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MULTI-INTERVAL STURM-LIOUVILLE PROBLEMS WITH

DISTRIBUTIONAL COEFFICIENTS

ANDRII GORIUNOV

Dedicated to Vladimir Mikhailets on the occasion of his 70th birthday anniversary

Abstract. The paper investigates spectral properties of multi-interval Sturm-

Liouville operators with distributional coefficients. Constructive descriptions of all

self-adjoint and maximal dissipative/accumulative extensions and also all generalized
resolvents in terms of boundary conditions are given.

1. Introduction

Differential operators generated by the Sturm-Liouville expression

l(y) = −(py′)′ + qy,

arise in numerous problems of analysis and its applications. The classic assumptions on
its coefficients are the following:

q ∈ C ([a, b];R) , 0 < p ∈ C1 ([a, b];R) .

Principal statements of the theory of such operators remain true under more general
assumptions that are

q, 1/p ∈ L1 ([a, b],C) .

However, many problems of mathematical physics require study of differential operators
with complex coefficients which are Radon measures or even more singular distributions.
In papers [1, 2, 3, 4] a new approach to investigation of such operators was proposed
based on definition of these operators as quasi -differential, which allows also to consider
differential operators of higher order [5, 3].

The purpose of this paper is to develop a spectral theory of Sturm-Liouville operators
given on a finite system of bounded intervals under minimal conditions for the regularity
of the coefficients.

Multi-interval differential and quasi-differential operators were investigated, particu-
larly, in the papers [6, 7, 8, 9].

Some results of this paper were announced without proof in [9, 10].

2. Preliminary results

Let [a, b] be a compact line segment, m ∈ N, and let a = a0 < a1 < · · · < am = b
be a partition of [a, b] into m parts. Let us consider the space L2 ([a, b],C) as a direct
sum ⊕mk=1L2 ([ak−1, ak],C) which consists of vector functions f = ⊕mk=1fk such that
fk ∈ L2 ([ak−1, ak],C).
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Let on every interval (ak−1, ak), k ∈ {1, . . . ,m} the formal Sturm-Liouville differential
expression

(1) lk(y) = −(pk(t)y′)′ + qk(t)y + i((rk(t)y)′ + rk(t)y′),

be given with the coefficients pk, qk, and rk satisfying the conditions

(2) qk = Q′k,
1√
|pk|

,
Qk√
|pk|

,
rk√
|pk|
∈ L2 ([ak−1, ak],C) ,

where the derivatives Q′k are understood in the sense of distributions.
Similarly to [3] (see also [1, 4]), using the coefficients of the expression (1) we introduce

the quasi-derivatives on every segment [ak−1, ak] in the following way:

D
[0]
k y := y;

D
[1]
k y := pky

′ − (Qk + irk)y;

D
[2]
k y := (D

[1]
k y)′ +

Qk − irk
pk

D
[1]
k y +

Q2
k + r2k
pk

y.

Also denote

ŷk(t) =
(
D

[0]
k y(t), D

[1]
k y(t)

)
∈ C2

for all t ∈ [ak−1, ak]. Under assumptions (2) these expressions are Shin-Zettl quasi-
derivatives (see [12, 11]). One can easily verify that for the smooth coefficients pk, qk
and rk the equality lk(y) = −D[2]

k y holds.
Therefore one may correctly define expressions (1) under assumptions (2) as Shin-Zettl

quasi-differential expressions,

lk[y] := −D[2]
k y.

The corresponding Shin-Zettl matrices (see [11, 12]) have the form

(3) Ak =


Q+ir
p

1
p

−Q
2+r2

p −Q−irp

 ∈ L1([a, b];C2×2).

Then on the Hilbert spaces L2 ((ak−1, ak),C) minimal and maximal differential op-
erators are defined, which are generated by the quasi-differential expressions lk[y] (see
[12, 11]),

Lk,1 : y → lk[y], Dom(Lk,1) :=
{
y ∈ L2

∣∣∣y,D[1]
k y ∈ AC([ak−1, ak],C), D

[2]
k y ∈ L2

}
,

Lk,0 : y → lk[y], Dom(Lk,0) := {y ∈ Dom(Lk,1) |ŷk(ak−1) = ŷk(ak) = 0.} .
Results of [11, 12] for general Shin-Zettl quasi-differential operators together with formula
(3) imply that the operators Lk,1, Lk,0 are closed and densely defined on the space
L2 ([ak−1, ak],C).

