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ON THE EXISTENCE OF A GLOBAL DIFFEOMORPHISM
BETWEEN FRECHET SPACES

KAVEH EFTEKHARINASAB

ABSTRACT. We provide sufficient conditions for existence of a global diffeomorphism
between tame Fréchet spaces. We prove a version of the mountain pass theorem
which plays a key ingredient in the proof of the main theorem.

1. INTRODUCTION

In this paper we consider the problem of finding sufficient conditions under which a
tame map between tame Fréchet spaces becomes a global diffeomorphism. Tame maps
are important because they appear not only as differential equations but also as their
solutions (see [4] for examples). Although, the theory of differential equations in Fréchet
spaces has a significant relation with problems in both linear and nonlinear functional
analysis but not many methods for solving different type of differential equations are
known. Our result would provide an approach to solve an initial value nonlinear integro-
differential equation

z'(t) + L o(t,s,x(s))ds = y(t), tel0,1].

We follow the ideas in [5] and [6] where the analogue problem for Banach and Hilbert
spaces was studied. There are two approaches to calculus on Fréchet spaces. The
Gateaux-approach (see [7]) and the so called convenient analysis (see [9]). We will apply
the first one because to define the Palais-Smale condition, which plays a significant role
in the calculus of variation, we need an appropriate topology on dual spaces that com-
patible with our notion of differentiability; only in the first approach there exists such a
topology.

In [3], the author defined the Palais-Smale condition for C*-maps between Fréchet
spaces and obtained some existence results for locating critical points. In this paper
by means of this condition we generalize the mountain pass theorem of Ambrosetti and
Rabinowitz to Fréchet spaces. Our proof of the mountain pass theorem relies on the
Ekeland’s variational principle. Since, in general, we can not acquire deformation results
for Fréchet spaces because of the lack of a general solvability theory for differential equa-
tions. It is worth mentioning that for every Fréchet space the projective limit techniques
gives a way to solve a wide class of differential equations (see [1]). This technique would
be a way of obtaining many results (such as deformation lemmas) for Fréchet spaces.

Roughly speaking, the main theorem states that if ¢ is a smooth tame map that satis-
fies the assumptions of the Nash-Moser inverse function theorem and if for an appropriate
auxiliary functional ¢, a functional e — t(p(e) — f) satisfies the Palais-Smale condition
then ¢ is a global diffeomorphism.
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2. MOUNTAIN PASS THEOREM

We denote by F' a Fréchet space whose topology is defined by a sequence (|| - ||%)nen of
seminorms, which we can always assume to be increasing (by considering maxy<, || - [|%,
if necessary). Moreover, the complete translation-invariant metric

[z —y ll%
(1) dp(z,y) = ) ————
P —
induces the same topology on F'.
A subset A  F is bounded if each seminorm || - ||% is bounded on A, i.e.

sup || @ [3< .
TEA

We recall that (cf. [11]) a family B of bounded subsets of F' that covers F is called a
bornology on F' if

e VA, B € B there exists C € B such that Au B c C,
e VBe B and Vr € R there is a C € B such that - B < C.

We use the Keller’s definition of C*-maps which is equivalent to the notion of C*-maps
in the sense of Michal and Bastiani.

Let E, F be Fréchet spaces, U an open subset of E, and ¢ : U — F' a continuous map.
If the directional (Gateaux) derivatives

¢(z + th) — ¢(x)
t

exist for all z € U and all h € E, and the induced map dy : U x E — F, (u,h) — do(u)h
is continuous in the product topology, then we say that ¢ is a C''-map in the sense of
Michal and Bastiani. Higher directional derivatives and C*-maps, k = 2, are defined in
the obvious inductive fashion.

Let E be a Fréchet space, B a bornology on E and Lg(FE, F') the space of all linear
continuous maps from F to F. The B-topology on Lg(E, F') is a Hausdorff locally convex
topology defined by all seminorms obtained as follows:

(2) I L ||%:= sup{]| L(e) [|%: e € B},

where B € B. One similarly may define the space L’;s(E , ) of k-linear jointly continuous
maps from EF to F. If B is generated by all compact sets, in the sense that every B € B
is contained in some compact set, then the B-topology on the space Lg(E,R) = Ej
of all continuous linear functional on F, the dual of E, is the topology of compact
convergence. If B contains all compact sets of E, then LE(E, LL(E, F)) is canonically

do(x)h = }E)I(l)

isomorphic to L?k(E, F) as a topological vector space, see [7, Theorem 0.1.3]. In par-
ticular, L%(F,R) = L%(FE) =~ Lg(E, Ey). Under the above condition on B, we define
the differentiability of class C¥ : Let U < E be open, a map ¢ : U — F is called O} if
its directional derivatives exist and the induced map d¢ : U — Lg(E, F) is continuous.
Similarly we can define maps of class C*, k € N U {0}, see [7, Definition 2.5.0]. A map
@:U — FisCF k= 1,if and only if ¢ is C* in the sense of Michal and Bastiani, see |7,
Theorem 2.7.0 and Corollary 1.0.4 (2)]. In particular, ¢ is C¥ if and only in ¢ is C®.

