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ELLIPTIC PROBLEMS WITH UNKNOWNS ON THE BOUNDARY

AND IRREGULAR BOUNDARY DATA

IRYNA CHEPURUKHINA AND ALEKSANDR MURACH

To Vladimir Andreevich Mikhailets on the occasion of his 70th birthday anniversary

Abstract. We consider an elliptic problem with unknowns on the boundary of the

domain of the elliptic equation and suppose that the right-hand side of this equation
is square integrable and that the boundary data are arbitrary (specifically, irregular)

distributions. We investigate local (up to the boundary) properties of generalized

solutions to the problem in Hilbert distribution spaces that belong to the refined
Sobolev scale. These spaces are parametrized with a real number and a function

that varies slowly at infinity. The function parameter refines the number order of

the space. We prove theorems on local regularity and a local a priori estimate of
generalized solutions to the problem under investigation. These theorems are new

for Sobolev spaces as well.

1. Introduction

In the theory of elliptic boundary-value problems, of special interest is the case where
boundary data are irregular distributions (so called rough data); see monographs [4, 5, 13,
17, 22, 27, 33, 34] and references therein. The investigation of elliptic problems in this case
is more complicated as compared with regular enough boundary data. This is stipulated
by the fact that the trace theorems for Sobolev or other classical distribution spaces (see,
e.g., [35, Section 4.7]) cease to be valid for irregular boundary data. There are some
approaches to overcome this serious obstacle. One of them is to include norms of traces
in Sobolev norms of solutions to an elliptic problem. This approach was elaborated by
Roitberg [31, 32, 33]; it deals with solutions that are not distributions, generally speaking.
Another way is to include a relevant norm of the right-hand side of the elliptic equation
in the norms of solutions. This approach is due to Lions and Magenes [20, 21, 22]; it
remains in the framework of distribution spaces but is applicable to narrower classes of
data of the elliptic equation as compared with Roitberg’s approach. Investigating elliptic
problems in a half-space, Hörmander [13, Section 10.4] used anisotropic Sobolev spaces of
high enough regularity only along the normal to the boundary. These approaches yield
different solvability theorems for elliptic problems whose boundary data are arbitrary
distributions.

The number of boundary conditions increases if an elliptic problem contains unknown
distributions on the boundary. Such elliptic problems were first considered by Lawruk [18,
19]. They form a part of Boutet de Monvel’s algebra [6] and arise in various applications,
specifically in hydrodynamics and the theory of elasticity [3, 9], and are also used in
the theory of free boundary problems [29]. A solvability theory for elliptic problems
with unknowns on the boundary is given in monographs [17, Part 1] and [34, Chapter 2]
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in the framework of Roitberg’s approach. Kozhevnikov [16] extended this approach to
pseudodifferential elliptic problems that form the Boutet de Monvel algebra.

In this connection, it is interesting to investigate these problems in the spirit of the
approach by Lions and Magenes. Thus, recently we proved a corresponding solvability
theorem for elliptic problems with unknowns on the boundary [28, Theorem 1]. We as-
sumed that the right-hand side of the elliptic equation is square integrable and considered
boundary data in Hilbert distribution spaces of lower orders (including negative ones).
These spaces belong to the refined Sobolev scale [27, Section 2.1]. The purpose of the
present paper is to supplement this result with theorems on local (up to the boundary)
regularity and a local a priori estimate of generalized solutions to the problem. In con-
trast to the corresponding global properties of the solutions [28], these theorems do not
follow directly from the solvability theorem. Specifically, this is caused by the fact that
the space of solutions (to the elliptic equation) used in [28] is not closed with respect to
the multiplication of distributions by smooth cut-off functions.

2. Statement of the problem

Let Ω be a bounded Euclidean domain of dimension n ≥ 2 with an infinitely smooth
boundary Γ. We arbitrarily choose integers q ≥ 1, κ ≥ 1, m1, . . . ,mq+κ ≤ 2q − 1 and
r1, . . . , rκ . We consider the following boundary-value problem in Ω:

Au = f in Ω,(1)

Bju+

κ∑
k=1

Cj,kvk = gj on Γ, j = 1, ..., q + κ.(2)

Here, A := A(x,D) is a linear partial differential operator (PDO) on Ω := Ω ∪ Γ of
the even order 2q; each Bj := Bj(x,D) is a linear boundary PDO on Γ whose order
ordBj ≤ mj , and each Cj,k := Cj,k(x,Dτ ) is a linear tangent PDO on Γ whose order
ordCj,k ≤ mj + rk. (As usual, PDOs of negative order are defined to be zero operators.)
We assume that all coefficients of the indicated PDOs are infinitely smooth functions on
Ω or Γ respectively. The distribution u on Ω and the distributions v1, . . . , vκ on Γ are
unknown in this problem. In the paper, all functions and distributions are supposed to
be complex-valued; we therefore use complex distribution/function spaces.

We assume that m ≥ −rk for each k ∈ {1, . . . ,κ}. This assumption is natural; indeed,
if m+ rk < 0 for some k, then C1,k = · · · = Cq+κ,k = 0, i.e. the boundary conditions (2)
will not contain the unknown vk.