In the case where pk, qk and rk are real-valued, the operator Lk,0 is symmetric with
the deficiency index (2, 2) and

L∗k,0 = Lk,1, L∗k,1 = Lk,0.

3. Boundary-value problems. Symmetric case

We consider the space L2 ([a, b],C) as a direct sum ⊕mk=1L2 ([ak−1, ak],C) which con-
sists of vector functions f = ⊕mk=1fk such that fk ∈ L2 ([ak−1, ak],C). In this space
L2 ([a, b],C) we consider the maximal and the minimal operators Lmax = ⊕mk=1Lk,1 and
Lmin = ⊕mk=1Lk,0.

It is easy to see that the operators Lmax, Lmin are closed and densely defined on the
space L2 ([a, b],C).
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Throughout the rest of the paper we assume the functions pk, qk, and rk to be real-
valued for all k and therefore the operators Lk,0 are symmetric with the deficiency indices
(2, 2). Then the operator Lmin is symmetric with the deficiency index (2m, 2m) and

L∗min = Lmax, L∗max = Lmin.

Then naturally arises the problem of describing all its self-adjoint, maximal dissipative,
and maximal accumulative extensions in terms of homogeneous boundary conditions of
the canonical form. For this purpose it is convenient to apply the approach based on the
concept of boundary triplets. It was developed in the papers by Kochubei [13], see also
the monograph [14] and references therein.

Note that the minimal operator Lmin can not be semi-bounded even in the case of a
single-interval boundary-value problem since the function p can change the sign.

Recall that a boundary triplet of a closed densely defined symmetric operator T with
equal (finite or infinite) deficiency indices is a triplet (H,Γ1,Γ2) where H is an auxiliary
Hilbert space and Γ1, Γ2 are linear maps from Dom(T ∗) into H such that

(1) for any f, g ∈ Dom (T ∗) there holds

(T ∗f, g)H − (f, T ∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H ,

(2) for any g1, g2 ∈ H there is a vector f ∈ Dom (T ∗) such that Γ1f = g1 and
Γ2f = g2.

The definition of the boundary triplet implies that f ∈ Dom (T ) if and only if Γ1f =
Γ2f = 0. A boundary triplet (H,Γ1,Γ2) with dimH = n exists for any symmetric
operator T with equal non-zero deficiency indices (n, n) (n ≤ ∞), but it is not unique.

For the minimal quasi-differential operators Lk,0 the boundary triplet is explicitly
given by the following theorem which follows from the results of [2].

Theorem 1. For every k = 1, . . . ,m the triplet (C2,Γ1,k,Γ2,k), where Γ1,k,Γ2,k are
linear maps,

Γ1,ky :=
(
D

[1]
k y(ak−1+),−D[1]

k y(ak−)
)
, Γ2,ky := (y(ak−1+), y(ak−)) ,

from Dom(Lk,1) onto C2 is a boundary triplet for the operator Lk,0.

For the minimal operator Lmin in the space L2 ([a, b],C) the boundary triplet is ex-
plicitly given by the following theorem.

Theorem 2. The triplet (C2m,Γ1,Γ2), where Γ1,Γ2 are linear maps,

(4) Γ1y := (Γ1,1y,Γ1,2y, . . . ,Γ1,my) , Γ2y := (Γ2,1y,Γ2,2y, . . . ,Γ2,my) ,

from Dom(Lmax) onto C2m is a boundary triplet for the operator Lmin.

Proof. We need to verify that both conditions of the definition of the boundary triplet
are fulfilled.

But since for every k = 1, . . . ,m (C2,Γ1,k,Γ2,k) is a boundary triplet for the operator
Lk,0, then we have the following.

