ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS

ZIED GARBOUJ AND HAÏKEL SKHIRI

ABSTRACT. In this paper, we introduce a generalization of quasi-Fredholm operators [7] to k-quasi-Fredholm operators on Hilbert spaces for nonnegative integer k. The case when k = 0, represents the set of quasi-Fredholm operators and the meeting of the classes of k-quasi-Fredholm operators is called the class of pseudoquasi-Fredholm operators. We present some fundamental properties of the operators belonging to these classes and, as applications, we prove some spectral theorem and finite-dimensional perturbations results for these classes. Also, the notion of new index of a pseudo-quasi-Fredholm operator called pq-index is introduced and the stability of this index by finite-dimensional perturbations is proved. This paper extends some results proved in [5] to closed unbounded operators.

1. INTRODUCTION AND TERMINOLOGY

Let H be a Hilbert space and let $T : \mathsf{D}(T) \subseteq \mathsf{H} \longrightarrow \mathsf{H}$ be an unbounded operator with domain $\mathsf{D}(T)$. We denote by $\mathsf{ker}(T)$ the kernel of T, $\alpha(T) = \dim \mathsf{ker}(T)$ the nullity of T, $\mathsf{Im}(T) = T(\mathsf{H})$ the range of T and $\beta(T) = \dim \mathsf{H}/\mathsf{Im}(T)$ its defect. By $\varphi(\mathsf{H})$ (resp. $\mathscr{B}(\mathsf{H})$) we denote the set of all closed (resp. bounded) linear operators on H . Recall that an operator $T \in \varphi(\mathsf{H})$ is said to be s-regular (semi-regular) if $\mathsf{Im}(T)$ is closed and $\mathsf{ker}(T^n) \subseteq \mathsf{Im}(T)$, for all $n \geq 0$. Let $T \in \varphi(\mathsf{H})$, if $\mathsf{Im}(T)$ is closed and $\alpha(T) < +\infty$ (resp. $\beta(T) < +\infty$), then T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. A semi-Fredholm operator is upper or lower semi-Fredholm. Let $\Phi_+(\mathsf{H})$ (resp. $\Phi_-(\mathsf{H})$) denote the set of upper (resp. lower) semi-Fredholm operators. If both $\alpha(T)$ and $\beta(T)$ are finite then T is called a Fredholm operator. This class of operators is denoted by $\Phi(\mathsf{H})$. The index of a semi-Fredholm operator T is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T) \in \mathbb{Z} \cup \{+\infty, -\infty\},\$$

with the usual convention : $n - \infty = -\infty$ and $+\infty - n = +\infty$, for all $n \in \mathbb{N}$. Let $\sigma(T)$ (resp. $\rho(T)$) denote the spectrum (resp. the resolvent set) of T.

An operator T is called a Kato type operator if we can write $T = A \oplus S$ where A is a nilpotent operator and S is a s-regular one. In 1958, Kato proved that a closed semi-Fredholm operator is of Kato type. J. P. Labrousse [7] studied and characterized a new class of operators named quasi-Fredholm operators, in the case of Hilbert spaces and he proved that this class coincide with the set of Kato type operators and the Kato decomposition becomes a characterization of the quasi-Fredholm operators. But in the case of Banach spaces the Kato type operator is also quasi-Fredholm, the converse is not true. A bounded operator T on a Banach space is called has a topological uniform descent for $n \ge d$ if $\operatorname{Im}(T) + \ker(T^k) = \operatorname{Im}(T) + \ker(T^d)$, for all $k \ge d$ and $\operatorname{Im}(T) + \ker(T^d)$ is closed [5, Definition 2.5, Theorem 3.2]. This class contains the bounded operators

²⁰¹⁰ Mathematics Subject Classification. 30J99, 47A10, 47B38.

Key words and phrases. Complex Volterra operator, symbol, BMOA, spectrum.

This work is supported by LR18E16 : Analyse, Géométrie et Applications, University of Monastir (Tunisia).

belonging to the class of quasi-Fredholm operators. We can find some examples and basic properties of topological uniform descent of bounded operators in [5].

In this paper we introduce two new classes of closed operators in Hilbert spaces, namely, k-quasi-Fredholm and pseudo-quasi-Fredholm operators. The first class is an extension of the class quasi-Fredholm operators, and the second class is the meeting of the classes of k-quasi-Fredholm operators. The study of first (resp. second) class of operators gives a new important part of the ordinary spectrum called the k-quasi-Fredholm (resp. pseudo-quasi-Fredholm) spectrum $\sigma_{q\Phi}^k(T)$ (resp. $\sigma_{q\Phi}^{\infty}(T)$) which is the set of all complex λ such that $\lambda I - T$ is not k-quasi-Fredholm (resp. pseudo-quasi-Fredholm). Several properties like, spectrum, topological uniform descent, pq-index, and finite perturbation are investigated. Our paper is organized as follows :

In Section 2, we are interested to know the relationship of pseudo-quasi-Fredholm operators and operators having topological uniform descent. We show that the class of pseudo-quasi-Fredholm operators is not stable by the adjoint.

In Sections 3 and 4, we are interested in the spectral theory of k-quasi-Fredholm and pseudo-quasi-Fredholm. We show that they are closed subsets of the spectrum, and that for $T \in \mathscr{B}(\mathsf{H})$, $\sigma_{q\Phi}^{\infty}(T)$ (resp. $\sigma_{q\Phi}^{k}(T)$) is empty precisely when T is algebraic. We also show a spectral mapping theorem for pseudo-quasi-Fredholm operators, more precisely in Theorem 4.12, for $T \in \Gamma(\mathsf{H})$ (see page 149) and P is a non-constant complex polynomial, we prove that $P(\sigma_{q\Phi}^{\infty}(T)) = \sigma_{q\Phi}^{\infty}(P(T))$ and $\sigma_{q\Phi}^{k}(P(T)) \subseteq P(\sigma_{q\Phi}^{k}(T))$, for $k \in \mathbb{N}$. Furthermore, in Theorem 4.16, we prove that if $T \in \mathscr{B}(\mathsf{H})$ and f is an analytic function in a neighborhood of the usual spectrum $\sigma(T)$ and not locally constant in $\sigma(T)$, then $f(\sigma_{q\Phi}^{\infty}(T)) = \sigma_{q\Phi}^{\infty}(f(T))$ and $\sigma_{q\Phi}^{k}(f(T)) \subseteq f(\sigma_{q\Phi}^{k}(T))$, for $k \in \mathbb{N}$ (in particular, the topological uniform descent spectrum of a bounded operator on a Hilbert space satisfies the spectral mapping theorem).

In Section 5, we are concerned with the stability of the pseudo-quasi-Fredholm spectrum and the k-quasi-Fredholm spectrum under commuting finite rank perturbations. We show that the class of pseudo-quasi-Fredholm operators is not stable under commuting quasi-nilpotent perturbations. We also show that the set of all k-quasi-Fredholm (resp. pseudo-quasi-Fredholm) operators on a Hilbert space H is not open in $\mathscr{B}(H)$.

In Section 6, we introduce, $\operatorname{ind}_{pq}(T)$, the pq-index of a k-quasi-Fredholm operator which coincide with the usual index in the case of a semi-Fredholm operator. The aim of this section is to show that if T possesses pq-index, then T^n (resp. T+F) is also a k-quasi-Fredholm operator possesses pq-index and $\operatorname{ind}_{pq}(T^n) = n \operatorname{ind}_{pq}(T)$ (resp. $\operatorname{ind}_{pq}(T+F) =$ $\operatorname{ind}_{pq}(T)$), where $n \in \mathbb{N} \setminus \{0\}$ and $T, F \in \mathscr{B}(\mathsf{H})$ such that TF = FT and $\dim \operatorname{Im}(F) <$ $+\infty$. We also show that if $T \in \mathscr{B}(\mathsf{H})$ is k-quasi-Fredholm and $V \in \mathscr{B}(\mathsf{H})$ commutes with T such that V - T is invertible (resp. V is pseudo-quasi-Fredholm) and that V - T is small in norm, then T possesses pq-index if and only if V is semi-Fredholm (resp. Vpossesses pq-index). In this case $\operatorname{ind}_{pq}(T) = \operatorname{ind}(V)$ (resp. $\operatorname{ind}_{pq}(T) = \operatorname{ind}_{pq}(V)$).