We suppose that the boundary problem (1), (2) is elliptic in Ω as a problem with
additional unknown distributions v1, . . . , vκ on Γ. This means that the PDO A is properly
elliptic on Ω, and the system of boundary conditions (2) covers A on Γ (see, e.g., [17,
Section 3.1.3]). We recall the corresponding definitions.

Let A◦(x, ξ), B◦j (x, ξ), and C◦j,k(x, τ) denote the principal symbols of the PDOs

A(x,D), Bj(x,D), and Cj,k(x,Dτ ) respectively, the last two PDOs being considered
as that of the formal orders mj and mj +rk respectively. Thus, A◦(x, ξ) and B◦j (x, ξ) are
homogeneous polynomials in ξ ∈ Cn of order 2q and mj respectively. Besides, C◦j,k(x, τ)
is a homogeneous polynomial of order mj + rk in τ , where τ is a tangent vector to the
boundary Γ at the point x. Defining the principal symbols, we consider the principal
parts of the PDOs as polynomials in Dl := i∂/∂xl, where l = 1, . . . , n, and then replace
each differential operator Dl with the l-th component ξl of the vector ξ.

The boundary-value problem (1), (2) is called elliptic in Ω if it satisfies the following
two conditions:

(i) The PDO A(x,D) is properly elliptic at every point x ∈ Ω; i.e., for arbitrary
linear independent vectors ξ′, ξ′′ ∈ Rn, the polynomial A◦(x, ξ′ + ζξ′′) in ζ ∈ C
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has q roots with positive imaginary part and q roots with negative imaginary
part (of course, these roots are calculated with regard for their multiplicity).

(ii) The boundary conditions (2) cover A(x,D) at every point x ∈ Γ. This means
that, for an arbitrary tangent vector τ 6= 0 to Γ at x, the boundary-value problem

A◦(x, τ + ν(x)Dt)θ(t) = 0 for t > 0,

B◦j (x, τ + ν(x)Dt)θ(t)
∣∣
t=0

+

κ∑
k=1

C◦j,k(x, τ)λk = 0, j = 1, ..., q + κ,

θ(t)→ 0 as t→∞

has only the trivial (zero) solution. Here, the function θ ∈ C∞([0,∞)) and the
numbers λ1, . . . , λκ ∈ C are unknown, whereas ν(x) is the unit inward normal
vector to Γ at x. Besides, A◦(x, τ+ν(x)Dt) and B◦j (x, τ+ν(x)Dt) are differential
operators with respect to Dt := i∂/∂t. We obtain them putting ζ := Dt in the
polynomials A◦(x, τ + ζν(x)) and B◦j (x, τ + ζν(x)) in ζ, respectively.

Some examples of elliptic problems of the form (1), (2) are given in [17, Subsec-
tion 3.1.5].

3. A refined Sobolev scale

This scale consists of the Hilbert generalized Sobolev spaces Hs,ϕ whose order of
regularity is given by a number s ∈ R and function ϕ ∈ M. Here, M denotes the set of
all Borel measurable functions ϕ : [1,+∞) → (0,+∞) such that both functions ϕ and
1/ϕ are bounded on each compact subset of [1,+∞) and that ϕ varies slowly at infinity
in the sense of Karamata [15], i.e. ϕ(λt)/ϕ(t)→ 1 as t→∞ for every λ > 0.

Slowly varying functions are well studied and have various important applications [7].
A standard example of such functions is

ϕ(t) := (log t)r1(log log t)r2 . . . (log . . . log︸ ︷︷ ︸
k times

t)rk of t� 1,

where k ∈ N and r1, . . . , rk ∈ R.
Let s ∈ R and ϕ ∈M. By definition, the linear space Hs,ϕ(Rn), with n ≥ 1, consists of

all distributions w ∈ S ′(Rn) that their Fourier transform ŵ is locally Lebesgue integrable
over Rn and satisfies the condition

‖w‖2s,ϕ;Rn :=

∫
Rn

〈ξ〉2sϕ2(〈ξ〉) |ŵ(ξ)|2 dξ <∞.

Here, S ′(Rn) is the linear topological space of all tempered distributions on Rn, and
〈ξ〉 := (1 + |ξ|2)1/2. By definition, ‖ · ‖s,ϕ;Rn is the norm in Hs,ϕ(Rn).

The space Hs,ϕ(Rn) is a special isotropic Hilbert case of the spaces introduced and
investigated by Hörmander [13, Section 2.2] (see also his monograph [14, Section 10.1])
and by Volevich and Paneah [37, § 2]. If ϕ(·) ≡ 1, the space Hs,ϕ(Rn) becomes the inner
product Sobolev space Hs(Rn) of order s ∈ R. Generally, we have the dense continuous
embeddings

(3) Hs+ε(Rn) ↪→ Hs,ϕ(Rn) ↪→ Hs−ε(Rn) whenever ε > 0.