1) Let y = ⊕mk=1ym, z = ⊕mk=1zm be two arbitrary functions which belong to Dom(Lmax).
Then

(Lmaxy, z)− (y, Lmaxz) =

m∑
k=1

(Lk,1yk, zk)−
m∑
k=1

(yk, Lk,1zk) =

=

m∑
k=1

(Γ1,kyk,Γ2,kzk)−
m∑
k=1

(Γ2,kyk,Γ1,kzk) =

=(Γ1y,Γ2z)− (Γ2y,Γ1z).
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2) Let g1, g2 ∈ C2m, and therefore g1 = (g1,1, . . . , g1,m), g2 = (g2,1, . . . , g2,m), where
gik ∈ C2. Then for all k = 1, . . . ,m there are functions yk ∈ Dom(Lk,1 such that
Γ1,kyk = g1,k, Γ2,kyk = g2,k, which implies that the definition of boundary triplet is
fulfilled. �

Denote by LK the restriction of the operator Lmax onto the set of functions y ∈ Dom(Lmax)
satisfying the homogeneous boundary condition

(5) (K − I) Γ1y + i (K + I) Γ2y = 0,

where K is an arbitrary bounded operator on the space C2m.
Similarly, denote by LK the restriction of Lmax onto the set of functions y ∈ Dom(Lmax)

satisfying the homogeneous boundary condition

(6) (K − I) Γ1y − i (K + I) Γ2y = 0,

where K is an arbitrary bounded operator on the space C2m.
Theorem 1 leads to the following description of all self-adjoint, maximal dissipative,

and maximal accumulative extensions of the operator Lmax.

Theorem 3. Every LK with K being a contracting operator in the space C2m, is a
maximal dissipative extension of the operator Lmin. Similarly every LK with K being a
contracting operator in C2m, is a maximal accumulative extension of the operator Lmin.

Conversely, for any maximal dissipative (respectively, maximal accumulative) exten-

sion L̃ of the operator Lmin there exists a unique contracting operator K such that

L̃ = LK (respectively, L̃ = LK).
The extensions LK and LK are self-adjoint if and only if K is a unitary operator on

C2m.
The mappings K → LK and K → LK are injective.

Proof. The assertion of the theorem follows from Theorem 1 together with [14, Th. 1.6]
for boundary triplets of a general symmetric operator. �

4. Real extensions and local boundary conditions

Recall that a linear operator T acting on the Hilbert space L2([a, b],C) is called real
if

(1) for every function f from Dom(T ) the complex conjugate function f also lies in
Dom(T );

(2) the operator T maps complex conjugate functions into complex conjugate func-

tions, that is, T (f) = T (f).

Theorem 4. Suppose that all the coefficients rk ≡ 0, k ∈ {1, . . . ,m}. Then the maximal
and the minimal quasi-differential operators Lmax and Lmin are real.

All real maximal dissipative and maximal accumulative extensions of the real symmet-
ric quasi-differential operator Lmin are self-adjoint.

The self-adjoint extensions LK or LK are real if and only if the unitary matrix K is
symmetric.

Proof. As we assumed at the beginning of this section, all functions pk, Qk ∈ L2([ak−1, ak],R).
As for any k the coefficients of the quasi-derivatives are real-valued functions, one has

D
[1]
k y = D

[1]
k y, k = 1, . . . ,m,

which implies that lk(y) = lk(y). Therefore for any y ∈ Dom(Lk,1) we have y ∈
Dom(Lk,1) and Lk,1(y) = Lk,1(y) and for any y ∈ Dom(Lk,0) we have y ∈ Dom(Lk,0).

Thus the assertion of the theorem yields that Lk,1 and Lk,0 are real. Therefore the
operators Lmax and Lmin are real being the direct sums.
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Let now LK be a real maximal dissipative extension of Lmin. Again, one easily sees
that Γ1y = Γ1y and Γ2y = Γ2y. Then for an arbitrary function y ∈ Dom(LK) we have

(K − I) Γ1y + i (K + I) Γ2y = 0,

therefore (
K − I

)
Γ1y − i

(
K + I

)
Γ2y = 0,

so, in other words, LK ⊂ LK . Thus the maximal dissipative extension LK is also

accumulative, therefore, the operator LK is self-adjoint and we obtain LK = LK .

Due to [2, Remark 4.3] we have that LK = LK if and only if K−1 = K. Since K is a

unitary matrix, K−1 = KT , which gives K = KT .
Similarly one can show that the maximal accumulative extension LK is real if and

only if it is self-adjoint and K = KT . �

All functions from Dom(Lmax), together with their first quasi-derivatives, belong to
⊕mk=1AC ([ak−1, ak],C). This implies that the following definition is correct.