Finally, in Section 7, as an application, some examples are given to illustrate our theorems.

2. Definitions and first Results

For $T \in \varphi(\mathsf{H})$, we consider the sequence

$$S_j^k(T) = \left(\mathsf{Im}(T^j) \cap \ker(T^{k+1}) + \ker(T^k)\right) / \left(\mathsf{Im}(T^{j+1}) \cap \ker(T^{k+1}) + \ker(T^k)\right),$$

 $j, k \in \mathbb{N}$. For $k \in \mathbb{N}$, we denote

$$q_k(T) = \inf\{n \in \mathbb{N} : S_j^k(T) = 0, \ \forall \ j \ge n\},\$$

where the infimum over the empty set is taken to be infinite.

We have the following lemma, which will be needed in the sequel.

Lemma 2.1. Let $k \in \mathbb{N}$ and $T \in \varphi(\mathsf{H})$, then

$$\begin{array}{lll} q_k(T) &=& \inf\{m \in \mathbb{N} : \mathsf{Im}(T) + \mathsf{ker}(T^{k+n}) = \mathsf{Im}(T) + \mathsf{ker}(T^{k+m}), \ \forall \ n \ge m\} \\ &=& \max\{q_0(T) - k, \ 0\}. \end{array}$$

Proof. Let $k \in \mathbb{N}$ and $\widetilde{T_k}$ be the operator induced by T on $\mathsf{H}/\mathsf{ker}(T^k)$. It is easy to see that

$$\begin{split} & \ker[(\widetilde{T_k})^n] = \ker(T^{k+n})/\ker(T^k),\\ & \lim[(\widetilde{T_k})^n] = [\operatorname{Im}(T^n) + \ker(T^k)]/\ker(T^k), \end{split}$$

for all $n \in \mathbb{N}$. This gives that

(1)
$$\ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^n) = ([\operatorname{Im}(T^n) + \ker(T^k)] \cap \ker(T^{k+1}))/\ker(T^k)$$
$$= (\operatorname{Im}(T^n) \cap \ker(T^{k+1}) + \ker(T^k))/\ker(T^k),$$

(2)
$$\operatorname{Im}(\widetilde{T_k}) + \ker(\widetilde{T_k}^n) = [\operatorname{Im}(T) + \ker(T^{n+k})]/\ker(T^k).$$

From [4, Lemma 2.3], (1) and (2), it follows that

$$\begin{array}{ll} q_k(T) &=& \inf\{m \in \mathbb{N} : \ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^n) = \ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^m), \ \forall \ n \ge m\} \\ &=& \inf\{m \in \mathbb{N} : \operatorname{Im}(\widetilde{T_k}) + \ker(\widetilde{T_k}^n) = \operatorname{Im}(\widetilde{T_k}) + \ker(\widetilde{T_k}^m), \ \forall \ n \ge m\} \\ &=& \inf\{m \in \mathbb{N} : \operatorname{Im}(T) + \ker(T^{k+n}) = \operatorname{Im}(T) + \ker(T^{k+m}), \ \forall \ n \ge m\}. \end{array}$$

So we deduce that if $k \ge q_0(T)$, then $q_k(T) = 0$ and if $k < q_0(T)$, then $q_0(T) = q_k(T) + k$. This proves that $q_k(T) = \max\{q_0(T) - k, 0\}$. The proof is complete. \Box

The following definition describes the first class of operators we will study.

Definition 2.2. Let $k \in \mathbb{N}$. An operator $T \in \varphi(\mathsf{H})$ is called k-quasi-Fredholm of degree $d \ (d \in \mathbb{N})$ if :

- (i) $q_k(T) = d;$
- (ii) $\operatorname{Im}(T^d) \cap \ker(T^{k+1}) + \ker(T^k)$ is closed in H;
- (*iii*) $\operatorname{Im}(T) + \ker(T^{d+k})$ is closed in H.

In the sequel k- $q\Phi(d)(\mathsf{H})$, will denote the set of k-quasi-Fredholm operators of degree d. If there is an integer $d \in \mathbb{N}$ such that $T \in k$ - $q\Phi(d)(\mathsf{H})$, then T is called a k-quasi-Fredholm operator. We will denote by k- $q\Phi(\mathsf{H})$ the set of k-quasi-Fredholm operators.

Remark 2.3. Definition 2.2 generalize the well-known notion of a quasi-Fredholm operator (see [7, Definition 3.1.2]), since a quasi-Fredholm operator is a 0-quasi-Fredholm operator.

The following definition describes the second class of operators we will study.

Definition 2.4. Let $T \in \varphi(\mathsf{H})$. Then T is called a pseudo-quasi-Fredholm operator if there is an integer $k \in \mathbb{N}$ such that $T \in k \cdot q \Phi(\mathsf{H})$. By $pq\Phi(\mathsf{H})$ we denote the set of all pseudo-quasi-Fredholm operators.

The following example shows that the class of quasi-Fredholm operators is a proper subclass of pseudo-quasi-Fredholm operators.

Example 2.5.

(i) Let H be a Hilbert space with an orthonormal basis $\{e_{i,j} : i, j \in \mathbb{N} \setminus \{0\}\}$ and let T be the operator defined by

$$Te_{i,j} = \begin{cases} 0 & \text{if } j = 1, \\ \frac{e_{i,1}}{i+1} & \text{if } j = 2, \\ e_{i,j-1} & \text{otherwise.} \end{cases}$$

We denote by M (resp. N), the vector subspace generated by $(e_{i,j})_{i\geq 1,j\geq 2}$ (resp. $(e_{i,2})_{i\geq 1}$). It is easy to check that $\operatorname{Im}(T) = \operatorname{M} + T(\operatorname{N})$, $T(\operatorname{M}) = \operatorname{M} + T(\operatorname{N})$ and $T^2(\operatorname{N}) = \{0\}$. Therefore $\operatorname{Im}(T) = \operatorname{Im}(T^2)$. Since for all $i \geq 1$, we have $||T(e_{i,2})|| = \frac{1}{i+1}$, then $\operatorname{Im}(T)$ is not closed. Hence $\operatorname{Im}(T^n)$ is not closed for all $n \geq 1$ and so T is not quasi-Fredholm (see, [7, Corollary 3.3.1]). We have $\operatorname{Im}(T) + \ker(T) = \operatorname{H}$, so by Lemma 2.1, we deduce that $T \in 1-q\Phi(0)(\operatorname{H})$.

(*ii*) Let H be a separable Hilbert space and let $K \in \mathscr{B}(\mathsf{H})$ such that $\mathsf{Im}(K)$ is not closed. Consider the bounded operator $T : \bigotimes_{i=0}^{\infty} \mathsf{H} \longrightarrow \bigotimes_{i=0}^{\infty} \mathsf{H}$ defined by $T(h_0, h_1, h_2, \ldots) = (K(h_1), h_2, h_3, \ldots)$. Clearly, $\mathsf{Im}(T^2) = \mathsf{Im}(T)$ is not closed and as in (*i*), we prove that T is 1-quasi-Fredholm but T is not a quasi-Fredholm operator.

Remark 2.6. For $k \in \mathbb{N}$, we note from Lemma 2.1 that $q_k(T) = 0$ if and only if $q_0(T) \leq k$, and hence a bounded operator has a topological uniform descent for $n \geq k$ is a k-quasi-Fredholm operator of zero degree.

Recall that $P(T) \in \varphi(\mathsf{H})$ for every complex polynomial P whenever $\varrho_e^+(T) = \{\lambda \in \mathbb{C} : \lambda I - T \in \Phi_+(\mathsf{H})\} \neq \emptyset$.

In the following proposition, we establish the link between pseudo-quasi-Fredholm operators and operators having a topological uniform descent.

