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WHEN UNIVERSAL SEPARATED GRAPH C∗-ALGEBRAS ARE

EXACT

BENTON L. DUNCAN

Abstract. We consider when the universal C∗-algebras associated to separated

graphs are exact. Specifically, for finite separated graphs we show that the uni-
versal C∗-algebra is exact if and only if the C∗-algebra is isomorphic to a graph

C∗-algebra which occurs precisely when the universal and reduced C∗-algebras of

the separated graph are isomorphic.

1. Introduction and preliminaries

The idea of considering a separated graph and the associated C∗-algebras was consid-
ered in [1, 3, 4] and from a different perspective (as directed graphs with edge-colorings)
was considered in [10]. It is natural, given the study of directed graph algebras (for a
survey of this study see [13]), to consider the algebras associated to separated graphs
(called edge-colored directed graphs in [10]). The focus is then on understanding the
C∗-algebras associated to a separated graph.

In [10] the universal C∗-algebra for a separated graph was studied by considering these
algebras as universal free products of graph algebras. This perspective allowed a natural
extension of many results about graph algebras to the separated graph context. In this
paper we return to this subject to investigate further some problems left open in [10]. In
[4], it was shown that the reduced C∗-algebra associated to a separated graph is nuclear.
However, there are examples of separated graphs whose universal C∗-algebras are not
exact and one is left with the question of when this is the case.

Since the universal C∗-algebras of edge-colored directed graphs are considered as uni-
versal free products, one approach to these questions is to consider exactness of free
products. An analysis of exactness for free products of finite dimensional algebras in [9]
led us to reconsider the question in the context of separated graph C∗-algebras. In [9]
one quickly realizes the role played by the amalgamating subalgebra in exactness. This
proved to be a useful point of view for separated graph C∗-algebras as well.

We now explain the main results of the paper. We first introduce an operation on a
separated graph, reversing edges, which produces a new graph with isomorphic associated
C∗-algebras. We then, proceeding in cases, consider a set of algorithms that allow us
to either show that the associated universal C∗-algebra is not exact, or eventually turn
the graph into a directed graph, with no separation. As directed graph C∗-algebras are
nuclear this completely answers the question concerning exactness and nuclearity for the
universal C∗-algebra of a separated graph.

Putting our results together with the known results on nuclearity of the reduced C∗-
algebra of a separated graph we are also able to completely determine when the universal
C∗-algebra of a finite separated graph is isomorphic to the reduced C∗-algebra of the
separated graph. Giving an answer to [4, Problem 7.2], this occurs precisely when the
universal C∗-algebra is nuclear.
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Some of the results of this paper will certainly apply in the context of arbitrary
separated graphs, and for row-finite graphs direct limits can partly extend these results.
However, for arbitrary graphs the extension is not obvious, since the algorithms we
construct will not necessarily terminate for infinite graphs. Extending these results in a
natural way to infinite graphs will likely require other tools.

2. Separated graph C∗-algebras

By a separated graph we mean a countable directed graph G = (V,E, r, s) together
with a set of partitions C = {Cv : v ∈ V } where Cv is a partition of the edges with range
equal to v. In this context we will mean, by countable, that both the edge and vertex
sets are countable. Many of the results in this paper extend to non-countable graphs,
however it is not clear that the algorithms we construct will apply in that context.

A separated Cuntz-Krieger family for a separated graph (G,C) consists of collections
of orthogonal projections {Pv : v ∈ V } and partial isometries {Se : e ∈ E} that satisfy
the following properties:

(1) S∗eSe = Ps(e) for all e ∈ E.
(2) Pr(e)SeS

∗
e = SeS

∗
e for all e ∈ E.

(3) for every v and every set E′ ∈ Cv the set {SeS∗e : e ∈ E′} consists of mutually
orthogonal projections.

(4) for every v and every set E′ ∈ Cv we have
∑
{e:r(e)=v,χ(e)=i} SeS

∗
e = Pv, when

{e : r(e) = v, e ∈ E′} is finite.

There is a universal C∗-algebra for separated CK-families associated to a separated
graph and we denote it by C∗(G,C); we will write C = {Cv} so that for any fixed v, Cv
is a partition of the edges with range equal to v, a set in the partition we will write as cv.
There is a standard construction of the algebra using free products as follows (see [10,
Theorem 2] for more on this particular decomposition). Let Gcv denote the subgraph
given by (V, cv, r|cv , sxv

) then Gcv is a directed graph and C∗(G,C) = ∗
P
{C∗(Gcv ) : cv ∈

Cv, v ∈ V }, where P is the subalgebra generated by the set of projections, {Pv} which
all of the algebras share. We will refer to the Gcv as the decomposed subgraphs of G.

An important point to note is that if no two edges share the same range in (G,C)
then the CK-family for the separated graph will be a CK-family for the directed graph G
and hence we will often treat such a situation as if (G,C) is a directed graph. We refer
the reader to [10] for more details and other relevant results concerning the universal
C∗-algebras of separated graphs.

In what follows (G,C) will denote a fixed separated graph. Given a directed graph
G = (V,E, r, s) we can consider the underlying undirected graph. This graph is not
a graph in the traditional sense (i.e. ordered pairs indicating the presence of an edge
between two vertices) since we will allow multiple edges between two vertices. We will
assume that the undirected graph is connected (i.e there is a path in the undirected
graph between any two vertices in the graph). Without this assumption we can just
consider connected components of the undirected graph and see that the C∗-algebra
of the separated graph is the direct sum of the separated graph for each connected
component.

3. Some non-exact algebras

We start with some (known) examples involving exactness of free products which will
be helpful in analyzing the general situation.

Proposition 1. The following universal free products are not exact:

(1) C(T)∗
C
C(T).
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(2) C(T)∗
C
Ck with k ≥ 2.

