in [38, Theo-
rems 5.30, 5.31]. �

6. Example. Laguerre polynomials

The monic Laguerre polynomials L̃n(z, α) := (−1)nz−αez(zα+ne−z)(n) are solutions
of the three–term difference equation (see [39])

yn+1(z) + (2n+ α+ 1− z)yn(z) + (n+ α)nyn−1(z), n ∈ N.(6.1)

subject to the initial conditions L̃−1(z, α) ≡ 0, L̃0(z, α) ≡ 1.

If α > −1, then the polynomials {L̃n(z, α)}
∞
n=0 are orthogonal in the Hilbert space

L2(R+, wα), with the weight function wα(z) = zαe−z.
Here we consider the case when α < −1 and α is not a negative integer. The case when

α is a negative integer was treated in [35]. If −k− 1 < α < −k, k ∈ N, then L̃n(z, α) are
orthogonal polynomials with respect to the indefinite inner product (see [11], [37])

(6.2) 〈f, g〉α =

∞∫

0

xα


e−xfg −

k−1∑

j=0

(e−xfg)(j)(0)
xj

j!


 dx.

Polynomials Q̃n(x, α) of the second kind are defined as solutions of (6.1) subject to

the initial conditions Q̃−1(z, α) ≡ −1 and Q̃0(z, α) ≡ 0.
The P – fraction corresponding to the system (6.1) has the form (1.14) with the atoms

(an, bn) given by

(6.3) b0 = Γ(1 + α), bn = n(n+ α) and an−1(z) = z − 2n− α+ 1, n ∈ N.

The moments sn for all n ∈ N are defined by

(6.4) sn = S(zn) = Γ(n+ α+ 1).
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By the Buslaev formula, see [5, formula (13)] the determinants of Sn and S+
n take the

form

Dn = bn0 b
n−1
1 . . . bn−1 =

n∏

j=1

(j − 2)!Γ(α+ j), D+
n =

n∏

j=1

(j − 2)!Γ(α+ j + 1), n ∈ N.

Therefore, the sequence s = {sn}∞n=0 is regular and the set of its normal indices coincides
with N and

s ∈ Hk−1
k , if − 2k < α < −2k + 1, s ∈ Hk

k, if − 2k − 1 < α < −2k;

Next, it follows from (1.6) that the parameters of the generalized S-fraction take the
form

ln :=
D2

n

D+
nD

+
n−1

=
(n− 1)!Γ2(1 + α)

Γ(1 + α+ n)
, mn :=

(D+
n−1)

2

DnDn−1
=

Γ(α+ n)

(n− 1)!Γ2(1 + α)
, n ∈ N.

The monic Laguerre polynomials L̃n(z, α) can be calculated by (see [39], [41])

(6.5) L̃n(z, α) =

n∑

k=0

(
n

k

)
Γ(n+ α+ 1)

Γ(k + α+ 1)
(−1)n+kzk.

Then using the formula

Qn(z, α) = St

(
L̃n(z, α)− L̃n(t, α)

z − t

)

one can find the Lanczos polynomials of the second kind

Qn(z, α) = St

(
n∑

k=0

(
n

k

)
Γ(n+ α+ 1)

Γ(k + α+ 1)
(−1)n+k z

k − tk

z − t

)
=

=
n∑

k=1

zk−1Γ(α+ n+ 1)
n−k∑

j=0

(−1)n+k+j

(
n

k + j

)
Γ(α+ j + 1)

Γ(α+ k + j + 1)
.

(6.6)

Due to (3.3) the Stieltjes polynomials of the first and second kind are calculated by

P+
2n(z, α) = Γ(1 + α)

n∑

i=0

(
n

i

)
(−1)izi

Γ(1 + α+ i)
,

P+
2n−1(z, α) = −

1

(n− 1)!

n∏

j=1

(j + n)

(
n−1∑

i=0

(−1)i−1(n− 1)!i zi

i!(n− i)!Γ(1 + α+ i)
+

(−1)n−1zn

Γ(1 + α+ n)

)
,

Q+
2n(z, α) =

n∑

i=1

zi−1Γ(1 + α)

n−i∑

j=0

(−1)i+j+1

(
n

i+ j

)
Γ(1 + α+ n)

Γ(1 + α+ i+ j + 1)
,

Q+
2n−1(z, α) = Γ(1 + α+ n)

n∑

i=1

zi−1
n−i∑

j=0

(−1)i+j−1Γ(1 + α+ j)(n− 1)!

i!(n− j − i)!Γ(1 + α+ i+ j)
.

The set of solutions of the truncated moment problem MP k
κ (s, 2n − 1) is described by

the formula (1.23).
Notice that the full moment problem is determinate and in the case α > −1 its unique

solution of MP 0
0 (s) is given by

f(z) =

∫ ∞

0

xαe−x

x− z
dx = z

α−1
2 e−

z
2W−α−1

2 ,α2
(−z),

where Wα,β is the Whittaker function, see [26, 9.222].
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If −2k − 1 < α < −2k, k ∈ N, then the solution f(z) of MP k
k (s) can be found by the

formula

(6.7) f(z) = Sx

(
e−xxα

x− z

)
=

∫ ∞

0

xα


h(x, z)−

2k−1∑

j=0

h
(j)
x (0, z)

j!
xj


 dx,

where h(x, z) = e−x

x−z . Similar formula holds also for the case −2k < α < −2k + 1. In
particular, if −2 < α < −1, then

f(z) = I(z) + I ′(z) ∈ MP 0
1 (s), where I(z) =

z
α
2 e−

z
2

α+ 1
W−α−2

2 ,α+1
2
(−z).

By Propositions 5.3, 5.4 the Padé approximants of f take the form (see (5.4) and (5.6))

f [n/n](z) =
Q+

2n(z, α)

P+
2n(z, α)

, f [n/n−1](z) =
Q+

2n−1(z, α)

P+
2n−1(z, α)

, n ∈ N.

References

1. N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.
2. D. Alpay, A. Dijksma, and H. Langer, Factorization of J-unitary matrix polynomials on the

line and a Schur algorithm for generalized Nevanlinna functions, Linear Algebra Appl. 387

(2004), 313–342.
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