Proposition 2.7. Let $T \in \varphi(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$. The following statements are equivalent :

(i) $T \in pq\Phi(\mathsf{H});$

(*ii*) $q_0(T) < +\infty$ and $Im(T) + ker(T^{q_0(T)})$ is closed.

So the set of bounded operators belonging to the class of pseudo-quasi-Fredholm coincides with the class of bounded operators having topological uniform descent in Hilbert spaces.

Proof. "(*i*) \implies (*ii*)" Let $k, d \in \mathbb{N}$ such that $T \in k - q\Phi(d)(\mathsf{H})$, then by Lemma 2.1, we have $d + k \ge q_0(T)$ and $\mathsf{Im}(T) + \mathsf{ker}(T^{q_0(T)}) = \mathsf{Im}(T) + \mathsf{ker}(T^{d+k})$ is closed.

"(*ii*) \implies (*i*)" We note first that ker(T^n) is closed for all $n \in \mathbb{N}$ because $\varrho_e^+(T) \neq \emptyset$. Let $k = q_0(T)$, by Lemma 2.1, we get $q_k(T) = 0$ and hence $T \in k \cdot q\Phi(0)(\mathsf{H})$. This completes the proof.

The techniques used in this work are based in the concept of paracomplete subspaces of Hilbert spaces (see, [7, Chapter II]).

Definition 2.8 ([7], Definition 2.1.1, Definition 2.1.2).

- (i) A subspace M of H is said to be paracomplete in H, if M is a Banach space and the canonical injection of M in H is continuous. In particular, a closed subspace of a Hilbert space H is a paracomplete subspace of H.
- (*ii*) An operator $T : D(T) \subseteq H \longrightarrow H$ is called paracomplete if its graph is a paracomplete subspace of $H \times H$. It is clear that a closed operator in a Hilbert space H is a paracomplete operator in H.

The following lemma follows immediately from [7, Proposition 2.2 page 183] and [7, Proposition 2.1.3, Proposition 2.1.4].

Lemma 2.9. Let $T : \mathsf{D}(T) \subseteq \mathsf{H} \longrightarrow \mathsf{H}$ be a paracomplete operator and let $k, i, n \in \mathbb{N}$. Then $\mathsf{D}(T^k)$, $\mathsf{Im}(T^k)$, $\mathsf{ker}(T^k)$, $\mathsf{ker}(T^k) + \mathsf{Im}(T^n)$ and $[\mathsf{ker}(T^k) + \mathsf{Im}(T^n)] \cap \mathsf{ker}(T^i)$ are paracomplete subspaces in H .

The ascent and descent of $T \in \varphi(\mathsf{H})$ are defined by

$$a(T) = \inf\{n \in \mathbb{N} : \ker(T^n) = \ker(T^{n+1})\},\$$

$$d(T) = \inf\{n \in \mathbb{N} : \operatorname{Im}(T^n) = \operatorname{Im}(T^{n+1})\},\$$

respectively, whenever these minima exist. If no such numbers exist the ascent and descent of T are defined to be $+\infty$. The notion of ascent and descent was studied in several articles ([4], [8], [11]). Let d be a positive integer, from [11], we mention the following useful characterizations :

$$a(T) \leq d \iff \mathsf{Im}(T^d) \cap \mathsf{ker}(T^n) = \{0\} \quad \text{for some (equivalently all) } n \geq 1,$$

$$d(T) \leq d \iff \mathsf{D}(T^d) \subseteq \mathsf{Im}(T^n) + \mathsf{ker}(T^d) \quad \text{for some (equivalently all) } n \geq 1.$$

Remark 2.10.

- (i) An operator $T \in \mathscr{B}(\mathsf{H})$ such that $d(T) < +\infty$ and $\mathsf{Im}(T^{d(T)})$ is not closed is a pseudo-quasi-Fredholm operator but is not a quasi-Fredholm operator (see Example 2.5).
- (ii) Let $k \in \mathbb{N}\setminus\{0\}$. We know that if $T \in q\Phi(\mathsf{H})$, then $\mathsf{Im}(T^n)$ is closed for all $n \ge q_0(T)$, but if $T \in k - q\Phi(\mathsf{H})$, we cannot conclude that $\mathsf{Im}(T^n)$ is closed for some $n > q_k(T)$ (see Example 2.5).
- (*iii*) In operators theory, if T is semi-Fredholm (resp. semi-regular, quasi-Fredholm; ...) and its domain is a dense subset of H, then its adjoint T^* is also semi-Fredholm (resp. semi-regular, quasi-Fredholm; ...). Unfortunately, this is not the case for pseudo-quasi-Fredholm operators. In Example 2.5, the operator T is pseudo-quasi-Fredholm, but its adjoint T^* is not pseudo-quasi-Fredholm. In fact, if T^* is pseudo-quasi-Fredholm, then $T^* \in k - q\Phi(d)(H)$, for some $k, d \in \mathbb{N}$. Hence $\operatorname{Im}(T^*) + \operatorname{ker}(T^{*k+d})$ is closed. Since $\operatorname{Im}(T^2) = \operatorname{Im}(T)$, it follows that $\operatorname{ker}(T^{*2}) =$ $\operatorname{ker}(T^*)$ and so $a(T^*) \leq 1$. Therefore $\operatorname{Im}(T^*) + \operatorname{ker}(T^*) = \operatorname{Im}(T^*) + \operatorname{ker}(T^{*k+d})$ is closed and $\operatorname{Im}(T^*) \cap \operatorname{ker}(T^*) = \{0\}$ ($k \geq 1$ because T^* is not quasi-Fredholm). From [7, Proposition 2.1.1] and Lemma 2.9, we can see that $\operatorname{Im}(T^*)$ is closed. Hence $\operatorname{Im}(T)$ is closed, which is a contradiction. Consequently, T^* is not pseudo-quasi-Fredholm.

Let M be a closed subspace of $\mathsf{H},$ then H/M is a Hilbert space with the following scalar product

$$\begin{array}{rccc} \langle \cdot \; , \; \cdot \rangle_{\mathsf{M}} \; : & \mathsf{H}/\mathsf{M} \times \mathsf{H}/\mathsf{M} & \longrightarrow & \mathbb{R} \\ & & & (\overline{x} \; , \; \overline{y}) & \longmapsto & \langle P(x) \; , \; P(y) \rangle, \end{array}$$

where P is the orthogonal projection on M^{\perp} and $\langle\cdot\ ,\ \cdot\rangle$ is the scalar product of H. Note that the topology in the Hilbert space $(\mathsf{H}/\mathsf{M},\langle\cdot\ ,\ \cdot\rangle_\mathsf{M})$ coincides with the quotient topology in H/M :

$$\|\overline{x}\| = \sqrt{\langle \overline{x}, \overline{x} \rangle_{\mathsf{M}}} = \sqrt{\langle P(x), P(x) \rangle} = \operatorname{dist}(x, \mathsf{M}).$$

where dist (x, M) is the distance of x to M . In particular, if $T \in \varphi(\mathsf{H})$ such that $\ker(T^k)$ is closed for $k \in \mathbb{N}$, then $\mathsf{H}/\ker(T^k)$ is a Hilbert space. For $k \in \mathbb{N}$, let $\widetilde{T_k}$ denote the following operator

$$\begin{array}{rcl} \widetilde{T_k} & : & \mathsf{D}(\widetilde{T_k}) \subseteq \mathsf{H}/\mathsf{ker}(T^k) & \longrightarrow & \mathsf{H}/\mathsf{ker}(T^k) \\ \overline{x} & \longmapsto & \overline{Tx}. \end{array}$$

By $q\Phi(\mathsf{H})$ (resp. $q\Phi(d)(\mathsf{H})$) we denote the set of all quasi-Fredholm operators (resp. of degree d).