(3) Mn∗
C
Mm, if n,m ≥ 2.

(4) Mr∗
C
Ms∗

C
Mt, if r, s, t ≥ 2.

Proof. We notice first that C(T) ∼= C∗(Z) and that Ck = C∗(Zk) for all finite k.

(1) We have that C(T)∗
C
C(T) ∼= C∗(Z)∗

C
C∗(Z) which is isomorphic to (see for exam-

ple [7, II.8.3]) C∗(Z∗Z) ∼= C∗(F2) which is known to be not exact [16].

(2) Next C(T)∗
C
Ck ∼= C∗(Z)∗

C
C∗(Zk) ∼= C∗(Z∗Zk). Notice that if the generators of

Zk are a1, a2, . . . , ak then consider A = Z and B = a1Aa
−1
1 inside Z∗Zk and let C

be the subgroup generated by A and B. Then A and B are both isomorphic to Z
and C = A∗B ⊆ Z∗Zk. Hence the associated C∗-algebra contains a subalgebra

of the previous type and hence is not exact.
(3) If n = m = 2 then this is [9, Proposition 1]. If m ≥ 3 and n ≥ 2 then there

are subalgebras A ⊆ Mm, B ⊆ Mn both isomorphic to M2 and then there is a
quotient from the subalgebra generated by A and B onto M2∗

C
M2 which is the

case n = m = 2.
(4) This is [9, Proposition 5].

�

Note that in [9, Theorem 2] it is shown that M2 ∗
C2
M2 is exact as it is isomorphic to a

graph C∗-algebra. This is the motivating example for the idea of reversing edges, that
we introduce later. Finally we have that C∗

C
Ck ∼= Ck and hence any algebra of this form

is also nuclear.
We will in what follows do a case by case analysis which will allow us to completely

answer the question of exactness for C∗(G,C) when the graph G is finite. For the most
part this analysis rests on excluding subalgebras of the type in Proposition 1 using the
projections associated to vertices in the directed graph. We consider how such projections
can “propagate” through the graph and then consider the added complications that cycles
in the undirected graph give rise to.

4. Reversing edges and subgraphs

Let (G,C) be a countable separated graph. If H is a directed subgraph of G then
consider (H,C) the separated graph with partitions just being the restrictions to E(H)
of the partitions from G. We will call (H,C) a separated subgraph of (G,C). Notice
that (H,C) is a separated graph in its own right and we will denote this graph with the
same symbol. We have the following results connecting the C∗-algebra of a separated
subgraph to a C∗-subalgebra of the original graph C∗-algebra.

Theorem 1. Let (H,C) ⊆ (G,C) and let A be the subalgebra of C∗(G,C) generated by
{Se : e ∈ E(H)} and {Pv : v ∈ V (H)}, then there is a surjection π : A→ C∗(H,C).

Proof. We first prove this for directed graphs and then use the free product decomposition
of a separated graph to extend to the general case.

So assume that H is a subgraph of G and G has trivial separation (i.e. Cv is the single
set {e : r(e) = v} for every v).Now notice that the subalgebra A will be generated by
partial isometries satisfying the following relations:

(1) The Pv are mutually orthogonal nonzero projections.
(2) S∗eSe = Ps(e).
(3) Pr(e)SeS

∗
e = SeS

∗
e , and
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(4)
∑
r(e)=v SeS

∗
e ≤ Pv if {e : r(e) = v} is finite.

In addition the gauge action on C∗(G) will reduce to a gauge action on the sub-
algebra A, and hence the family {Pv, Se} generating A is a gauge-invariant Toeplitz-
Cuntz-Krieger family. Since the graph algebra C∗(H) is co-universal for gauge-invariant
Toeplitz-Cuntz-Kreiger families (see [11], [14], and [15] for a general discussion of co-
universality of graph algebras) it follows that there is a ∗-representation π : A→ C∗(H)
which is onto.

Now for (G,C) we consider the graphs Gcv so that C∗(G,C) = ∗
P
C∗(Gcv ). Consider

Acv = A ∩ C∗(GCv ) which is generated by P ′ = {Pv : v ∈ V (H)} and {Se : e ∈
E(H) ∩ E(Gcv )}. Then A = ∗

P ′
Acv by [10, Theorem 2] (see also [12, Theorem 4.2]).

Now for each cv there is πcv : Acv → C∗(Hcv ), the latter of which is the subalgebra
of C∗(H,C) generated by {Se, e ∈ cv} which when restricted to the subalgebra P ′ all
coincide. Thus there exists a ∗-representation ∗πcv : ∗

P ′
Acv → ∗

P ′
C∗(Hcv ) which is onto.

The former algebra is of course A and the latter is C∗(H,C). �

Definition 1. We say that (H,C) is a full separated subgraph of (G,C) if the map in
the previous theorem is an injection.

For a directed graph the full subgraphs of G are given by those subgraphs such that
{e ∈ E(H) : r(e) = v} = {e ∈ E(G) : r(e) = v} for every vertex in H (This is just
an application of the gauge-invariant uniqueness theorem for arbitrary graphs, see [6,
Theorem 2.1]). A similar result is true of a separated graph.

Proposition 2. Let {e ∈ G : r(e) = v} be partitioned into disjoint sets. If for each such
set, call it c, either c ⊂ V (H) or c ∩ V (H) = ∅ then the separated subgraph (H,C) is a
full subgraph of the separated graph (G,χ).