They show that the function parameter ϕ refines the main regularity characterized by
the number s. Therefore, the class of spaces Hs,ϕ(Rn), where s ∈ R and ϕ ∈ M, was
called the refined Sobolev scale over Rn [27, Section 1.3.3]. This class was selected and
investigated in [23, 24] (compare, e.g., with [36, Chapter III] and [11], where similar
classes of Banach and more general spaces of distributions were studied).
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To investigate the boundary-value problem (1), (2), we need versions of the space
Hs,ϕ(Rn) for Ω and Γ; they are considered in [27, Sections 2.1 and 3.2.1].

By definition, the linear space Hs,ϕ(Ω) consists of the restrictions of all distributions
w ∈ Hs,ϕ(Rn) to Ω. It is endowed with the norm

‖u‖s,ϕ;Ω := inf
{
‖w‖s,ϕ;Rn : w ∈ Hs,ϕ(Rn), w = u in Ω

}
,

where u ∈ Hs,ϕ(Ω). The space Hs,ϕ(Ω) is Hilbert and separable with respect to this
norm, with C∞(Ω) being a dense subset of this space.

Briefly saying, the space Hs,ϕ(Γ) consists of all distributions on Γ that are reduced
to distributions from Hs,ϕ(Rn−1) in local coordinates on Γ. Let us give a detailed
definition. We arbitrarily choose a finite collection of infinitely smooth local charts
πj : Rn−1 ↔ Γj , with j = 1, . . . , λ, that the open sets Γ1, . . . ,Γλ form a covering of Γ.
We also arbitrarily choose functions χj ∈ C∞(Γ), with j = 1, . . . , λ, that form a partition
of unity on Γ subject to suppχj ⊂ Γj . By definition, the linear space Hs,ϕ(Γ) consists
of all distributions h ∈ D′(Γ) such that (χjh) ◦ πj ∈ Hs,ϕ(Rn−1) for each j ∈ {1, . . . , λ}.
Here, D′(Γ) is the linear topological space of all distributions on Γ, and (χjh)◦πj stands
for the representation of the distribution χjh in the local chart πj . The norm in Hs,ϕ(Γ)
is defined by the formula

‖h‖s,ϕ;Γ :=

( λ∑
j=1

‖(χjh) ◦ πj‖2s,ϕ;Rn−1

)1/2

.

The space Hs,ϕ(Γ) is Hilbert and separable. It does not depend (up to equivalence of
norms) on the indicated choice of local charts and partition of unity on Γ [27, Theo-
rem 2.3]. The set C∞(Γ) is dense in Hs,ϕ(Γ).

The spaces Hs,ϕ(Ω) and Hs,ϕ(Γ), where s ∈ R and ϕ ∈ M, form the refined Sobolev
scales over Ω and Γ. If ϕ(·) ≡ 1, these spaces become the inner product Sobolev spaces
Hs(Ω) and Hs(Γ), the norms in them being denoted by ‖·‖s;Ω and ‖·‖s;Γ, resp. Generally,
the dense compact embeddings (3) hold true provided that we replace Rn with Ω or Γ.

The refined Sobolev scale over G ∈ {Rn,Ω,Γ} possesses the following important in-
terpolation property: every space Hs,ϕ(G) is obtained by quadratic interpolation (with
an appropriate function parameter) between the Sobolev spaces Hs−ε(G) and Hs+δ(G)
where ε, δ > 0 (see [27, Theorems 1.14, 2.2, and 3.2]). This property play a key role in
applications of these scales to elliptic operators and elliptic problems (see [26, 27] and
references therein).

In what follows we will consider various Hilbert spaces induced by the spaces Hs,ϕ(G)
and related to the problem (1), (2). If ϕ(·) ≡ 1, we will omit the index ϕ in the
designations of these spaces and norms in them.

4. Main results

Consider the linear mapping

(4) Λ : (u, v1, ..., vκ) 7→ (f, g1, ..., gq+κ), where u ∈ C∞(Ω), v1, . . . , vκ ∈ C∞(Γ)

and where the functions f and g1,..., gq+κ are defined by formulas (1) and (2). Introduce
the Hilbert spaces

Ds,ϕ(Ω,Γ) := Hs,ϕ(Ω)⊕
κ⊕
k=1

Hs+rk−1/2,ϕ(Γ)

and

Es,ϕ(Ω,Γ) := Hs−2q,ϕ(Ω)⊕
q+κ⊕
j=1

Hs−mj−1/2,ϕ(Γ)
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for arbitrary s ∈ R and ϕ ∈M.
According to [8, Theorem 1], this mapping extends uniquely (by continuity) to a

Fredholm bounded operator

(5) Λ : Ds,ϕ(Ω,Γ)→ Es,ϕ(Ω,Γ)

for all s > 2q− 1/2 and ϕ ∈M. The finite-dimensional kernel of the operator (5) lies in

D∞(Ω,Γ) := C∞(Ω)× (C∞(Γ))κ

and together with the finite index of (5) does not depend on s and ϕ. Let N denote the
kernel, and let ϑ stand for the index.

This result cannot be spread to all real s without changes in its formulation. This
follows from the known fact that the trace operator u 7→ u�Γ, where u ∈ C∞(Ω), cannot
be extended to a continuous mapping from Hs(Ω) to D′(Γ) if s ≤ 1/2.