Proposition 2.11. Let $T : D(T) \subseteq H \longrightarrow H$ be a paracomplete operator and $k, d \in \mathbb{N}$ such that ker (T^k) is closed. Then

$$T \in k \text{-} q \Phi(d)(\mathsf{H}) \Longleftrightarrow \widetilde{T_k} \in q \Phi(d)(\mathsf{H}/\mathsf{ker}(T^k))$$

Proof. Define

$$\begin{array}{rccc} \pi & : & \mathsf{H} \times \mathsf{H} & \longrightarrow & (\mathsf{H}/\mathsf{ker}(T^k)) \times (\mathsf{H}/\mathsf{ker}(T^k)) \\ & & (x,\,y) & \longmapsto & (\overline{x},\,\overline{y}). \end{array}$$

Since $G(\widetilde{T}_k)$, the graph of \widetilde{T}_k is equal to $\pi(G(T))$, we deduce from [7, Proposition 2.1.4], that $G(\widetilde{T}_k)$ is paracomplete. For all $n \in \mathbb{N}$, we have

(1)
$$\operatorname{Im}(\widetilde{T_k}) + \ker(\widetilde{T_k}^n) = [\operatorname{Im}(T) + \ker(T^{n+k})]/\ker(T^k)$$

and

(2)
$$\ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^n) = \left(\operatorname{Im}(T^n) \cap \ker(T^{k+1}) + \ker(T^k)\right) / \ker(T^k).$$

Now by (2) we deduce that $q_k(T) = q_0(\widetilde{T_k})$. If $\widetilde{T_k} \in q\Phi(d)(\mathsf{H}/\mathsf{ker}(T^k))$, from [7, Remark page 205], it follows that $\widetilde{T_k}$ is closed. So, by [9, Lemma 1.4], there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that $\lambda I - \widetilde{T_k}$ is s-regular. Since $\mathsf{Im}(\lambda I - \widetilde{T_k}) = \mathsf{Im}(\lambda I - T)/\mathsf{ker}(T^k)$ and $\mathsf{ker}(\lambda I - \widetilde{T_k}) = [\mathsf{ker}(\lambda I - T) + \mathsf{ker}(T^k)]/\mathsf{ker}(T^k)$ are closed, then by Lemma 2.9 and [7, Proposition 2.1.1], we see that $\mathsf{Im}(\lambda I - T)$ and $\mathsf{ker}(\lambda I - T)$ are also closed and consequently $T = \lambda I - (\lambda I - T)$ is closed (see, [7, Proposition 2.2.3]). So by (1) and (2), we get

$$T \in k \text{-} q\Phi(d)(\mathsf{H}) \Longleftrightarrow \widetilde{T_k} \in q\Phi(d)(\mathsf{H}/\mathsf{ker}(T^k)).$$

The proof is complete.

As a direct consequence of Proposition 2.11 and [7, Remark page 205] we obtain the following result :

Corollary 2.12. Let $k \in \mathbb{N}$ and $T : D(T) \subseteq H \longrightarrow H$ be a paracomplete operator such that

- (i) $q_k(T) = d < +\infty$ and ker (T^k) is closed in H,
- (ii) $\operatorname{Im}(T^d) \cap \ker(T^{k+1}) + \ker(T^k)$ is closed in H,
- (*iii*) $\operatorname{Im}(T) + \ker(T^{d+k})$ is closed in H,

then T is closed operator i.e., $T \in k$ - $q\Phi(d)(\mathsf{H})$.

Next we proceed to obtain a necessary condition and a sufficient condition for that a k-quasi-Fredholm operator is a quasi-Fredholm operator.

Theorem 2.13. Let $k, d \in \mathbb{N}$ and $T \in k \cdot q\Phi(d)(\mathsf{H})$. Then

$$T \in q\Phi(\mathsf{H}) \iff \ker(T) \cap \operatorname{Im}(T^{d+k})$$
 is closed.

Proof. By Lemma 2.1, we conclude that $q_0(T) \leq d + k$ and

$$\mathsf{m}(T) + \mathsf{ker}(T^{q_0(T)}) = \mathsf{Im}(T) + \mathsf{ker}(T^{d+k})$$

is closed. Hence

$$T \in q\Phi(q_0(T))(\mathsf{H}) \iff \mathsf{ker}(T) \cap \mathsf{Im}(T^{q_0(T)}) = \mathsf{ker}(T) \cap \mathsf{Im}(T^{k+d}) \quad \text{is closed}.$$

This completes the proof of the theorem.

I

3. PSEUDO-QUASI-FREDHOLM SPECTRUM AND K-QUASI-FREDHOLM SPECTRUM

Throughout the remainder of the paper, for $T \in \varphi(\mathsf{H})$ and $\lambda \in \mathbb{C}$, we denote by T_{λ} the operator $\lambda I - T$.

For $k \in \mathbb{N}$, the k-quasi-Fredholm resolvent and k-quasi-Fredholm spectrum of an operator $T \in \varphi(\mathsf{H})$ are defined respectively by

$$\varrho_{q\Phi}^k(T) = \{\lambda \in \mathbb{C} : T_\lambda \in k \text{-} q\Phi(\mathsf{H})\}$$

and

$$\sigma_{q\Phi}^k(T) = \mathbb{C} \backslash \varrho_{q\Phi}^k(T)$$

We denote by $\sigma_e(T)$ the essential quasi-Fredholm spectrum of T (see [9]). We note that $\sigma_e(T) = \sigma_{q\Phi}^0(T)$. The set $\sigma_{q\Phi}^\infty(T) := \bigcap_{k\geq 0} \sigma_{q\Phi}^k(T)$ is called pseudo-quasi-Fredholm spectrum of T. The complementary set $\varrho_{q\Phi}^\infty(T) = \mathbb{C} \setminus \sigma_{q\Phi}^\infty(T)$ is the pseudo-quasi-Fredholm resolvent. For all $k \in \mathbb{N}$, it is clear that

$$\varrho(T)\subseteq \varrho_{q\Phi}^k(T)\subseteq \varrho_{q\Phi}^\infty(T).$$

If $T \in \mathscr{B}(\mathsf{H})$, it follows from Proposition 2.7 that

$$\varrho_{a\Phi}^{\infty}(T) = \{\lambda \in \mathbb{C} : T_{\lambda} \text{ has topological uniform descent}\}.$$

Throughout this section we assume that $\varrho_e^+(T) \neq \emptyset$.

Now, we are ready to state our main result of this section, which represents an improvement of [9, Lemma 1.4] to the class of k-quasi-Fredholm operators.

Lemma 3.1. Let $d, k \in \mathbb{N}$ and $T \in k \cdot q \Phi(d)(\mathsf{H})$, then there exists $\varepsilon > 0$ such that for all $\lambda \in \mathbb{C}, 0 < |\lambda| < \varepsilon$:

(i) T_{λ} is a s-regular operator,

(*ii*)
$$\alpha(T_{\lambda}) = \dim \ker(T) \cap \operatorname{Im}(T^{d+k}),$$

(*iii*) $\beta(T_{\lambda}) = \dim \mathsf{H}/[\mathsf{Im}(T) + \mathsf{ker}(T^{d+k})].$

Proof. From Proposition 2.11, we know that $\widetilde{T_k} \in q\Phi(d)(\mathsf{H}/\mathsf{ker}(T^k))$. We apply now [9, Lemma 1.4], we deduce that there exists $\varepsilon > 0$ such that for all $\lambda \in \mathbb{C}$, $0 < |\lambda| < \varepsilon$, we have

(1)
$$\lambda I - \overline{T}_k$$
 is s-regular,

(2)
$$\alpha(\lambda I - \widetilde{T_k}) = \dim(\ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^d)),$$

(3)
$$\beta(\lambda I - \widetilde{T_k}) = \dim(\mathsf{H}/\mathsf{ker}(T^k))/[\mathsf{Im}(\widetilde{T_k}) + \mathsf{ker}(\widetilde{T_k}^d)].$$

As $\ker(T^k) \subseteq \operatorname{Im}[(T_{\lambda})^n]$, we have for all $n \in \mathbb{N}$,

$$\mathrm{Im}[(\lambda I - \widetilde{T_k})^n] = [\mathrm{Im}[(T_\lambda)^n] + \mathrm{ker}(T^k)] / \mathrm{ker}(T^k) = \mathrm{Im}[(T_\lambda)^n] / \mathrm{ker}(T^k)$$

and

$$\ker[(\lambda I - \widetilde{T_k})^n] = \left(\ker[(T_\lambda)^n] + \ker(T^k)\right) / \ker(T^k).$$

(i) By (1), we obtain

$$\ker(T_{\lambda}) \subseteq \ker(T_{\lambda}) + \ker(T^k) \subseteq \operatorname{Im}[(T_{\lambda})^n], \quad \forall \ n \in \mathbb{N}$$

and it follows that $\mathsf{Im}(T_{\lambda})$ is closed. So T_{λ} is s-regular for all $0 < |\lambda| < \varepsilon$.