Proof. This is just the fact that a Toeplitz-Cuntz-Krieger family gives a Cuntz-Krieger
family if and only if the TCK-inequality is an equality for any vertex receiving finitely
many edges. It follows that the subalgebra A in C∗(G,χ) generated by the edge partial
isometries and edge projections corresponding to the edges and vertices in (H,χ) gives a
Cunt-Krieger family for (H,χ). Hence there is a surjection from C∗(H,χ) onto A which
gives an inverse for the map π from Theorem 1. �

In this section we will assume that G = (V,E, r, s) with both E and V being countable.
In this case the partition cv will be consist of at most countably many disjoint sets and
we will hence label them with natural numbers to simplify the notation.

We start with the fact that C∗(G,C) is generated by the sets P := {Pv, v ∈ V } and
S := {Se : e ∈ E}, and S∗ := {S∗e : e ∈ E} with the following relations:

PvSe =

{
Se, if r(e) = v

0 otherwise.

SePv =

{
Se, if s(e) = v

0 otherwise.

SeSf = 0, if r(f) 6= s(e), otherwise it is nonzero.
S∗eSf = 0, if r(e) 6= r(f) or if r(e) = r(f), and e and f are in the same partition
in cr(e), otherwise it is nonzero. Also if e = f then this is Ps(e).
SeS

∗
f = 0 if s(e) 6= s(f) otherwise it is nonzero. If e = f then this is a subpro-

jection of Pr(e).

To see that the “nonzero” products above are non-zero one can consider the fact that
the products are non-zero in the Leavitt path algebra associated to (G,C) [3] and that
the Leavitt path algebra injects into C∗(G,C) applying [4, Theorem 3.8]. However,
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those products of Se and S∗f which are nonzero in the preceding list need not give rise
to a partial isometry, since we don’t know a priori that the range projections of the
Se commute (in fact they often do not, see [2] where they consider a variant of the
separated graph algebras where they quotient by the commutators of non-commuting
range projections). An important fact we will use, however, is that when we know that
the family {SeS∗e : e ∈ E} consists of mutually commuting projections any such product
will be a partial isometry [2].

For a vertex v we define the vertex degree of the vertex to be equal to an tuple
dv = (a1, a2, . . . , an) where ai is the number of edges in the i-th partition of cv. We will
allow ai = ∞ in the case that the partition includes a countably infinite set. We also
allow dv to be a sequence (in the case that cv consists of infinitely many sets).

Remark 1. Notice that by [10, Theorem 2] and by considering the defining relations for
the C∗-algebra of an separated graph C∗-algebra we can see that the partition is local
in the sense that as long as the local picture at a vertex is unchanged the C∗-algebra is
unchanged. Specifically, if for every vertex v there is an injective map σv : N → N and
we define a new partition by applying a permutation to the index set for cv, calling the
new graph (G, σ(C)). then C∗(G, σ(C)) is isomorphic to C∗(G,C). It follows that we
can without loss of generality assume that a1 ≥ a2 · · · ≥ an. We will do so implicitly
throughout (with two exceptions that occur inside proofs to simplify the arguments and
will be noted explicitly).

We now introduce a construction which will allow us to “reverse” certain edges in the
graph without affecting the associated C∗-algebra.

Let (G,C) be an edge-colored directed graph with e ∈ E(G). Construct a new graph
by reversing the edge e, call it Ge. Formally we have V (G) = V (Ge), E(Ge) = (E(G) \
{e}) ∪ {e}, rGe

(f) = r(f) and sGe
(f) = s(f) for all f ∈ E(G) \ {e}, and rGe

(e) = s(e)
and sGe

(e) = r(e). Next define a new partition C ′ where e is in its own distinct, the
partitions that did not include e are left alone and the set X ∈ C that contained e is
either ∅ in C ′ if X = {e} ∈ C or X \{e} ∈ C ′. We say that (Ge, C

′) is the graph obtained
from (G,C) by reversing the edge e. Note that the new graph changes the partitions
and hence reversing an edge e and then reversing the reversed edge may not yield the
original graph.

Example. Consider the directed graph

•
f
((

g

66 •

Reversing the edge g gives a graph which is equivalent to

•
f
(( •

ĝ

hh

and then reversing the edge ĝ yields the graph

•
f
((

̂̂g 66 •

In the first case the associated C∗-algebra is M3 and the third graph gives rise to the
C∗-algebra M2 ∗

C2
M2 which is not finite dimensional.

The next proposition now yields information about the new C∗-algebra when an edge
is reversed.
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Proposition 3. Let (G,C) be a separated graph and e an edge in G. If in the partition
C, the set X that contains e is a singleton then C∗(G,C) is isomorphic to C∗(Ge, C

′).

Proof. For the proof we let (G\e, C) denote the graph obtained from G be removing the
edge e, and let (H,C) be the separated graph (V (G), {e}, r, s) with C = {{e}}. Then
given the construction of the separated graph as a free product we see that C∗(G,C) =
C∗(Ge, C)∗

P
C∗(H,C). The map se 7→ s∗e, pv 7→ pv yields a separated CK-family for

the graph the (H,C) and the reverse map gives a separated CK-family for the graph
(He, C

′) and hence using universal properties we have that C∗(He), C
′) = C∗(H,C).

Putting this all together we get the series of isomorphisms

C∗(G,C) = C∗(G \ e, C)∗
P
C∗(H,C)

= C∗(G \ e, C)∗
P
C∗(He, C

′)

= C∗(Ge, C
′).

�

The same proof applies to the reduced separated graph C∗-algebras using the reduced
free product rather than the universal free product (as constructed in [4, Definition 3.5])
since the universal property for the reduced separated graph C∗-algebras will still be
preserved by the construction.

Proposition 4. Let (G,C) be a separated graph and e an edge in G. If in the partition
C, the set X that contains e is a singleton then C∗r (G,C) is isomorphic to C∗r (Ge, C

′).