Denote by [f ]t− the left germ and by [f ]t+ the right germ of the continuous function
f at a point t. Similarly to the paper [2] we say that boundary conditions that define
the operator L ⊂ Lmax are called local if, for any functions y ∈ Dom(L) and for any
y1, . . . , ym ∈ Dom(Lmax), the identities

[yj ]aj− = [y]aj− , [yj ]aj+ = [y]aj+ , [yj ]ak− = [yj ]ak+ = 0, k 6= j

imply that yj ∈ Dom(L). For j = 0 and j = m we consider only the right and left germs,
respectively.

The following statement gives a description of the extensions LK and LK which are
given by local boundary conditions.

Theorem 5. The boundary conditions (5) and (6) defining the extensions LK and LK ,
respectively, are local if and only if the matrix K has the block form

(7) K =

Ka0 0 . . . 0
0 Ka1 . . . 0
0 0 . . . Kan

 ,

where Ka1 and Kan ∈ C and other Kaj ∈ C2×2.

Proof. Let us consider the extension LK defined by the boundary conditions (5).
Note that for all f, g ∈ Dom(Lmax) the identity [f ]ak− = [g]ak− implies that[

D
[1]
k f
]
ak−

=
[
D

[1]
k g
]
ak−

, k = 1, . . . ,m,

and therefore

D
[1]
k f(ak−) = D

[1]
k g(ak−), f(ak−) = g(ak−).

Similarly, the identity [f ]ak+ = [g]ak+ implies that[
D

[1]
k+1f

]
ak+

=
[
D

[1]
k+1g

]
ak+

, k = 0, . . . ,m− 1,

and therefore

D
[1]
k+1f(ak+) = D

[1]
k+1g(ak+), f(ak+) = g(ak+).
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If K has the form (7), then the boundary conditions (5) can be written in the form
of the system 

(Ka0 − 1)D
[1]
1 y(a0+) + i(Ka0 + 1)y(a0+) = 0,

(Ka1 − I)

(
−D[1]

1 y(a1−)

D
[1]
2 y(a1+)

)
+ i(Ka1 + I)

(
y(a1−)
y(a1+)

)
= 0,

. . .

(Kam − 1)(−D[1]
m y(am−)) + i(Kam + 1)y(am−) = 0.

It is evident that these boundary conditions are local.
Conversely, suppose that the boundary conditions (5) are local.
Denote the elements of the matrix K by

K =


k1,1 k1,2 . . . k1,2m
k2,1 k2,2 . . . k2,2m
. . . . . . . . . . . .
k2m,1 k2m,2 . . . k2m,2m

 ,

where kr,j ∈ C. We need to prove that krj = 0 except for the following cases: r = j = 1;
r = j = 2m; r = 2p + 1, j ∈ {r, r + 1}, p = 0, . . . ,m − 1; r = 2p, j ∈ {r − 1, r},
p = 1, . . . ,m− 1.

Boundary conditions (5) then take the form of 2m equations,

m∑
j=1

(
k2p+1,2j−1D

[1]
j y(aj−1+)− k2p+1,2jD

[1]
j y(aj−)

)
−D[1]

p+1y(ap+)+

+ i

m∑
j=1

(
k2p+1,2j−1y(aj−1+) + k2p+1,2jy(aj−)

)
+ iy(ap+) = 0,

r = 2p+ 1, p = 0, . . . ,m− 1,
m∑
j=1

(
k2p,2j−1D

[1]
j y(aj−1+)− k2p,2jD[1]

j y(aj−)
)

+D[1]
p y(ap−)+

+ i

m∑
j=1

(
k2p,2j−1y(aj−1+) +K2p,2jy(aj−)

)
+ iy(ap−) = 0,

r = 2p, p = 1, . . . ,m

The definition of local boundary conditions implies that any function ys such that
[ys]as− = [y]as−, [ys]as+ = [y]as+, and [ys]ak− = [y]ak+ = 0, k 6= s, must also satisfy this
system. Therefore we have

kr,2s+1D
[1]
s+1y(as+)− kr,2sD[1]

s y(as−) + ikr,2s+1y(as+) + ikr,2sy(as−) = 0,

or

(8) kr,2s+1

(
D

[1]
s+1y(as+) + iy(as+)

)
+ kr,2s

(
−D[1]

s y(as−) + iy(as−)
)

= 0,

where r = 1, . . . , 2m, and s runs from 1 to n − 1, s 6= p, where r = 2p or r = 2p + 1.
Therefore these equations contain all krs we need to prove to be equal to 0.