(ii) Since
$$\ker(T^k) \cap \ker(T_\lambda) = \{0\}$$
, it follows from (2) that

$$\begin{aligned} \alpha(T_\lambda) &= \dim[\ker(T_\lambda) + \ker(T^k)]/\ker(T^k) \\ &= \alpha(\lambda I - \widetilde{T_k}) \end{aligned}$$

$$= \dim \ker(\widetilde{T_k}) \cap \operatorname{Im}(\widetilde{T_k}^d) \\ &= \dim\left([\operatorname{Im}(T^d) + \ker(T^k)] \cap \ker(T^{k+1})\right)/\ker(T^k) \\ &= \dim\left(\operatorname{Im}(T^d) \cap \ker(T^{k+1}) + \ker(T^k)\right)/\ker(T^k) \end{aligned}$$

$$= \dim\left(\operatorname{Im}(T^d) \cap \ker(T^{k+1})\right)/(\operatorname{Im}(T^d) \cap \ker(T^k)) \\ &= \dim \ker(S^{k+1})/\ker(S^k), \quad \text{where } S = T_{|\operatorname{Im}(T^d)} \\ &= \dim \ker(S) \cap \operatorname{Im}(S^k) \\ &= \dim \ker(T) \cap \operatorname{Im}(T^{d+k}). \end{aligned}$$

(iii) From (3), we get

$$\begin{split} \beta(T_{\lambda}) &= \beta(\lambda I - T_k) \\ &= \dim \left(\mathsf{H}/\mathsf{ker}(T^k)\right) / \left(\mathsf{Im}(\widetilde{T_k}) + \mathsf{ker}(\widetilde{T_k}^d)\right) \\ &= \dim \mathsf{H}/(\mathsf{Im}(T) + \mathsf{ker}(T^{d+k})). \end{split}$$

The proof is complete.

Corollary 3.2. Let $T \in \varphi(\mathsf{H})$ and $k \in \mathbb{N}$. Then $\sigma_{q\Phi}^k(T)$ and $\sigma_{q\Phi}^{\infty}(T)$ are closed.

For $T \in \varphi(\mathsf{H})$, we consider the following :

 $\mathsf{E}(T) = \{\lambda \in \sigma(T) : \lambda \text{ an isolated point, } \boldsymbol{a}(T_{\lambda}) < +\infty, \\ \boldsymbol{d}(T_{\lambda}) = m < +\infty \text{ and } \mathsf{Im}[(T_{\lambda})^m] \text{ is closed} \}.$

Let's recall that if $\rho(T) \neq \emptyset$, (see, [8, Theorem 2.1])

 $\mathsf{E}(T) = \{\lambda \in \sigma(T) : \boldsymbol{a}(T_{\lambda}) = \boldsymbol{d}(T_{\lambda}) < +\infty\}.$

Theorem 3.3. Let $T \in \varphi(\mathsf{H})$ and $k \in \mathbb{N}$. Then

$$\partial \sigma(T) \cap \varrho_{a\Phi}^k(T) = \partial \sigma(T) \cap \varrho_{a\Phi}^\infty(T) = \mathsf{E}(T).$$

Proof. The case $\rho(T) = \emptyset$ is trivial, so assume that $\rho(T) \neq \emptyset$. Clearly, the following inclusions hold :

 $\mathsf{E}(T)\subseteq \partial\sigma(T)\cap \varrho_{q\Phi}^k(T)\subseteq \partial\sigma(T)\cap \varrho_{q\Phi}^\infty(T).$

For the reverse inclusions, let $\mu \in \partial \sigma(T) \cap \varrho_{q\Phi}^{\infty}(T)$, we denote by $R = \mu I - T$. Let $k, d \in \mathbb{N}$ such that $R \in k \cdot q\Phi(d)(\mathsf{H})$. We know from Lemma 3.1, that there exists $\varepsilon > 0$ such that

 $\alpha(\lambda I - R) = \dim \ker(R) \cap \operatorname{Im}(R^{d+k}) \quad \text{and} \quad \beta(\lambda I - R) = \dim \operatorname{H}/[\operatorname{Im}(R) + \ker(R^{d+k})],$ for all $0 < |\lambda| < \varepsilon$. Since $\rho(R) \cap \{\lambda \in \mathbb{C} : 0 < |\lambda| < \varepsilon\} \neq \emptyset$, we deduce that

$$\alpha(\lambda I - R) = \beta(\lambda I - R) = 0, \quad \forall \ 0 < |\lambda| < \varepsilon.$$

This leads to $\boldsymbol{a}(R) = \boldsymbol{d}(R) \leq d + k$ and $\mu \in \mathsf{E}(T)$. This completes the proof.

We recall that $T \in \mathscr{B}(\mathsf{H})$ is called algebraic if P(T) = 0 for some nonzero polynomial P. Arguing as in the proof of [2, Theorem 1.5], we get the following result :

T is algebraic
$$\iff \sigma(T) = \{\lambda_1, \lambda_2, \dots, \lambda_n\} = \mathsf{E}(T)$$

In the following theorem, we show that the operators whose k-quasi-Fredholm spectrum is empty are exactly the algebraic operators.

Theorem 3.4. Let $T \in \mathscr{B}(\mathsf{H})$ and $k \in \mathbb{N}$, then the following conditions are equivalent :

ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS 149

 $\begin{array}{ll} (i) & \sigma^k_{q\Phi}(T) = \emptyset; \\ (ii) & \sigma^\infty_{q\Phi}(T) = \emptyset; \end{array}$

(iii) T is algebraic.

Proof. "(i) \implies (iii)" We have $\varrho_{q\Phi}^k(T) = \mathbb{C}$, this implies that $\mathsf{E}(T) = \varrho_{q\Phi}^k(T) \cap \partial \sigma(T) =$ $\partial \sigma(T) \neq \emptyset$ and hence $\sigma(T) = \mathsf{E}(T)$. Consequently, T is algebraic.

"(*iii*) \implies (*i*)" T is algebraic implies that $\sigma(T) = \mathsf{E}(T) = \varrho_{q\Phi}^k(T) \cap \partial \sigma(T) \subseteq \varrho_{q\Phi}^k(T)$. Therefore $\varrho_{q\Phi}^k(T) = \mathbb{C}$.

In the same way, we obtain the following equivalence :

 $\sigma_{a\Phi}^{\infty}(T) = \emptyset \iff T$ is algebraic.

This completes the proof of the proposition.

4. A spectral mapping theorem for pseudo-quasi-Fredholm

For $T : \mathsf{D}(T) \subseteq \mathsf{H} \longrightarrow \mathsf{H}$, we denote by

$$\mathsf{do}(T) = \inf\{n \in \mathbb{N} : \mathsf{D}(T^n) = \mathsf{D}(T^{n+1})\}\}$$

where the infimum over the empty set is taken to be $+\infty$ (see, [4, page 31]). We remark that if $do(T) < +\infty$, then

$$\mathsf{D}(T^{\mathsf{do}(T)}) = \mathsf{D}(T^{\mathsf{do}(T)+n}) \subseteq \mathsf{D}(T^n), \quad \forall \ n \in \mathbb{N}.$$

Consequently $T(\mathsf{D}(T^{\mathsf{do}(T)})) = T(\mathsf{D}(T^{\mathsf{do}(T)+1})) \subseteq \mathsf{D}(T^{\mathsf{do}(T)}).$

Of course, there exist operators such that $do(T) = +\infty$ and operators such that $do(T) < +\infty$. This can be illustrated in the following example.