In the case that r(e) = s(e) this theorem just gives rise to a trivial change and hence
doesn’t provide any useful difference in the graph, however if r(e) 6= s(e) then this
operation can be used to simplify some graphs.

We will say that an edge e in a separated graph (G,C) is reversible if the set {e} is
in the partition C. In other words, these are the edges for which the previous theorem
applies. We denote by Erev the set of all reversible edges in the graph. Similarly we say
that a vertex v supports an irreversible edge if there is an edge e 6∈ Erev with r(e) = v.
We denote by Virr the set of vertices which support an irreversible edge.

5. For finite graphs when is C∗(G,χ) exact/nuclear

We are now in a position to consider exactness/nuclearity of the C∗-algebra of a
separated graph. We proceed in cases depending on the set Virr. In each case we will
construct an algorithm that either ends when the algebra is not exact, or exhausts the
possible graphs.

5.1. The set Virr is empty. Let (G,C) be a graph in which every edge is reversible (this
is equivalent to Virr is empty). In this case SeS

∗
e = Pr(e) for every edge e and hence any

product of the generating partial isometries will be a partial isometry. We construct an
algorithm in which the vertex set is unchanged throughout, but in each iteration of the
algorithm we will replace (G,C) with a separated graph (with isomorphic C∗-algebra)
with some edges reversed.

Algorithm. Algorithm for Reversible Edges
Base step:

Fix a vertex v ∈ V . Let V0 = {v}, Eloop
0 = {e ∈ E : r(e) = s(e) = v} and let

E0 = {e ∈ E \ Eloop
0 : r(e) ∈ V0}. Also let m1 = |Eloop

0 |.
Step 1:
Let (G1, C1) be the edge-colored directed graph formed by reversing each of the edges

in E0. Let V1 = {w : r(e) = w, s(e) = v for some e ∈ E(G1)}\V0. Now Eloop
1 = {(e, f) ∈
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E(G1)2 : e 6= f, s(e), s(f) ∈ V0, r(e) = r(f) ∈ V1}. Now let Eloop1′ be the set of all edges
e ∈ E1 such that s(e) ∈ V1, r(e) ∈ V1. Let E1 = {e ∈ E(G1) : r(e) ∈ V1, s(e) 6∈ V0 ∪ V1}.
Finally we let m2 = |Eloop

1 |+ |Eloop
1′ |.

Step i:
Let (Gi, Ci) be the separated graph formed by reversing each of the edges in Ei−1. Let

Vi = {w : there is an e ∈ Gi with r(e) = w, s(e) ∈ Vi−1} \ ∪i−1n=0Vn. Let Eloop
i {(e, f) ∈

E(Gi)
2 : e 6= f with s(e), s(f) ∈ Vi−1, r(e) = s(e) ∈ Vi} and Eloopi′ be the set of all edges

e such that s(e) ∈ Vi−1, r(e) ∈ Vi−1. Let Ei = {e ∈ E(Gi) : r(e) ∈ Vi, s(e) 6∈ ∪in=iVi}}.
Now let mi = |Eloop

i |/2 + |Eloop
i′ |.

As the original underlying directed graph is connected for any vertex v there is some
k such that v is in Vk. As a final step we let M(G,C) =

∑
mi.

Note that this algorithm is guaranteed to stop since the set of vertices is finite, and
at each stage the size of ∪i−1n=1Vk is strictly increasing until the graph is exhausted.

We provide an example to illustrate the algorithm.

Example. Let G be the directed graph below and assume that each element of C is a
singleton, hence (G,C) has no irreversible edges.

v2

e2

��

e3

��

v3e5
oo

e7

��

e6

��

v1

e4

EE�������������

e1

FF v4

e8

TT

In the first step we V0 = {v1}. Then Eloop
0 = {e1}, E0 = {e2, e3}, and m1 = 1. Now

we reverse the edges in E0 to get the graph

v2 v3
e5oo

e7

��

e6

��

v1

e2

__

e3

TT

e4

EE�������������

e1

FF v4

e8

TT

Next V1 = {v2, v3}, Eloop
1 = {(e2, e3), (e3, e2)}, Eloop

1′ = {e5, e6}, E1 = {e8}, and m2 =
3. We now reverse the edges in E1 to get the graph
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v2 v3
e5oo

e7

��

e8

��

e6

��

v1

e2

__

e3

TT

e4

EE�������������

e1

FF v4

Now V2 = {v4}, Eloop
2 = {(e7, e8), (e8, e7)}, Eloop

2′ = ∅, E2 = ∅, and m3 = 1. We finish
by noting that M(G,C) = 6.

We have the following theorem which completely describes when the universal sepa-
rated graph algebras are exact/nuclear in this context.

Theorem 2. Let (G,C) be a finite separated graph in which every edge is reversible.
Then C∗(G,C) is nuclear if M(G,C) ≤ 1 and C∗(G,C) is not exact if M(G,C) ≥ 2.

Proof. We begin with the case in which M(G,C) = 0. In this case at the end of the
algorithm we are left with a graph (G′, C ′) in which no two edges share a common
range. It follows that the graph (G′, C ′) is a directed graph and hence the C∗-algebra is
isomorphic to the C∗-algebra of a directed graph. Such C∗-algebras are always nuclear
[13, Remark 4.3].

If M(G,χ) = 1 then either there is an edge in Eloop
i′ or a pair of edges (e, f) ∈ (Eloop

i )2.
In either case, after the algorithm is complete we are left with the situation that either
e is a loop or there are two edges e, f with r(e) = r(f).

If e is itself a loop then redo the algorithm choosing the initial vertex to be the range
of e. Since there are no other “loop” edges we will end up with a separated graph with
no two edges sharing a common range, and hence, with an algebra isomorphic to that of
a directed graph. Then the C∗-algebra will be isomorphic to a nuclear graph C∗-algebra.