In the s ≤ 2q − 1/2 case, the boundary data gj ∈ Hs−mj−1/2,ϕ(Γ) may be irregular
distributions (so called, rough data). Examining this case, we assume that f ∈ L2(Ω),
which allows us to use an s < 2q version [28, Theorem 1] of the above result. This version
involves the linear space

Hs,ϕ
A (Ω) :=

{
u ∈ Hs,ϕ(Ω) : Au ∈ L2(Ω)

}
endowed with the graph norm

‖u‖s,ϕ;Ω,A :=
(
‖u‖2s,ϕ;Ω + ‖Au‖2Ω

)1/2
.

Here, s < 2q; ϕ ∈ M; ‖ · ‖Ω is the norm in the Hilbert space L2(Ω) of square integrable
functions over Ω, and Au is understood in the sense of the theory of distributions on Ω.
The space Hs,ϕ

A (Ω) is Hilbert, and C∞(Ω) is dense in this space [28, Section 4]. Note
that Hs,ϕ

A (Ω) depends essentially on A (even when all coefficients of A are constant),
which was shown by Hörmander [12, Theorem 3.1] in the case where s = 0 and ϕ(·) ≡ 1.
Consider the Hilbert spaces

Ds,ϕA (Ω,Γ) := Hs,ϕ
A (Ω)⊕

κ⊕
k=1

Hs+rk−1/2,ϕ(Γ)

and

E0,s,ϕ(Ω,Γ) := L2(Ω)⊕
q+κ⊕
j=1

Hs−mj−1/2,ϕ(Γ).

Proposition 1. The mapping (4) extends uniquely (by continuity) to a bounded operator

(6) Λ : Ds,ϕA (Ω,Γ)→ E0,s,ϕ(Ω,Γ)

for arbitrary s < 2q and ϕ ∈ M. This operator is Fredholm. Its kernel coincides with
N , and its index equals ϑ.

This result was proved in [28, Theorem 1]. We will supplement it with theorems on
local (up to the boundary Γ) regularity and a local a priori estimate of the generalized
solutions to the elliptic problem (1), (2). Beforehand, using Proposition 1, we give a
definition of such a solution.

Put

S ′A(Ω) := {u ∈ S ′(Ω) : Au ∈ L2(Ω)},
where, as usual, S ′(Ω) is the space of the restrictions of all distributions w ∈ S ′(Rn)
to Ω. Since Ω is bounded, the space S ′A(Ω) is the union of all Hs,ϕ

A (Ω) such that s < 2q
and ϕ ∈M.

Assume that

(7) (u, v) := (u, v1, . . . , vκ) ∈ S ′A(Ω)× (D′(Γ))κ
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and

(f, g) := (f, g1, . . . , gq+κ) ∈ L2(Ω)× (D′(Γ))q+κ .

The vector (7) is called a generalized (strong) solution to the boundary-value problem
(1), (2) if Λ(u, v) = (f, g) for some operator (6) from Proposition 1. This definition is
reasonable because (u, v) ∈ Ds,ϕA (Ω,Γ) for sufficiently small s < 2q and every ϕ ∈M and
because the image Λ(u, v) does not depend on these s and ϕ.

Now we introduce local versions of the spaces H l,ϕ(Ω) and H l,ϕ(Γ), where l ∈ R
and ϕ ∈ M. We need these versions to formulate a theorem on local regularity of a
generalized solution to the problem under investigation. Let U be an open subset of

Rn such that Ω0 := Ω ∩ U 6= ∅ and Γ0 := Γ ∩ U 6= ∅. We let H l,ϕ
loc (Ω0,Γ0) denote the

linear space of all distributions u ∈ S ′(Ω) such that χu ∈ H l,ϕ(Ω) for every function

χ ∈ C∞(Ω) satisfying suppχ ⊂ Ω0 ∪ Γ0. Analogously, H l,ϕ
loc (Γ0) denotes the linear space

of all distributions h ∈ D′(Γ) such that χh ∈ H l,ϕ(Γ) for every function χ ∈ C∞(Γ)
satisfying suppχ ⊂ Γ0.

Theorem 1. Let s < 2q and ϕ ∈M. Assume that a vector (7) is a generalized solution
to the elliptic problem (1), (2) whose right-hand sides satisfy the conditions f ∈ L2(Ω)

and gj ∈ H
s−mj−1/2,ϕ
loc (Γ0) for each j ∈ {1, . . . , q + κ}. Then u ∈ Hs,ϕ

loc (Ω0,Γ0) and

vk ∈ Hs+rk−1/2,ϕ
loc (Γ0) for each k ∈ {1, . . . ,κ}.

Note that the definition of H l,ϕ
loc (Ω0,Γ0) makes sense in the Γ0 = ∅ case. It follows

from condition (7) and the ellipticity of the PDO A that u ∈ H2q
loc(Ω0, ∅) (see, e.g., [13,

Theorem 7.4.1]).
Now we formulate a theorem on a local a priori estimate of the generalized solution

to the problem under investigation. Let ‖ · ‖′s,ϕ denote the norm in the Hilbert space

Ds,ϕ(Ω,Γ), and let ‖ · ‖′′0,s,ϕ stand for the norm in the Hilbert space E0,s,ϕ(Ω,Γ).