Example 4.1.

(i) Let $\mathsf{H} = \mathsf{L}^2(\mathbb{R})$ and $n \in \mathbb{N}$, we define the subspace D_n of H by

$$\mathsf{D}_n = \Big\{ f \in \mathsf{H} \ : \int_{\mathbb{R}} t^{2n} |f(t)|^2 dt < +\infty \Big\},$$

and the operator T by

$$\begin{array}{rcccc} T & : & \mathsf{D}(T) \subseteq \mathsf{H} & \longrightarrow & \mathsf{H} \\ & f & \longmapsto & \psi f, & \text{with } \psi(t) = t. \end{array}$$

It is clear that $\mathsf{D}(T^n) = \mathsf{D}_n$ and hence $\mathsf{do}(T) = +\infty$. For $q \in \mathbb{N}$, we define

$$\begin{array}{rccc} S & : & \mathsf{D}(S) \subseteq \mathsf{H}/\mathsf{D}(T^q) & \longrightarrow & \mathsf{H}/\mathsf{D}(T^q) \\ \hline f & \longmapsto & \overline{T(f)}. \end{array}$$

Since $D(S^q) = \{0\}$ and $D(S^{q-1}) \neq \{0\}$ (if q > 0), then do(S) = q.

(*ii*) Let H be a separable Hilbert space and let $K : \mathsf{D}(K) \subseteq \mathsf{H} \longrightarrow \mathsf{H}$. Consider the linear operator $T : D(T) \subseteq \bigotimes_{i=0}^{\infty} H \longrightarrow \bigotimes_{i=0}^{\infty} H$ defined by $T(h_0, h_1, h_2, \ldots) = (K(h_1), h_2, h_3, \ldots)$. Clearly, $D(T^k) = H \times \bigotimes_{i=1}^{i=k} D(K) \times \bigotimes_{i=k+1}^{\infty} H$. Hence $do(T) = +\infty$ if $D(K) \subsetneq H$ and do(T) = 0 when D(K) = H.

Let us consider the following class :

$$\begin{split} \Gamma(\mathsf{H}) &= \{T:\mathsf{D}(T) \subseteq \mathsf{H} \longrightarrow \mathsf{H} \text{ paracomplete}: q = \mathsf{do}(T) < +\infty, \\ \mathsf{D}(T^q) \text{ and } \mathsf{Im}(T_\lambda) + \mathsf{D}(T^q) \text{ are closed}, \ \forall \ \lambda \in \mathbb{C}\}. \end{split}$$

It is clear that $\mathscr{B}(\mathsf{H}) \subseteq \Gamma(\mathsf{H})$. Assume that T is a paracomplete operator such that $q = do(T) < +\infty$. It is easy to see that if P is a complex polynomial, then P(T) is paracomplete and $do(P(T)) \leq q$. Furthermore, if P is a non-constant complex polynomial, then $\mathsf{D}([P(T)]^n) = \mathsf{D}(T^q)$, for all $n \geq \mathsf{do}(P(T))$. We will show that if $T \in \Gamma(\mathsf{H})$, then $P(T) \in \Gamma(\mathsf{H})$, for all complex polynomial P. Set $q = \mathsf{do}(T)$ and define

$$\begin{array}{rcl} \overline{T} & : & \mathsf{D}(\overline{T}) \subseteq \mathsf{H}/\mathsf{D}(T^q) & \longrightarrow & \mathsf{H}/\mathsf{D}(T^q) \\ \overline{x} & \longmapsto & \overline{Tx}. \end{array}$$

Let $\lambda \in \mathbb{C}$ and $\overline{x} \in \ker(\lambda I - \overline{T})$, then $T_{\lambda}x \in \mathsf{D}(T^q)$. Clearly, $x \in \mathsf{D}(T^{q+1}) = \mathsf{D}(T^q)$ and $\overline{x} = 0$, so ker $(\lambda I - \overline{T}) = \{0\}$. Let us remark that $\operatorname{Im}(\lambda I - \overline{T}) = [\operatorname{Im}(T_{\lambda}) + \mathsf{D}(T^{q})]/\mathsf{D}(T^{q})$ is closed. As in the proof of Proposition 2.11, we prove that $\lambda I - \overline{T}$ is paracomplete and so by [7, Proposition 2.2.3], $\lambda I - \overline{T} \in \varphi(\mathsf{H}/\mathsf{D}(T^q))$. Hence $\lambda I - \overline{T} \in \Phi_+(\mathsf{H}/\mathsf{D}(T^q))$. Now, let $P(Z) = (\lambda_1 - Z)^{\alpha_1} (\lambda_2 - Z)^{\alpha_2} \cdots (\lambda_m - Z)^{\alpha_m}$ be a complex polynomial. We know that if $S, L \in \varphi(\mathsf{H})$ such that $L \in \Phi_+(\mathsf{H})$ and $\mathsf{Im}(S)$ is closed, then $LS \in \varphi(\mathsf{H})$ and $\mathsf{Im}(LS)$ is closed. For $i, j \in \{1, 2, ..., m\}$, we have $\lambda_i I - \overline{T} \in \Phi_+(\mathsf{H}/\mathsf{D}(T^q))$ and $\mathsf{Im}(\lambda_j I - \overline{T})$ is closed, therefore $(\lambda_i I - \overline{T})(\lambda_j I - \overline{T}) \in \varphi(\mathsf{H}/\mathsf{D}(T^q))$ and $\mathsf{Im}[(\lambda_i I - \overline{T})(\lambda_j I - \overline{T})]$ is closed. Since $\ker[(\lambda_i I - \overline{T})(\lambda_j I - \overline{T})] = \{0\}$, then $(\lambda_i I - \overline{T})(\lambda_j I - \overline{T}) \in \Phi_+(\mathsf{H}/\mathsf{D}(T^q))$ and consequently $\operatorname{Im}(P(\overline{T})) = [\operatorname{Im}[P(T)] + D(T^q)]/D(T^q)$ is closed. Finally, we deduce that $\operatorname{Im}[P(T)] + \mathsf{D}(T^q) = \operatorname{Im}[P(T)] + \mathsf{D}[(P(T))^{\operatorname{do}(P(T))}]$ is closed and $P(T) \in \Gamma(\mathsf{H})$.

Example 4.2.

- (i) Let H be a separable Hilbert space and let $K \in \varphi(H)$ such that $\mathsf{D}(K) \subsetneq \mathsf{H}$ is
 - closed. Let $\mathcal{H} = \bigotimes_{i=1}^{\infty} \mathsf{H}$ and consider the linear operator $T : \mathcal{H} \longrightarrow \mathcal{H}$ defined by $T(h_0, h_1, h_2, h_3) \stackrel{i=0}{=} (K(h_1), h_2, h_3, h_3).$ Clearly,

$$\mathsf{D}(T^k) = \begin{cases} \mathsf{H} \times \mathsf{D}(K) \times \mathsf{H} \times \mathsf{H} & \text{if } k = 1\\ \mathsf{H} \times \mathsf{D}(K) \times \mathsf{D}(K) \times \mathsf{H} & \text{if } k = 2\\ \mathsf{H} \times \mathsf{D}(K) \times \mathsf{D}(K) \times \mathsf{D}(K) & \text{if } k \ge 3 \end{cases}$$

is closed. Hence do(T) = 3. It is not difficult to see that

$$\mathsf{Im}(T_{\lambda}) + \mathsf{D}(T^{3}) = \begin{cases} \mathsf{H} \times \mathsf{H} \times \mathsf{H} \times \mathsf{D}(K) & \text{if } \lambda = 1, \\ \mathsf{H} \times \mathsf{H} \times \mathsf{H} \times \mathsf{H} & \text{if } \lambda \neq 1 \end{cases}$$

is closed. Since $T \in \varphi(\mathcal{H})$, it follows that $T \in \Gamma(\mathcal{H})$.