If instead we have that there are two edges e and f with r(e) = r(f) = w then no
other edges share a common range. There are then two finite directed paths from the
fixed vertex v to w one that ends with the edge e and the other that ends with the edge f .
If one then reverses the edges in one of these two paths then one is left with a separated
graph (G′, C ′) in which now two edges share the same range. Again this means that we
are left with a C∗-algebra isomorphic to a nuclear graph C∗-algebra.

On the other hand, if M(G,χ) ≥ 2 then we have at least one of the following graph
possibilities:

(1) at least two edges which are loops based at the vertex v;
(2) one edge which is a loop based at the vertex v and there is a pair of edges e and

f with r(e) = r(f);
(3) there are three edges e, f, and g with r(e) = r(f) = r(g);
(4) or there are four edges e, f, g, and h with r(e) = r(f) and r(g) = r(h).

In each of these cases we will identify a subalgebra which maps onto a copy of C∗(F2).
To do this let U and V denote the unitary generators of C∗(F2). If n = |V (G)| we will
first identify a separated Cuntz-Krieger family in A = Mn(C∗(F2)). The identification
depends on which of the cases we have above. For notation sake we will write Ei,j to be
the matrix in A with a 1C∗(F2)) in the i− j entry and zeroes everywhere else. Similarly
we will write Ui,j and Vi,j for the matrix with U (V respectively) in the i, j entry and
zeroes everywhere else.
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For the first graph possibility let e be the first loop based at v and g the second loop
based at v. We will write A = Se and B = Sg inside C∗(G,χ).

In the second situation there is a loop edge g based at v and two directed paths
µ = e1e2 · · · ene and ν = f1f2 · · · fmf . Then let

A = Se1Se2 · · ·SenSeS∗fS∗fm · · ·S
∗
f1

and B = Sg in the C∗-algebra C∗(G,χ).
In the third situation we have paths µ = e1e2 · · · ene, ν = f1f2, · · · fmf and τ =

g1g2 · · · gkg all of which begin at v and end at the common vertex w = r(e) = r(f) = r(g).
And consider the two elements of C∗(G,χ) given by

A = Se1Se2 · · ·SenSeS∗fS∗fm · · ·S
∗
f1

and

B = Sg1Sg2 · · ·SgkSgS∗fS∗fm · · ·S
∗
f1 .

In the fourth situation we have paths µ = e1e2 · · · ene, ν = f1f2, · · · fmf, τ =
g1g2 · · · gkg, and σ = h1h2 · · ·hlh all of which begin at v and two of which end at the com-
mon vertex w = r(e) = r(f) and two of which end at the common vertex u = r(g) = r(h).
Here we let

A = Se1Se2 · · ·SenSeS∗fS∗fm · · ·S
∗
f1

and

B = Sg1Sg2 · · ·SgkSgS∗hS∗hl
· · ·S∗h1

.

Now to each vertex in G we assign a unique element Ei,i in Mn(C∗(F2)). If x is the
vertex we will write Ex,x for the assigned element. Next for any edge d not equal to e
or g we assign the partial isometry d 7→ Es(d),r(d). Finally we map e to Us(e),r(e) and
f to Vs(f),r(f). It is straightforward to see that these assignments give rise to an edge-
colored CK-family associated to the graph and that hence there is a ∗-homomorphism
π : C∗(G,χ) → Mn(C∗(F2)). Notice that under this homomorphism A is sent to Uv,v
and B is sent to Vv,v. It follows that the range of π contains a copy of C∗(F2) and hence
C∗(G,χ) is not exact.

�

Remark 2. Although it is not obvious the value of M(G,C) is equal to the topological
genus of the underlying undirected graph. We investigate this situation, and are able to
completely describe the associated C∗-algebras in [8].

Restating this result we have the following:

Corollary 1. Let (G,C) be a finite separated graph consisting of only reversible edges.
Then C∗(G,C) is nuclear if and only if there is a directed graph which is obtained by
reversing edges in (G,C). Otherwise C∗(G,C) is not exact.

5.2. Facts about Virr. Assume that v ∈ Virr and let dv = (a1, a2, . . . , ak) be the vertex
degree of v, and as in Remark 1 we have a1 ≥ a2 ≥ · · · ≥ ak. Since exactness is preserved
by subalgebras we will often fix a vertex v and focus on the subalgebra PvC

∗(G,χ)Pv
which if we can show this is non-exact will tell us about the overall algebra. This allows
us to rule out a lot of graphs.

Proposition 5. If C∗(G,C) is exact and v ∈ Virr has vertex degree

dv = (a1, a2, . . . , ak)

then we have that a2 ≤ 1.
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Proof. Assume that the partition Cv consists of k sets X1, X2, . . . , Xk where Xi = ai
and a2 ≥ 2. Let Gi = (V,Xi, r, s) be the directed subgraph of (G,C). Notice that
PvC

∗(Gi)Pv is a subalgebra of C∗(Gi) for each i and by [5] the algebra PvC
∗(G,C)Pv =

Pv∗
i

(C∗(Gi))Pv contains

PvC
∗(G1)Pv∗

C
C∗(G2)∗

C
· · · ∗

C
PvC

∗(Gn)Pv,

where C in the free products is the subalgebra generated by Pv. We proceed in cases:
If s(e) 6= v for any e ∈ Xi for all i then PvS

∗(Gi)Pv is isomorphic to Mai . It
follows that C∗(G,C) contains a subalgebra of the form Ma1∗

C
Ma2∗

C
· · · ∗

C
Man which,

since a1 ≥ a2 ≥ 2 is not exact by Proposition 1.
Consider on the other hand edges e with s(e) = v = r(e) and notice that if e ∈ Xi

then PvC
∗(Gi)Pv contains an algebra which has quotient equal to the Toeplitz algebra