Let us return to boundary conditions (5) and rewrite them in a parametric form. For
any vector F = (F1, . . . , F2m) ∈ C2m, we consider the vectors −i(K+I)F and (K−I)F .
Due to the definition of a boundary triplet the is a function yF ∈ Dom(Lmax) such that{

−i (K + I)F = Γ1yF ,

(K − I)F = Γ2yF .
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One easily sees that yF satisfies boundary conditions (5) and therefore yF ∈ Dom(LK).
We rewrite the last system in the form

− i
2m∑
j=1

kr,jFj − iFr = −D[1]
p yF (ap−), r = 2p+ 1, p = 0, . . . , n,

− i
2m∑
j=1

kr,jFj − iFr = D
[1]
p+1yF (ap+), r = 2p, p = 1, . . . , n,

− i
2m∑
j=1

kr,jFj − Fr = yF (ap−), r = 2p+ 1, p = 0, . . . , n,

− i
2m∑
j=1

kr,jFj − Fr = yF (ap+), r = 2p, p = 1, . . . , n,

which results in −D[1]
p yF (ap−) + iyF (ap−) = −2iF2p and D

[1]
p+1yF (ap+) + iyF (ap+) =

−2iF2p+1 for arbitrary numbers Fj ∈ C.
Substituting this into (8) we have that

kr,2s+1F2s+1 + kr,2siF2s = 0

for arbitrary numbers Fj , therefore obviously kr,2s+1 = kr,2s = 0 and the Theorem is
proved. �

5. Generalized resolvents

Let us recall that a generalized resolvent of a closed symmetric operator L on a Hilbert
spaceH is an operator-valued function λ 7→ Rλ, defined on C\R which can be represented
as

Rλf = P+
(
L+ − λI+

)−1
f, f ∈ H,

where L+ is a self-adjoint extension of the operator L that acts on a certain Hilbert space
H+ ⊃ H, I+ is the identity operator onH+, and P+ is the orthogonal projection operator
from H+ onto H. It is known that an operator-valued function Rλ is a generalized
resolvent of a symmetric operator L if and only if it can be represented as

(Rλf, g)H =

∫ +∞

−∞

d (Fµf, g)

µ− λ
, f, g ∈ H,

where Fµ is a generalized spectral function of the operator L. This implies that the
operator-valued function Fµ has the following properties.

(1) For µ2 > µ1 the difference Fµ2
− Fµ1

is a bounded non-negative operator.
(2) Fµ+ = Fµ for any real µ.
(3) For any x ∈ H the following identities hold:

lim
µ→−∞

||Fµx||H = 0, lim
µ→+∞

||Fµx− x||H = 0.

The following theorem provides a parametric description of all generalized resolvents
of the symmetric operator Lmin (see also [15]).

Theorem 6. 1) Every generalized resolvent Rλ of the operator Lmin in the half-plane
Imλ < 0 acts by the rule Rλh = y, where y is a solution of the boundary-value problem

l(y) = λy + h,

(K(λ)− I) Γ1f + i (K(λ) + I) Γ2f = 0.

Here h(x) ∈ L2([a, b],C) and K(λ) is a 2m × 2m matrix-valued function which is holo-
morphic in the lower half-plane and such that ||K(λ)|| ≤ 1.
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2) In the half-plane Imλ > 0 every generalized resolvent of the operator Lmin acts by
Rλh = y, where y is a solution of the boundary-value problem

l(y) = λy + h,

(K(λ)− I) Γ1f − i (K(λ) + I) Γ2f = 0.

Here h(x) ∈ L2([a, b],C) and K(λ) is a 2m × 2m matrix-valued function which is holo-
morphic in the upper half-plane and satisfies ||K(λ)|| ≤ 1.

This parametrization of the generalized resolvents by the matrix-valued functions K(λ)
is bijective.

Proof. The Theorem is just an application of Theorem 2 and [15, Theorem 1 and Remark
1] which proves the description of generalized resolvents in terms of boundary triplets.
Namely, one requires to take as an auxiliary Hilbert space Cm and as the operator
γy := {Γ1y,Γ2y}. �
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