(ii) Let H be a separable Hilbert space and $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis of H. Define the following operators T and L on H by

$$\mathsf{D}(T) = \mathsf{D}(L) = \langle e_n : n \ge 2 \rangle, \quad T(e_n) = e_{n+1} \quad \text{and} \quad L(e_n) = e_{n-1}, \quad \forall \ n \ge 2.$$

It is clear that $\mathsf{D}(T^k) = \mathsf{D}(T)$ and $\mathsf{D}(L^k) = \langle e_n : n \geq 1 + k \rangle$, for all $k \geq 1$ and hence do(T) = 1 and $do(L) = +\infty$ $(L \notin \Gamma(H))$. Since $T \in \varphi(H)$, $Im(T_{\lambda}) \subseteq D(T)$ for all $\lambda \in \mathbb{C}$ and $\mathsf{D}(T)$ is closed, then $T \in \Gamma(\mathsf{H})$.

The following proposition generalizes [7, Proposition 3.3.2].

Proposition 4.3. Let $T \in \varphi(\mathsf{H})$ and $k \in \mathbb{N}$ such that $\ker(T^k)$ is closed. If $T \in k \cdot q\Phi(\mathsf{H})$, then

$$\operatorname{Im}(T^{i}) + \operatorname{ker}(T^{k+j})$$
 is closed, for all $i+j \ge q_{k}(T)$.

Proof. If $T \in k$ - $q\Phi(\mathsf{H})$, then from Proposition 2.11, $\widetilde{T_k} \in q\Phi(q_k(T))(\mathsf{H}/\mathsf{ker}(T^k))$. But by [7, Proposition 3.3.2], we have

$$\mathsf{Im}[(T_k)^i] + \mathsf{ker}[(T_k)^j] = [\mathsf{Im}(T^i) + \mathsf{ker}(T^{k+j})]/\mathsf{ker}(T^k) \quad \text{is closed}, \quad \forall i+j \ge q_k(T).$$

Therefore

$$\mathsf{Im}(T^i) + \mathsf{ker}(T^{k+j})$$
 is closed, $\forall i+j \ge q_k(T)$

and the proof of the proposition is complete.

For $T \in \varphi(\mathsf{H})$ and M a subspace of H , we define $T_{|\mathsf{M}}$ as the restriction of T to M viewed as a map from M onto M .

The next lemma is used in order to show Lemmas 4.5 and 4.8.

Lemma 4.4. Let T be a paracomplete operator on H and P be a non-constant complex polynomial. If $q = do(T) < +\infty$ and $D(T^q)$ is closed, then

- (i) $T_{|\mathsf{D}(T^q)}$ is a bounded operator,
- (*ii*) $\operatorname{ker}[P(T)] = \operatorname{ker}[P(T_{|\mathsf{D}(T^q)})]$ is closed,
- (*iii*) $\operatorname{Im}([P(T)]^n) \subseteq \mathsf{D}(T^q), \text{ for all } n \ge q.$

Proof. (i) Let \widehat{T} (resp. $T_{|\mathsf{D}(T^q)}$) be the restriction of T to $\mathsf{D}(T^q)$ viewed as map from $\mathsf{D}(T^q)$ onto H (resp. $\mathsf{D}(T^q)$ onto $\mathsf{D}(T^q)$). From [7, Proposition 2.1.4, Proposition 2.1.5], it follows that \widehat{T} is a bounded operator. Since for all $x \in \mathsf{D}(T^q)$, we have $||Tx|| = ||\widehat{T}x|| \le ||\widehat{T}|| ||x||$, then $T_{|\mathsf{D}(T^q)}$ is also a bounded operator.

(*ii*) Since $\ker[P(T)] \subseteq \mathsf{D}([P(T)]^q) = \mathsf{D}(T^q)$, then $\ker[P(T)] = \ker[P(T_{|\mathsf{D}(T^q)})]$ is closed.

(*iii*) Let $y \in \text{Im}([P(T)]^n)$, then there exists $x \in D([P(T)]^n) = D(T^q) = D([P(T)]^{n+q})$ such that $y = [P(T)]^n x$ i.e., $y \in D(T^q)$. This completes the proof.

Lemma 4.5. Let $T \in \varphi(\mathsf{H}), m \in \mathbb{N} \setminus \{0\}$ and $k \in \mathbb{N}$.

(i) If $q = do(T) < +\infty$ and $D(T^q)$ is closed, then

$$T \in k \cdot q \Phi(\mathsf{H}) \Longrightarrow T^m \in k \cdot q \Phi(\mathsf{H}).$$

(*ii*) If $T \in \Gamma(\mathsf{H})$, then

$$T^m \in k \cdot q \Phi(\mathsf{H}) \Longrightarrow T \in pq \Phi(\mathsf{H}).$$

Proof. (i) Let $n \in \mathbb{N} \setminus \{0\}$ and $d = q_k(T)$. Since $d + k \ge q_0(T)$ (see Lemma 2.1), it follows from [7, Proposition 3.1.1] that

$$\ker[(T^n)^j] \subseteq \operatorname{Im}(T^n) + \ker(T^{d+k}) \subseteq \operatorname{Im}(T^n) + \ker[(T^n)^{(d+k)}], \quad \forall \ j \in \mathbb{N}.$$

and so $q_0(T^n) \leq d + k$. Hence, by Lemma 2.1, we obtain $q_k(T^n) \leq d$. In the other hand, from Lemma 4.4, we have $\ker(T^j)$ is closed for all $j \in \mathbb{N}$ and by Proposition 4.3, we know that $\operatorname{Im}(T^{nd}) + \ker(T^{nk})$ and $\operatorname{Im}(T^n) + \ker(T^{n(d+k)})$ are closed, this proves that $[\operatorname{Im}(T^{nd}) + \ker(T^{nk})] \cap \ker(T^{n(k+1)})$ is closed. Since $d_n = q_k(T^n) \leq d$, then

$$\left(\mathsf{Im}[(T^n)^{d_n}] + \ker[(T^n)^k] \right) \cap \ker[(T^n)^{k+1}] = \left(\mathsf{Im}[(T^n)^d] + \ker[(T^n)^k] \right) \cap \ker[(T^n)^{k+1}]$$

and

$$\operatorname{Im}(T^n) + \ker(T^{n(d_n+k)}) = \operatorname{Im}(T^n) + \ker(T^{n(d+k)})$$

are closed. It follows now from Corollary 2.12, that $T^n \in k \cdot q\Phi(\mathsf{H})$.

(*ii*) Let $l \in \mathbb{N}$ such that lm > do(T), then by (*i*), $T^n \in k \cdot q\Phi(\mathsf{H})$, with n = lm. Let $d = q_k(T^n) = \max\{q_0(T^n) - k, 0\}$, then $d + k \ge q_0(T^n)$. For all $j \in \mathbb{N}$, by [7, Proposition 3.1.1], we see that

$$\ker(T^j) \subseteq \ker[(T^n)^j] \subseteq \operatorname{Im}(T^n) + \ker(T^{n(d+k)}) \subseteq \operatorname{Im}(T) + \ker(T^{n(d+k)}) \subseteq \operatorname{Im}(T) + \ker(T^{n(d+k)}) \subseteq \operatorname{Im}(T) + \operatorname{Ker}(T^{n(d+k)}) \subseteq \operatorname{Ker}(T) + \operatorname{Ker}(T^{n(d+k)}) \subseteq \operatorname{Ker}(T) + \operatorname{Ker}(T^{n(d+k)}) \subseteq \operatorname{Ker}(T) + \operatorname{Ker$$

and hence $q_0(T) \le n(d+k)$. Let $\alpha = k n + n d - d \ge k$ and $d_\alpha = q_\alpha(T)$. Now by Lemma 2.1, we get

$$d_{\alpha} \le q_k(T) = \max\{q_0(T) - k, 0\} \le n(d+k) - k.$$

Therefore

$$\operatorname{Im}(T) + \operatorname{ker}(T^{d_{\alpha}+\alpha}) = \operatorname{Im}(T) + \operatorname{ker}(T^{q_{k}(T)+\alpha}) = \operatorname{Im}(T) + \operatorname{ker}(T^{q_{k}(T)+k}).$$