Theorem 2. Let s < 2q and ϕ ∈ M. Assume that a vector (7) satisfies the hypotheses
of Theorem 1. We arbitrarily choose a number λ > 0 and functions χ, η ∈ C∞(Ω) such
that suppχ ⊂ supp η ⊂ Ω0 ∪ Γ0 and that η = 1 in a neighbourhood of suppχ. Then

(8) ‖χ(u, v)‖′s,ϕ ≤ c
(
‖η(f, g)‖′′0,s,ϕ + ‖η(u, v)‖′s−λ,ϕ

)
for a certain number c > 0 that does not depend on (u, v) and (f, g).

Here, of course, χ(u, v) means (χu, (χ�Γ)v1, . . . , (χ�Γ)vκ), and η(f, g) is analogously
interpreted. These theorems are new in the Sobolev case of ϕ(·) ≡ 1 even where s is an
integer. They consist the local (up to the boundary) lifting property of the generalized
solution (u, v).

5. Proofs

If Ω0 = Ω and Γ0 = Γ and if χ(·) ≡ η(·) ≡ 1, Theorems 1 and 2 deal with global
properties of the generalized solution (u, v), i.e. with its properties in the whole domain Ω
up to the boundary Γ. In this specific case, the theorems follows easily from Proposition 1
and are given in [28, Theorems 3 and 2]. In the general case, Theorems 1 and 2 cannot
be deduced from the global case in a routine manner used in [17, Section 3.2.3] and [34,
Section 2.4.4] for elliptic problems with unknowns on the boundary. This is caused by
the following two circumstances: the space Hs,ϕ

A (Ω) is not closed with respect to the

multiplication by functions from C∞(Ω), and the right-hand side of the inequality (8)
contains the norm ‖ηf‖Ω instead of ‖ηf‖s−2q,ϕ. We therefore cannot take χu instead
of u in the global versions of these theorems to treat the general case. Besides, if we
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interchange the PDO A and the operator of the multiplication by χ according to the
routine, we get

‖A(χu)‖Ω ≤ ‖χAu‖Ω + ‖A′(ηu)‖Ω ≤ ‖χf‖Ω + ‖ηu‖2q−1;Ω

whenever u ∈ C∞(Ω), which yields a trivial estimate (for χu) instead of (8) provided
that s < 2q − 1 (here, the PDO A′ is the commutator of these operators).

To prove Theorems 1 and 2, we develop methods worked out in [1, Section 5] and
[2, Section 6] for elliptic problems without unknowns on the boundary. These methods
use property of elliptic problems in Sobolev spaces modified by Roitberg [31, 32] (see
also his monograph [33, Section 2]). For our purposes, we need the similar modification
Hs,ϕ,(2q)(Ω) of the space Hs,ϕ(Ω). This modification was introduced and investigated in
[25] (see also the book [27, Section 4.2.2]). In the Sobolev case of ϕ(·) ≡ 1, the space
Hs,ϕ,(2q)(Ω) was introduced by Roitberg in [31].

Let ϕ ∈ M. If s /∈ {1/2, 3/2, . . . , 2q − 1/2}, then Hs,ϕ,(2q)(Ω) is defined to be the
completion of C∞(Ω) with respect to the Hilbert norm

‖u‖s,ϕ,(2q);Ω :=

(
‖u‖2s,ϕ,(0);Ω +

k∑
j=1

‖(∂j−1
ν u)�Γ‖2s−j+1/2,ϕ;Γ

)1/2

.

Here, ∂ν is the operator of the differentiation with respect to the inward normal to Γ,
and ‖ · ‖s,ϕ,(0);Ω is the norm in the Hilbert space

Hs,ϕ,(0)(Ω) :=

{
Hs,ϕ(Ω) if s ≥ 0
(H−s,1/ϕ(Ω))′ if s < 0,

the dual space being considered with respect to the inner product in L2(Ω). (Note that
ϕ ∈ M ⇔ 1/ϕ ∈ M.) Thus, if s < 0, the space Hs,ϕ,(0)(Ω) is the completion of L2(Ω)
with respect to the norm

‖u‖s,ϕ,(0);Ω := sup

{
|(u,w)Ω|
‖w‖−s,1/ϕ;Ω

: w ∈ H−s,1/ϕ(Ω), w 6= 0

}
,

where (·, ·)Ω stands for the inner product in L2(Ω). Then ‖u‖s,ϕ,(0);Ω = ‖Ou‖s,ϕ;Rn for ev-

ery u ∈ C∞(Ω), with Ou := u on Ω and Ou := 0 on Rn\Ω. If s ∈ {1/2, 3/2, . . . , 2q−1/2},
the Hilbert space Hs,ϕ,(2q)(Ω) is, by definition, the result of the quadratic interpolation
with the parameter 1/2 between the spaces Hs−1/2,ϕ,(2q)(Ω) and Hs+1/2,ϕ,(2q)(Ω).