If : E — R at zis C! and hence C}, the derivative of ¢ at x, ¢'(x), is an element of
E%, and the directional derivative of ¢ at x toward h € E is given by

dp(z)h =<¢'(x), h),
where (-, - is duality pairing.
Because of the equivalency of the notions of differentiability we shall omit the index
¢ in denoting differentiable maps of order k. We always assume that a bornology B on a
Fréchet space contains all its compact sets.
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Definition 2.1. Let F' be a Fréchet space, B a bornology on F and Fj the dual of F
equipped with the B-topology. Let ¢ : F — R be a C'-functional.

(i) We say that ¢ satisfies the Palais-Smale condition, PS-condition in short, if each
sequence (x;) € F such that ¢(x;) is bounded and
¢ (r;) >0 in Fy,
has a convergent subsequence.
(ii) We say that ¢ satisfies the Palais-Smale condition at level c € R, (PS).-condition
in short, if each sequence (x;) = F such that
é(x;)) > c and ¢'(x;) >0 in Fg,
has a convergent subsequence.
Let ¢ be a C*-functional (k = 1) on a Fréchet space F. As usual, a point p in the
domain of ¢ is said to be a critical point of if ¢'(p) = 0, the corresponding value ¢ = ¢(p)

will be called a critical value.
The next result is essential when we want to prove the existence of a critical point.

Theorem 2.1. [7, Corrolly 4.9] Let F be a Fréchet space and let ¢ : F — R be C'-
functional bounded from below. If (PS).-condition holds with ¢ = infr @, then there is
x € F such that ¢(z) = ¢ and ¢'(z) = 0.

Consider the following weak form of the Ekeland’s variational principle (cf. [2]).

Theorem 2.2. Let (X, o) be a complete metric space. Let a functional ¥ : X — (—00, 0]
be semi-continuous, bounded from below and not identical to +00. Then, for any € > 0
there exists x € X such that

(1) ¥(z) <infx U + ¢,
(2) ¥(z) =¥(y) +eo(z,y), Vy#zelX.

Let (F, || - [|%) be a Fréchet space and let ¢ € C'(F,R) be a functional. Let
Ty = {7 e C0,1]: F) :7(0) = 0,9(1) = f € F |

be the set of continuous paths joining 0 and f. Consider the Fréchet space C([0,1]; F)
with the family of seminorms

(3) [y 1I&= sup || v(t) |7 -
te[0,1]

The metric

¢ dotyn) = 3, pi e

S+ ly=nle

is complete translation-invariant and induces the same topology on C([0, 1]; F'). We can
easily show that I'y is closed in C([0, 1]; ') and so it is a complete metric space with the
metric, dr,, which is the restriction of dc¢ to I'y.

The proof of the following mountain pass theorem is the refinement of the proof for
the Banach spaces case (see [10, Theorem 4.10]). The idea of the proof is straightforward:
for a given ¢ € C1(F,R) that satisfies the PS-condition and a point f € F if a particular
condition hold (the condition (5)), we define a functional ¥ on I'y so that it satisfies the
assumptions of the Ekeland’s variational principle (Theorem 2.2). Then this theorem
yields that ¥ has almost minimizers points satisfying some certain conditions. We use a
sequence of these points on I'y and associate this sequence of almost minimizers with a
sequence on F', which satisfies the requirement of the PS-condition for ¢. The limit of a
subsequence of this sequence on F' is a critical point of ¢. The difficult step is to find a
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connection between the sequence of almost minimizers of ¥ and a sequence on F', which
satisfies the requirements of the PS-condition.

Theorem 2.3 (The Mountain Pass Theorem). Let F' be a Fréchet space and ¢ : F' — R
a C'- functional satisfying the Palais-Smale condition. Assume f € F and ¢ satisfies the
condition

() inf ¢(p) > max{¢(0), (f)} = a,

pedU

where OU is the boundary of a bounded open neighborhood U of 0 such that f does
not belong to the closure U, f ¢ U. Then ¢ has a critical value ¢ > a which can be
characterized as

= inf t).
c ngﬂg&ﬁ(ﬁ(v( )

Proof. Let
Py ={7eC([0,1]: F) :7(0) = 0,4(1) = f € F}.
Suppose the metric dr, which is the restriction of the metric do (4) to I'y, defines the
topology of I'y. With this metric I'f is a complete metric space.
Define the functional ¥ : I'y — R by

V(y) = nas o(y(1))-

Since ¥ is the least upper bound of a family of lower semi-continuous functions it follows
that it is lower semi-continuous too. Since U separates 0 and f for all v € I'¢, we have

(6) y([0,1]) (U # .
Therefore, by (6)
(7) cz llbf(b = C1,

and then it follows from (5) that
c=c > a.