(consider the algebra generated by Se). The subalgebra PvC
∗(Gi)Pv then contains an

algebra which has a quotient isomorphic to C(T). Then PvC
∗(G,C)Pv contains a copy

of either M2∗
C
A (if there is just one i containing such an edge e) or A∗

C
A where A surjects

onto C(T) (if there are two such Xi, Xj , i 6= j containing such edges). Since exactness
is preserved by surjections combined with Proposition 1 it follows that PvC

∗(G,C)Pv is
not exact. �

We will say that a vertex whose vertex degree is of the form (a1, a2, . . . , an) with
a1 ≥ a2 ≥ · · · ≥ an and a2 = 1 is vertex-exact. Then another way of phrasing these
propositions is that if the vertex is not vertex-exact then C∗(G,C) is not exact. We
will see in what follows that although this is a necessary condition it is not sufficient.
Keep in mind though, that if the graph is vertex-exact then the set of range projections
{SeS∗e : e ∈ E(G)} is commutative and hence we know (in this case) that any finite
product of the generating partial isometries is a partial isometry.

We let (G,C) be a separated graph with Virr = {v1, v2, . . . , vk} and assume that
dvi = (ai,1, ai,2, . . . , ai,m) with a1 ≥ 2 and a2 ≤ 1 (i.e. each of the vertices is vertex exact
but none of the vertices are reversible). We let Evi consist of those edges e with r(e) = vi
which are in the non-trivial first partition set in the partition Cvi . We let Ev = ∪Evi .

Algorithm. Algorithm Based at Irreducible Vertices
Base step:
Set V 1 = {v1}.
Base sub-step: Set V 1

0 = {w : w = s(e), r(e) ∈ V 1, e 6∈ Ev}. Let E1loop
0 = {e : s(e) =

r(e) ∈ V 1 and e 6∈ Ev}. Let E1
0 = {e : r(e) ∈ V 1

0 , and e 6∈
(
Ev ∪ E1loop

0

)
}.

1st sub-step: Let (G1
1, C

1
1 ) be the edge-colored directed graph formed by reversing all

of the edges in E1
0 . Let V 1

1 = {v ∈ G1
1 : r(e) = v, e ∈ E1

0}. Let E1loop
1 = {(e, f) ∈

E(G1
1)2 : e 6= f, r(e) = r(f) ∈ V 1

1 , s(e), s(f) ∈ V 1
0 } and E1loop

1′ = {e : r(e), s(e) ∈ V 1
1 }.

Then let E1
1 = {e : r(e) ∈ V 1

1 , e 6∈
(
Ev ∪ E1loop

1 ∪ E1loop
1′

)
}.

ith sub-step: Let (G1
j , C

1
j ) be the edge-colored directed graph formed by reversing all

of the edges in E1
j−1. Let V 1

j = {v ∈ G1
j : r(e) = v, s(e) ∈ E1

j−1}. Let E1loop
j = {(e, f) ∈

E(G1
j )

2 \ Ev : e 6= f, r(e) = r(f), s(e), s(f) ∈ V 1
j−1} and E1loop

i′ = {e : r(e), s(e) ∈ V 1
j }.

Then let E1
j = {e : s(e) ∈ V 1

j , e 6∈ Ev ∪ E
1loop
j ∪ E1loop

j′ }.
Continue repeating sub-steps until you get to a point where E1

j = ∅.
i-th step:
Set V i = {vi}. If vi ∈ V k−1j for any j, k then skip the i-th step. Otherwise, repeat the

construction in the base step, replacing all of the 1s with is.
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We call the set of loops identified by this algorithm the set of reversible loops. Such a
loop actually consists of a series of reversible edges starting at some v ∈ Virr and (treating
concatenated edges traveling in a single direction as a single arrow) looks like one of the
following possibilities

z

w
��

w

HH VV

w

v
��

v

OO

v

OO

v

HH VV

Notice that appropriate choices of the partial isometries associated to the reversible
edges in the pictures above will yield a partial isometry S such that S∗S = Pv = SS∗.
For example, if we have the following graph

v
e // w

z

f
__@@@@@@@

g
>>}}}}}}}

x

h

OO

then the partial isometry ShSfSeS
∗
gS
∗
h is a partial isometry as described.

Notice that this algorithm stops when V is finite, since we will eventually exhaust
all of Virr. However, it is possible after completing this algorithm that there are edges
not in Ev that have not appeared in any of the Ei sets. However, since the graph is
connected then the set of edges which are not in Ev and have not appeared in any Ei
must connect to one of the vertices in Virr. This connection must occur through (at least)
one of the elements of Ev, and not through a sequence of reversible edges that ends in
Virr, otherwise it would have been swept up in the previous algorithm. We call the set
of such edges the set of edges avoiding Virr, and denote it Ea. We proceed with a second
algorithm for these edges; it is essentially the same algorithm for the case where Virr is
empty with some slight modifications.

Algorithm. Algorithm for Elements of Ev
Base step:
Fix a vertex v which is not in V ji for any i, j and such that v = r(e) for some e ∈ Ea.