If s > 2q−1/2, the spaces Hs,ϕ,(2q)(Ω) and Hs,ϕ(Ω) are equal as completions of C∞(Ω)
with respect to equivalent norms. In the opposite case, the space Hs,ϕ,(2q)(Ω) contains
elements that are not distributions. If s1 < s2 and ϕ1, ϕ2 ∈M, the identity mapping on
C∞(Ω) extends uniquely to a compact embedding of Hs2,ϕ2,(2q)(Ω) in Hs1,ϕ1,(2q)(Ω).

Proof of Theorem 1. We arbitrarily choose a function χ ∈ C∞(Ω) subject to suppχ ⊂
Ω0∪Γ0 and consider a function η ∈ C∞(Ω) such that supp η ⊂ Ω0∪Γ0 and that η = 1 in
some neighbourhood V of suppχ in the topology of Ω. According to the hypotheses of the
theorem, we have the inclusion (u, v) ∈ DlA(Ω,Γ) for a sufficiently small integer l < s and
the inclusion η(f, g) ∈ E0,s,ϕ(Ω,Γ). We must deduce from them that χ(u, v) ∈ Ds,ϕ(Ω,Γ).

Since the operator (6) is Fredholm and since the set

E∞(Ω,Γ) := C∞(Ω)× (C∞(Γ))q+κ

is dense in E0,s,ϕ(Ω,Γ), it follows from [10, Lemma 2.1] that η(f, g) = Λ(u′, v′) + (f ′′, g′′)
for some (u′, v′) ∈ Ds,ϕA (Ω,Γ) and (f ′′, g′′) ∈ E∞(Ω,Γ). Then

(9) Λ(u− u′, v − v′) = (1− η)(f, g) + (f ′′, g′′) =: (f ′′′, g′′′),
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with

(10) ζ(f ′′′, g′′′) = ζ(f ′′, g′′) ∈ E∞(Ω,Γ) =
⋂
σ∈R
Eσ,(0)(Ω,Γ)

for every function ζ ∈ C∞(Ω) subject to supp ζ ⊂ V . Here and below,

Eσ,ϕ,(0)(Ω,Γ) := Hσ−2q,ϕ,(0)(Ω)⊕
q+κ⊕
j=1

Hσ−mj−1/2,ϕ(Γ)

and

Dσ,ϕ,(2q)(Ω,Γ) := Hσ,ϕ,(2q)(Ω)⊕
κ⊕
k=1

Hσ+rk−1/2,ϕ(Γ)

for every σ ∈ R.
It follows from [27, Section 4.4.2, isomorphism (4.196)] that the identity mapping

on C∞(Ω) extends uniquely to a continuous embedding H l
A(Ω) ↪→ H l,(2q)(Ω). Hence,

we may consider the distribution u − u′ ∈ H l
A(Ω) as an element of the Roitberg space

H l,(2q)(Ω). Thus,

(11) (u− u′, v − v′) ∈ Dl,(2q)(Ω,Γ).

According to the lifting property [34, Theorem 2.4.3] (see also [8, Theorem 4] as to
the spaces Hσ,ϕ,(2q)(Ω)), it follows from (9)–(11) that

(u◦, v◦) := χ(u− u′, v − v′) ∈
⋂
σ∈R
Dσ,(2q)(Ω,Γ) ⊂ Ds,ϕ(Ω,Γ)

because suppχ ⊂ V . Hence,

χ(u, v) = (u◦, v◦) + χ(u′, v′) ∈ Ds,ϕ(Ω,Γ)

in view of the inclusion (u′, v′) ∈ Ds,ϕA (Ω,Γ). �

Proof of Theorem 2. According to [8, Theorem 1], the mapping (4) extends uniquely (by
continuity) to a Fredholm bounded operator

(12) Λ : Dσ,ϕ,(2q)(Ω,Γ)→ Eσ,ϕ,(0)(Ω,Γ) for every σ ∈ R,
the kernel and index of this operator being the same as those of the operator (5). Note
that these operators coincide if s = σ > 2q − 1/2. Let ‖ · ‖′σ,ϕ,(2q) denote the norm in

Dσ,ϕ,(2q)(Ω,Γ), and let ‖ · ‖′′σ,ϕ,(0) denote the norm in Eσ,ϕ,(0)(Ω,Γ).

Assume that 0 ≤ l ∈ Z and that a function ζ ∈ C∞(Ω) satisfies the condition ζ = 1
in a neighbourhood of suppχ. Let us prove by induction in l that

(13) ‖χ(u, v)‖′s,ϕ,(2q) ≤ c0
(
‖ζΛ(u, v)‖′′s,ϕ,(0) + ‖ζ(u, v)‖′s−l,ϕ,(2q)

)
for every (u, v) ∈ D∞(Ω,Γ) with some number c0 > 0 not depending on (u, v).

If l = 0, then (13) follows from the evident fact that the operator of the multiplication
by a function from C∞(Ω) is bounded on every space Hσ,ϕ,(2q)(Ω). Assume now that
the inequality (13) holds true for a certain integer l = p ≥ 0, and prove this inequality
for l = p+ 1.