Thus, ¥ is bounded from below.

Let 4 € 'y, we show that ¥ is continuous at 4. Given ¢ > 0, choose ¢ > 0 (here we
use the continuity of ¢) such that Yy € 3([0,1]) and Yz € F such that dp(z,y) < o0 we
have | ¢(x) — ¢(y) |< €, where | - | is the usual absolute modulus. Now for each 7 € I'y
such that dr,(7,7) < o, we have

UE) = ¥(A) = ¢(7(tm)) — max 6(Y(t)) = 6(Y(tm)) — (Y (tm));

te[0,1]
where t,, € [0, 1] is the point where the maximum of ¢(¥(t)) is attained. Since
dF(;}\/(tm)ai(tm)) = de (;}777) <0
it follows that U(¥) — ¥(5) < e. Reverting the roles of 4 and 7 yields that
[T - (@A) <.

Thus W satisfies all conditions of Theorem 2.2, and hence, for every ¢ > 0 there exists
e € I'y such that

(8) U(ve) Sc+e
(9) U(ve) = ¥(y) +edr; (v,7), Vv # e €Ly
Without loss of generality we may assume

(10) 0<e<c—a.
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Now we show that there is s € [0, 1] such that for all seminorms we have

(11) 16/ (7e(s)) IB= €
We prove the inequality (11) by contradiction. Notice that

16" (ve(s)) 5= Bhar (@' (7e(5)), 9™)-

g9 llp=41,
g"eB

Define the set

(12) S(e) ={s€[0,1] : ¢ — € = P(7e(s))}-
It follows from (10) that a < ¢ —e. Since 7.(0) = 0 and ¢(0) < a, we obtain that

0 ¢ S(e). Furthermore, the functional ¢ is continuous on F' and the set S(¢) is closed so
S(€) is compact. Suppose for all s € [0,1] the inequality (11) does not hold. Then, for
all s € S(e)

| &' (ve(s)) Ilp>€, VneN, VBeB.

Thus, for each s € S(¢€) there exist points g € F' with || g7 ||%= 1(Vn € N) such that
(13) (@ (ve(s5), 95) < —e.

Since ¢’ is continuous on F, it follows from (13) that for each s € S(¢) there exist a > 0
and an open interval By < [0, 1] such that

(14) (@ (Ve(t) + 1), g5) < —¢,
for all t € By and all h € F with || h ||3< a5 (Vn e N).

The family {Bs}ses(e) covers the compact set S(e) so there exists a finite subcovering
Bs,,...,Bs, of S(e). Since 0 ¢ S(e), we may assume 0 ¢ B,,. Thus, [0,1]\Bs, is closed
and not empty for all i = 1,..., k. Therefore, if t € Ule By,, then

Zdlst [0,1]\Bs,) >

Now define the function x;(¢) : [0,1] — [0, 1] by

k dist(t, [0, 1]\Bs,) L
OIS L AR TR B

0 otherwise.

It is easily seen that ; is continuous and

(15) dMixit) =1 vte[o,1]

and x;(t) =0if t ¢ B;.
Fix a continuous function x : [0,1] — [0, 1] such that

)1 ¢ = ¢(7e(1)),
X“)‘{o Be(t) = c—e.

Let = min{as,,...,qs}. For an arbitrary fixed n € N, define the continuous
function u, : [0,1] — F by

pn(t) = 7e(t) + ax(t ZXJ )95

Now we show that p,, € I'y. By (10), for t € {0, 1} we have
d(ve(t) fa<c—e,
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therefore x(¢) = 0 and hence py, () = 7e(t). From (14) and the mean value theorem
(ct. [8]) it follows that for each t € S(¢) there is 6,, € (0,1) such that

'Mw

k
B (1)) = 9(7c()) = (&' (7e(t) + Bt ) 2 )95, ) ax

(t)gs,»
o

Zk]xj <</>(% t) + Onax(t Zk] gs]> 9s,)

Jj=1

(16)