Let V0 = {v}, Eloop
0 = {e : r(e) = s(e) = v} and let E0 = {e ∈ E \ Eloop

0 : r(e) ∈ V0}.
Also let m1 = |Eloop

0 |.
Step 1:
Let (G1, C1) be the separated graph formed by reversing each of the edges in E0. Now

let V1 = {w : r(e) = w, s(e) = v for some e ∈ Ea}\V0. Now Eloop
1 = {(e, f) ∈ (E(G1))2 :

e neqg, s(e), s(f) ∈ V0, r(e) = s(e) ∈ V1} and let Eloop1′ be the set of all edges e ∈ E1 such
that s(e) ∈ V1, r(e) ∈ V1. Let E1 = {e ∈ E(G1) : r(e) ∈ V1, s(e) 6∈ (V0 ∪ V1)}. Finally we

let m2 =
|Eloop

1 |
2 + |Eloop

1′ |.
Step i:
Let (Gi, Ci) be the separated graph formed by reversing each of the edges in Ei−1. Let

Vi = {w : r(e) = w 6∈ Vi−1, s(e) ∈ Vi−1 for some e ∈ \Ea}. Let Eloop
i {(e, f) ∈ (E(Gi))

2 :

e 6= g, s(e), s(f) ∈ Vi−1, r(e) = s(e) ∈ Vi} and Eloopi′ be the set of all edges e ∈ Ei−1 such
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that s(e) ∈ Vi−1, r(e) ∈ Vi−1. Let Ei = {e ∈ E(Gi) : r(e) ∈ Vi, s(e) 6∈
(
∪in=1Vi

)
}. Now

let mi =
|Eloop

i |
2 + |Eloop

i′ |.
For the vertex v we define the sum Mv =

∑
mi. We then repeat the algorithm for

every vertex w which is a range of an edge in Ea that has not already appeared in one
of the vertex sets in either algorithm, each time finding a value Mw. As the original
underlying directed graph is connected, and the graph is finite then these algorithms will
eventually terminate and include every edge and vertex in the original graph.

5.3. The set Virr is a singleton. We now have the following proposition which com-
pletely describes exactness and nuclearity in the context where Virr is a singleton.

Theorem 3. Let (G,C) be a finite separated graph in which Virr = {v} and assume that
v is vertex-exact. Then C∗(G,C) is not exact if

• (G,C) contains a reversible loop.
• There is an edge e in Ea such that Mr(e) ≥ 2.

otherwise C∗(G,χ) is nuclear.

Proof. Since v ∈ Virr we know that there are at least two edges with range v which are
in the same partition at v, call these edges e and f . It follows that PvC

∗(G)Pv contains
a copy of Ck where k is the number of edges in said partition.

If (G,C) contains a reversible loop then there is a nontrivial path in the underlying
undirected graph which begins and ends at v and does not include any edge in Ev. Let
Z be the partial isometry in C∗(G,χ) which traces out this path. The the subalgebra
generated by this partial isometry will be contained in PvC

∗(G)Pv. And since all of
the edges that give rise to this partial isometry are reversible none of these edges are
contained in the partition that contains e.Now PvC

∗(G)Pv, as in the proof of the second
case of 2 contains a copy of C(T) generated by Z. We now have that PvC

∗(G,χ)Pv
contains a copy of Ck∗

C
C∗(Z) [5] which contains a copy of Ck∗

C
C(T) which is not exact,

and hence C∗(G,C) is not exact.
Now if (G,χ) does not contain a reversible loop then after completing Algorithm 5.2

we are left with a graph which is essentially a directed graph except potentially for those
edges in Ea (i.e. the edges that are dealt with in Algorithm 5.2). However for each of
these subgraphs we use the same arguments as in Theorem 2 to see that if there is e with
Ms(e) ≥ 2 then the algebra is not exact and otherwise we have a collection of reversing of
edges which turns (G,C) into a directed graph and hence the C∗-algebra is nuclear. �

A variation of the previous then applies to graphs where Virr is not a singleton. The
extra complication is presented by the fact that two elements of Virr may be connected
via a path. Assume that there are edges e, f ∈ Ea. If after completing the algorithms
there is a directed path µ = e1e2 · · · en such that s(µ) = s(e) and r(µ) = s(f), then we
say that there is a path connecting e and f .

5.4. The set Virr contains two or more elements. As in the previous subsection if
any element of Virr is not vertex-exact then C∗(G,C) is not exact, so for our purposes
we will assume throughout this subsection that every element of Virr is vertex-exact and
hence any finite sequence of generating partial isometries is a partial isometry itself.

We will assume the algorithms as described have already been applied to the graph
(G,C). Here we have to be a little more careful about paths connecting pairs of edge
e and f both elements of Ea since such paths may “connect” two distinct elements of
Virr. We also have to deal with directed paths that connect two vertices in Virr. We will
treat these cases as one. Let µ = e1e2 · · · , en be a path in the undirected graph which
connects two vertices v, w ∈ Virr. Notice that, without loss of generality r(e1) = v or
s(e1) = v and r(en) = w or s(en) = w. (it is possible in this construction that v = w).
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We will say that µ is reduced if s(e1) 6= r(e1), s(en) 6= r(en), and e2, e3, . . . , en−1 are
reversible. Essentially, we don’t want v1 or vn to be loops and we don’t want µ to pass
through any elements of Virr except at the start and end of the path.

Now we say that µ has a reversible end if v1 or vn is reversible. Without loss of
generality we will assume v1 is reversible and in this case we can reverse any of the edges
in µ so that there is a directed path from v to w. On the other hand, if neither e1 nor
en are reversible then we can form a directed path in the graph by reversing the other
edges (as needed) so that v2v3 · · · vn is a directed path from s(v1) to w, or alternatively
a directed path from s(vn) to v.

Assume that (G,C) is vertex-exact and that µ has a reversible end which gives rise
to a directed path from v to w (i.e. e1 is reversible) with en in the k-th partition of
Cs(en). If v and w have vertex degree (a1, a2, . . . , an) and (b1, . . . , bm), respectively then
we define the propagated vertex-degree along µ to equal (a1 + b1 − 1, b2, b3, . . . , bm) if
k = 1 and (a1, b2, . . . , bk−1, a1, bk+1, . . . , bm) otherwise. In the latter case we will say that
the propagated vertex degree along µ is mixed.