Consider a function ζ0 ∈ C∞(Ω) such that ζ0 = 1 in a neighbourhood of suppχ and
that ζ = 1 in a neighbourhood of supp ζ0. By the inductive assumption,

(14) ‖χ(u, v)‖′s,ϕ,(2q) ≤ c1
(
‖ζ0Λ(u, v)‖′′s,ϕ,(0) + ‖ζ0(u, v)‖′s−p,ϕ,(2q)

)
.

In the proof, c1, c2,... denote some positive numbers that do not depend on (u, v). Since
the bounded operator (12), where σ = s−p, is Fredholm, we conclude by Peetre’s lemma
[30, Lemma 3] that

(15) ‖ζ0(u, v)‖′s−p,ϕ,(2q) ≤ c2
(
‖Λ(ζ0(u, v))‖′′s−p,ϕ,(0) + ‖ζ0(u, v)‖′s−p−1,ϕ,(2q)

)
.
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Interchanging the operator of the multiplication by ζ0 with the PDOs used in the problem
(1), (2), we write

(16)
Λ(ζ0(u, v)) = Λ(ζ0ζ(u, v)) = ζ0Λ(ζ(u, v)) + Λ′(ζ(u, v))

= ζ0Λ(u, v) + Λ′(ζ(u, v)),

where Λ′ is an operator of the same structure as Λ but formed by PDOs of lower orders
than the corresponding PDOs in (1), (2). Hence,

(17) ‖Λ′(ζ(u, v))‖′′s−p,ϕ,(0) ≤ c3‖ζ(u, v)‖′s−p−1,ϕ,(2q)

due to [27, Theorem 4.13]. According to (15)–(17), we obtain the inequality

‖ζ0(u, v)‖′s−p,ϕ,(2q) ≤ c4
(
‖ζ0Λ(u, v)‖′′s−p,ϕ,(0) + ‖ζ(u, v)‖′s−p−1,ϕ,(2q)

)
.

Substituting it in (14), we arrive at (13) in the l = p + 1 case. Thus, (13) is proved for
every integer l ≥ 0.

Choose a number p > λ such that s − p is a negative integer. It follows from the
inequality (13) for an integer l > p that

(18) ‖χ(u, v)‖′s,ϕ,(2q) ≤ c5
(
‖ζΛ(u, v)‖′′s,ϕ,(0) + ‖ζ(u, v)‖′s−p,(2q)

)
if we take (3) into account. Let us deduce the required estimate (8) from (18). We
continue to assume that (u, v) ∈ D∞(Ω,Γ).

By the definition of Hs,ϕ,(2q)(Ω), we have

‖χu‖s,ϕ;Ω ≤ ‖χu‖s,ϕ,(0);Ω ≤ ‖χu‖s,ϕ,(2q);Ω
if s /∈ {1/2, 3/2, . . . , 2q − 1/2}. It follows from this by the quadratic interpolation that

‖χu‖s,ϕ;Ω ≤ c6‖χu‖s,ϕ,(2q);Ω
for the rest values of s. Hence,

(19) ‖χ(u, v)‖′s,ϕ ≤ c7‖χ(u, v)‖′s,ϕ,(2q).

Let W be an open set from the topology on Ω such that suppχ ⊂ W and that
η = 1 on W and that W0 := W ∩ Ω is an open domain in Rn with infinitely smooth
boundary. The last condition allows us to consider the Roitberg space Hs−p,(2q)(W0).
Let w ∈ C∞(W ) be the restriction of u to W . Assume in addition that supp ζ ⊂W . We
have the equivalence of norms

(20) ‖ζu‖s−p,(2q),Ω � ‖ζw‖s−p,(2q);W0
.

Indeed, owing to [33, Theorem 6.1.1] and since s− p < 0, we get

‖ζu‖s−p,(2q);Ω � ‖ζu‖s−p,(0);Ω + ‖A(ζu)‖s−p−2q,(0);Ω

= ‖O(ζu)‖s−p;Rn + ‖OA(ζu)‖s−p−2q;Rn

= ‖ζw‖s−p,(0);W0
+ ‖A(ζw)‖s−p−2q,(0);W0

� ‖ζw‖s−p,(2q);W0

because O(ζu) and OA(ζu) are also extensions of the functions ζw and A(ζw), resp.,
to Rn with zero. According to [27, Section 4.4.2, isomorphism (4.196)] we have another
equivalence of norms

(21) ‖w‖s−p,(2q),W0
+ ‖Aw‖W0

� ‖w‖s−p,W0
+ ‖Aw‖W0

;

here, recall, ‖ · ‖W0
denotes the norm in L2(W0).