= —eax(?).
The inequality (16) follows from (15) and (14).
Let t1 be such that ¢(u,(t1)) = ¥(uy,) therefore
O(ve(t1) = d(pn(t1)) 2 ¢
Whence x(t1) = 1 and t; € S(€) because if t; ¢ S(¢) then x(¢1) = 0.
From (16) it follows that ¢(un(t1)) — @(7e(t1)) £ —ea and so
U(pn) +ea < d(ve(t1)) = Y(ve)
and pi, # .. But, by the definition of p, we have dr, (tn,ve) < «, therefore,

‘I’(/’Ln) + ede (Mv’Ye) < \11(76)

which contradicts (9) and complete the proof of (11). Therefore, for every € > 0 there
exists te € S(e) such that all seminorms satisfy

(17) | ¢'(7e(te)) IB= €
and

¢ — €= p(ve(te))-
Therefore, by (8) we have

(18) c—e=¢(Ye(te)) = V(re) Sc+e

Now it suffices to consider the sequence f, = v1/,(t1/,) and use the (PS).-condition.
By (18) we have ¢(f,,) — ¢, and by (17) we have ¢'(f,,) — 0, therefore, f,, has a conver-
gent subsequence, denoted again by f,. If the limit of f, is h, in view of Theorem 2.1 it
follows that h is a critical point and ¢(h) = c. O

Remark 2.1. Note that we could have used the weaker (PS).-condition instead of PS-
condition, with ¢ being the c in the proof. But in application c is not known explicitly.
This constrains us to verify (PS)c-condition for all possible values c.

3. THE EXISTENCE OF A GLOBAL DIFFEOMORPHISM

In this section we prove a global diffeomorphism theorem in the category of tame
Fréchet spaces. With respect to the metric (1), dp, we define an open ball B,.(x) centered
at « with radius r. Its closure and boundary is denoted by B,.(x) and 0B, (x), respectively.

Theorem 3.1. Let E and F' be tame Fréchet spaces and 7 : E — F a smooth tame
map. Let 1 : F — [0,00] be a C'-functional such that v(x) = 0 if and only if = 0 and
V() =0 if and only if x = 0. If the following conditions hold
C1: the derivative 7'(e)p = k has a unique solution p = v(e)k for all e € E and all
k, and the family of inverses v : E x F' — E is a smooth tame map;
C2: for any f € F' the functional ¢5 defined on E by

¢rle) = u(r(e) = f)
satisfies the Palais-Smale condition at all levels.
Then T is a global diffeomorphism.
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Proof. The map 7 satisfies the assumptions of the Nash-Moser inverse function theorem,
the condition C1, which implies that 7 is a local diffeomorphism. Thus, it suffices to
show that 7 is surjective and bijective.

To prove that 7 is surjective suppose that f € F' is any arbitrary point. Then, by the
Palais-Smale condition the functional ¢ has a critical point p € F/, and the assumptions
on ¢ yields that 7(p) = f. The functional ¢ is bounded from below and is of class C*
as it is the composition of two C'' maps. Since ¢ ¢ satisfies the Palais-Smale condition
it follows by Theorem 2.1 that it attains its critical point at some p € E so ¢;(p) = 0.
From the chain rule [7, Corollary 1.3.2] it follows that

(19) ¢y (p) = (7(p) = f) o 7'(p) = 0.
By the assumption the map 7’ is invertible and hence (19) implies that ¢/ (7(p) — f) =0
therefore 7(p) = f. Thus, 7 is surjective.

To prove that 7 is injective we argue by contradiction, assume e; # e € E and
7(e1) = 7(e2) = l. Then we will construct the functional ¢; on E that satisfies the
assumptions of Theorem 2.3 and hence it has a critical point h which its existence violates
the assumptions on ¢.

Since 7 is a local diffeomorphism it is an open map. Therefore, there exists o, > 0
such that

(20) Ba, (I) = 7(Br(e1)),
for r > 0. Let p > 0 be small enough such that
(21) €9 ¢ Bp(el).

Consider the functional ¢;(e) = ¢(7(e) — 1), therefore ¢;(e1) = ¢i(e2) = 0.
Without the loose of generality we can suppose e; = 0. For e € 0B,(0), in virtue
of (20) we have 7(e) ¢ Ba,(l) and so 7(e) # I. Therefore, the assumption on ¢ yields
¢i(e) > 0 = max{¢;(0), ¢(e2)}.

Thus, all assumptions of Theorem 2.3 hold for the functional ¢; and the points 0 and es.
Therefore, there exists a critical point h € F with ¢;(h) = ¢ for some ¢ > 0. But

c=di(h) = u(r(h) —1) > 0,

therefore, the assumption on ¢ implies

(22) 7(h) # L.
By the chain rule we have ¢}(h) = ¢/(7(h) — 1) o 7/(h) = 0. Thus, since 7’ is invertible
it follows that «(7(h) — 1) = 0 so 7(h) = I which contradicts (22). O
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