Proposition 6. Assume that µ has a reversible end which gives rise to a directed path
from v to w (i.e. e1 is reversible). If C∗(G,C) is exact then the propagated vertex degree
along µ is not mixed.

Proof. Assume that the propagated vertex degree along µ is mixed. For the proof we
will relabel the partitions so that k = 2. Notice that after appropriate reversing of
edges we have e1, e2, . . . , en−1 are reversible and s(en) = r(en−1) it follows that Sµ :=
SenSen−1

· · ·Se1 is a partial isometry with S∗µSµ = Pv and SµS
∗
µ = SenS

∗
en = Pw.

We know that

SµPvC
∗(G2)PvS

∗
µ = SµS

∗
µSµC

∗(G2)S∗µSµS
∗
µ

= PwSµC
∗(G2)SµPw

∈ PwC∗(G2)Pw.

It follows that PwC
∗(G,χ)Pw contains a copy of

PwC
∗(G1)Pw∗

C
SµPvC

∗(G2)PvS
∗
µ

(here C is the subalgebra generated by Pw).
Now we have two cases:
Case 1: (a2 ≥ 2, b1 ≥ 2 and there is an edge e such that s(e) = r(e) ∈ {v, w}.)

Without loss of generality assume that s(e) = v and with k = 2 we can see that
Pr(e)C

∗(Gχ(e))Pr(e) contains a subalgebra (generated by Se, an isometry when restricted
to Pr(e)C

∗(Gχ(e))Pr(e)) which is an extension of C(T). Then SµPvC
∗(G2)PvS

∗
µ con-

tains a copy of Mb1 for which Pw is the identity and we are left with a subalgebra of
PwC

∗(G2)Pw of the form A∗
C
Mb1 which has a quotient of the form C(T)∗

C
Mb1 which is

not exact by Proposition 1.
Case 2: (a2 ≥ 2, b1 ≥ 2 and there are no loops based at v and w.) Just as in the proof

of Proposition 1 we can see that PvC
∗(G2)Pv contains a copy of Ma2 and PwC

∗(G1)Pw
contains a copy of Mb1 where Pv and Pw are the identities in the associated copies of
the matrix algebras. Then SµPvC

∗(G2)PvS
∗
µ contains a copy of Mb1 for which Pw is the

identity and we are left with a subalgebra of PwC
∗(G2)Pw of the form Ma2∗

C
Mb1 which

is not exact by Proposition 1.
In either case we are left with a non-exact algebra contradicting the assumption, hence

the propagation along µ is not mixed. �

If every possible propagation along paths is not mixed then we will say the graph is
propagation-exact.
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We are now in a position to prove a theorem about finite separated graph C∗-algebras
in the case that Virr contains at least two elements.

Theorem 4. Let (G,χ) be a finite separated graph in which Virr consists of at least two
vertices and is vertex-exact. then C∗(G,χ) is not exact if

• (G,C) contains a reversible loop.
• There is an edge e in Ea such that Ms(e) ≥ 2.
• The graph is not propagation-exact.

otherwise C∗(G,C) is nuclear.

Proof. The arguments in the proof of Theorem 3 will apply to show that if (G,C) contains
a reversible loop or there is an edge e ∈ Ea with Ms(e) ≥ 2 then C∗(G,χ) is not exact.
Similarly if the graph is not propagation-exact then the preceding proposition tells us
that C∗(G,C) is not exact.

The only difference in the proof comes when we assume that (G,C) does not contain
a reversible loop, every edge in Ms(e) ≤ 1 and the graph is propagation-exact. In this
case the only technicality may be if u, v ∈ Virr and there is a path µ that propagates u to
v and µ contains a cycle. However since (G,C) does not contain a reversible loop then
the path µ must connect v to w only through two edges e and f both in Ea. Now, since
Ms(e) ≤ 1 and Ms(e) ≤ 1 we know that there is at most one cycle in µ. If h is an edge in
µ such that µ is not in the cycle then reverse the edge so that it points away from the
cycle. After doing this to all edges in µ that are not in the cycle then µ will consist of a
directed subgraph of (G,C).

It follows that if (G,C) does not contain a reversible loop, there are no edges in
Ea with Ms(e) ≥ 2 and (G,χ) is propagation-exact then again there is a collection of
reversing of edges which results in (G,C) turning into a directed graph, and hence the
C∗-algebra C∗(G,C) is isomorphic to a nuclear C∗-algebra. �

In effect, when considering the algorithms we have the following corollary which cha-
racterizes completely the situation.

Corollary 2. Let (G,C) be a finite separated graph then C∗(G,C) is nuclear if and only
if there is a collection of reversals of reversible edges which results in a directed graph. If
no such collection of reversals exists then C∗(G,C) is not exact.

Of course once we have that a graph is a directed graph we know that the universal
separated graph C∗-algebra is isomorphic to the reduced C∗-algebra of the separated
graph. We can now conclude the following. (This gives a complete solution to Problem
7.2 of [4] in the case of a finite graph G).

Theorem 5. For a finite separated graph (G,C), C∗(G,C) is nuclear if and only if
C∗r (G,C) = C∗(G,C).

Proof. If C∗(G,C) is nuclear then it is isomorphic to C∗(H) where H is a directed
graph constructed by reversing reversible edges in (G,C). But by [4, Theorem 3.8]
C∗(H) = C∗r (H) and then applying Proposition 4 we have that C∗r (H) ∼= C∗r (G,C) and
the forward direction follows.

On the other hand if C∗(G,C) = C∗r (G,C) then C∗(G,C) is a nuclear C∗-algebra
since the reduced C∗-algebras are always nuclear. �
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