Formulas (20) and (21) yield

(22)
‖ζu‖s−p,(2q);Ω � ‖ζw‖s−p,(2q);W0

≤ c8
(
‖w‖s−p,(2q);W0

+ ‖Aw‖W0

)
� ‖w‖s−p;W0 + ‖Aw‖W0 ≤ ‖ηu‖s−p;Ω + ‖ηAu‖Ω.
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Substituting (19) and (22) in (18), we get

‖χ(u, v)‖′s,ϕ ≤ c9
(
‖ζΛ(u, v)‖′′s,ϕ,(0) + ‖η(u, v)‖′s−p + ‖ηAu‖Ω

)
≤ c
(
‖ηΛ(u, v)‖′′0,s,ϕ + ‖η(u, v)‖′s−λ,ϕ

)
because s − 2q < 0 (then the norm ‖ · ‖s−2q,(0);Ω is subordinate to ‖ · ‖Ω) and because
p > λ (then the norm ‖ · ‖′s−p is subordinate to ‖ · ‖′s−λ,ϕ). Thus, we have proved the

required estimate (8) in the case where (u, v) ∈ D∞(Ω,Γ).
Now we consider an arbitrary vector (7) that satisfies the hypotheses of Theorem 1

and deduce this estimate from the case just examined. Let V be an open set from the
topology on Ω such that V ⊂ Ω0 ∪ Γ0 and supp η ⊂ V and that V0 := V ∩ Ω is an open
domain in Rn with an infinitely smooth boundary ∂V0. According to Theorem 1, we have
the inclusion ω := u �V0 ∈ Hs,ϕ

A (V0). Since C∞(V ) is dense in Hs,ϕ
A (V0), there exists a

sequence (ur)
∞
r=1 ⊂ C∞(Ω) such that ωr := ur �V → ω in Hs,ϕ(V0) and Aωr → Aω in

L2(V0) as r →∞. Then

(23) ηur → ηu in Hs,ϕ(Ω)

and

(24) ηAur → ηAu in L2(Ω)

as r →∞. The second convergence is evident; let us explain the first. Since ωr − ω → 0
in Hs,ϕ(V0), there exists a sequence (ω◦r )∞r=1 ⊂ Hs,ϕ(Rn) such that ω◦r = ωr−ω in V0 and
that ω◦r → 0 in Hs,ϕ(Rn). Then η(ur − u) = η · ω◦r �Ω→ 0 in Hs,ϕ(Ω), which gives (23).

Let us deduce from the convergence ωr → ω in Hs,ϕ
A (V0) that

(25) ηBjur → ηBju in Hs−mj−1/2,ϕ(Γ)

as r → ∞ for every j ∈ {1, . . . , q + κ}. Given such j, we consider a boundary PDO on
∂V0 of the form

B?j := B?j (x,D) :=
∑
|µ|≤mj

b?j,µ(x)Dµ

where each coefficient b?j,µ belongs to C∞(∂V0) and coincides with the corresponding
coefficient bj,µ of Bj on Γ ∩ ∂V0. Then

B?jωr → B?jω in Hs−mj−1/2,ϕ(∂V0)

due to Proposition 1 considered for V0 instead of Ω (as is seen from [28, Proof of Theo-
rem 1], the boundedness of the operator (6) does not depend on property (ii) of boundary
conditions given in Section 2). Since ηB?jωr = ηBjur on Γ ∩ ∂V0, we get

(26) ηBjur → T (ηB?jω) in Hs−mj−1/2,ϕ(Γ),

where the distribution T (ηB?jω) is equal by definition to ηB?jω on Γ ∩ V and to zero on
Γ \ supp η.

Note that

(27) ηB?jω = ηBju on Γ ∩ V.

Indeed, since u ∈ H l
A(Ω) for some l < s, there exists a sequence (u∗r)

∞
r=1 ⊂ C∞(Ω) that

converges to u in H l
A(Ω). Hence, ηBju

∗
r → ηBju in H l−mj−1/2(Γ) due to Proposition 1.

Besides, since u◦r := u∗r �V0 → u �V0 = ω in H l
A(V0), we have the convergence ηB?j u

◦
r →

ηB?jω in H l−mj−1/2(∂V0). However, ηBju
∗
r = ηB?j u

◦
r on Γ ∩ ∂V0 ⊃ Γ ∩ V . The last two

limits therefore yield property (27). Owing to it, we have the equality T (ηB?jω) = ηBju
on Γ, which together with (26) gives (25).

Consider a function η1 ∈ C∞(Γ) such that supp η1 ⊂ Γ0 and that η1 = 1 in a neigh-
bourhood of Γ ∩ supp η (in the topology on Γ, of course). According to Theorem 1,
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the inclusion η1vk ∈ Hs+rk−1/2,ϕ(Γ) holds true for each k ∈ {1, . . . ,κ}. We choose a

sequence (v
(r)
k )∞r=1 ⊂ C∞(Γ) such that

(28) v
(r)
k → η1vk in Hs+rk−1/2,ϕ(Γ)

as r →∞. Then

(29) ηCj,kv
(r)
k → ηCj,kvk in Hs−mj−1/2,ϕ(Γ)

for all admissible values j and k; see [27, Lemma 2.5]. Put v(r) := (v
(r)
1 , . . . , v

(r)
κ ). As we

have proved, the inequality (8) holds true for (ur, v
(r)) ∈ D(Ω,Γ) instead of (u, v), i.e.

‖χ(ur, v
(r))‖′s,ϕ ≤ c

(
‖ηΛ(ur, v

(r))‖′′0,s,ϕ + ‖η(ur, v
(r))‖′s−λ,ϕ

)
.

Passing here to the limit as r → ∞ and using (23)–(25), (28), and (29), we obtain the
required estimate (8). �
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