Since $q_{k}(T) + k \le n(d+k) \le n(d+k) + n - 1$, we deduce

$$\operatorname{Im}(T) + \ker(T^{d_{\alpha} + \alpha}) = \operatorname{Im}(T) + \ker(T^{n(d+k) + n - 1}).$$

But n > do(T), then $D(T^{n-1}) = D(T^q)$ and $Im(T^n) \subseteq D(T^q)$. We have by Lemma 4.4 that $S = T_{|D(T^q)}$ is a bounded operator, so that

$$\begin{split} [\mathsf{Im}(T) + \mathsf{ker}(T^{d_{\alpha}+\alpha})] \cap \mathsf{D}(T^q) &= [\mathsf{Im}(T) + \mathsf{ker}(T^{n(d+k)+n-1})] \cap \mathsf{D}(T^{n-1}) \\ &= T^{-(n-1)} \big(\mathsf{Im}(T^n) + \mathsf{ker}(T^{n(d+k)})\big) \\ &= S^{-(n-1)} \big(\mathsf{Im}(T^n) + \mathsf{ker}(T^{n(d+k)})\big) \end{split}$$

is closed. As $[\operatorname{Im}(T) + \ker(T^{d_{\alpha}+\alpha})] + \mathsf{D}(T^q) = \operatorname{Im}(T) + \mathsf{D}(T^q)$ is closed, we infer by [7, Proposition 2.1.1] and Lemma 2.9 that $\operatorname{Im}(T) + \ker(T^{d_{\alpha}+\alpha})$ is closed. In the other hand, from Proposition 4.3, for all $i \geq d$ the subspace $\operatorname{Im}(T^{n\,i}) + \ker(T^{k\,n})$ is closed. Suppose that $i \geq \max\{2d+k, 1\}$, since $\operatorname{Im}(T^{n\,i-(n\,d-d)}) + \ker(T^{\alpha}) \subseteq \mathsf{D}(T^q) = \mathsf{D}(T^{(n\,d-d)})$ and $\operatorname{Im}(T^{n\,i}) + \ker(T^{k\,n}) \subseteq \mathsf{D}(T^q)$ (see Lemma 4.4), then

$$\begin{split} \mathsf{Im}(T^{n\,i-(n\,d-d)}) + \mathsf{ker}(T^{\alpha}) &= \left[\mathsf{Im}(T^{n\,i-(n\,d-d)}) + \mathsf{ker}(T^{\alpha})\right] \cap \mathsf{D}(T^{(n\,d-d)}) \\ &= T^{-(n\,d-d)}\big(\mathsf{Im}(T^{n\,i}) + \mathsf{ker}(T^{n\,k})\big) \\ &= S^{-(n\,d-d)}\big(\mathsf{Im}(T^{n\,i}) + \mathsf{ker}(T^{n\,k})\big) \end{split}$$

is closed. This implies that $\mathsf{Z} = [\mathsf{Im}(T^{n\,i-(n\,d-d)}) + \mathsf{ker}(T^{\alpha})] \cap \mathsf{ker}(T^{\alpha+1})$ is closed. We have

$$ni - (nd - d) = n(i - d) + d \ge n(d + k) + d \ge n(d + k) \ge q_k(T) \ge d_\alpha$$

thus $\mathsf{Z} = [\mathsf{Im}(T^{d_{\alpha}}) + \mathsf{ker}(T^{\alpha})] \cap \mathsf{ker}(T^{\alpha+1})$ is closed. Hence by Corollary 2.12, it follows that $T \in \alpha - q\Phi(d_{\alpha})(\mathsf{H})$. This completes the proof. \Box

As an immediate consequence of Proposition 2.7 and Lemma 4.5, we obtain the following result.

Corollary 4.6. Let $T \in \mathscr{B}(H)$. The following conditions are equivalent :

- (i) T has topological uniform descent;
- (ii) T^n has topological uniform descent for all $n \in \mathbb{N}$;
- (iii) T^n has topological uniform descent for some $n \in \mathbb{N}$.

The next lemma is used to prove Lemma 4.8.

Lemma 4.7. Let $k \in \mathbb{N}$ and $T \in \varphi(\mathsf{H})$ such that $\ker(T^n)$ is closed for all $n \in \mathbb{N}$. If $T \in k \cdot q\Phi(\mathsf{H})$, then $T \in (k+1) \cdot q\Phi(\mathsf{H})$.

Proof. Let $T \in k$ - $q\Phi(\mathsf{H})$, from Lemma 2.1, $d = q_{k+1}(T) \leq q_k(T) < +\infty$ and hence

$$(1) \quad [\operatorname{Im}(T^d) + \ker(T^{k+1})] \cap \ker(T^{k+2}) = [\operatorname{Im}(T^{d+q_k(T)}) + \ker(T^{k+1})] \cap \ker(T^{k+2})$$

and

(2)
$$\operatorname{Im}(T) + \ker(T^{d+k+1}) = \operatorname{Im}(T) + \ker(T^{q_k(T)+k+1}) = \operatorname{Im}(T) + \ker(T^{q_k(T)+k}).$$

Since by Proposition 4.3, we know that $\operatorname{Im}(T^{d+q_k(T)}) + \ker(T^{k+1})$ is closed, then it follows from (1) and (2) that $T \in (k+1)-q\Phi(\mathsf{H})$, and this completes the proof. \Box

The next lemma is used to prove Corollary 4.10.

Lemma 4.8. Let $T : D(T) \subseteq H \longrightarrow H$ be a paracomplete operator. Let A = P(T), B = Q(T), where P and Q are relatively prime polynomials, and $k \in \mathbb{N}$.

(i) $q_k(A^n B^n) = \max\{q_k(A^n), q_k(B^n)\}, \text{ for all } n \in \mathbb{N}.$ (ii) If $q = \operatorname{do}(T) < +\infty$ and $\mathsf{D}(T^q)$ is closed, then $A, B \in k \cdot q\Phi(\mathsf{H}) \Longrightarrow AB \in k \cdot q\Phi(\mathsf{H}).$

(*iii*) If $T \in \Gamma(\mathsf{H})$, then

$$A, B \in pq\Phi(\mathsf{H}) \Longleftrightarrow AB \in pq\Phi(\mathsf{H}).$$

Proof. (i) For $n, k \in \mathbb{N}$, we denote by $Z_n^k(T) = [\mathsf{Im}(T^n) + \mathsf{ker}(T^k)] \cap \mathsf{ker}(T^{k+1})$. By [4, Lemma 4.4], we see

$$\begin{split} Z_n^k(AB) &= [\operatorname{Im}(A^nB^n) + \operatorname{ker}(A^kB^k)] \cap \operatorname{ker}(A^{k+1}B^{k+1}) \\ &= [\operatorname{Im}(A^n) \cap \operatorname{Im}(B^n) + \operatorname{ker}(A^k) + \operatorname{ker}(B^k)] \cap [\operatorname{ker}(A^{k+1}) + \operatorname{ker}(B^{k+1})] \\ &= [[\operatorname{Im}(A^n) + \operatorname{ker}(A^k)] \cap \operatorname{Im}(B^n) + \operatorname{ker}(B^k)] \cap [\operatorname{ker}(A^{k+1}) + \operatorname{ker}(B^{k+1})] \\ &= [\operatorname{Im}(A^n) + \operatorname{ker}(A^k)] \cap [\operatorname{Im}(B^n) + \operatorname{ker}(B^k)] \cap [\operatorname{ker}(A^{k+1}) + \operatorname{ker}(B^{k+1})] \\ &= [\operatorname{Im}(A^n) + \operatorname{ker}(A^k)] \cap [\operatorname{ker}(A^{k+1}) + (\operatorname{Im}(B^n) + \operatorname{ker}(B^k)) \cap \operatorname{ker}(B^{k+1})] \\ &= [\operatorname{Im}(A^n) + \operatorname{ker}(A^k)] \cap \operatorname{ker}(A^{k+1}) + [\operatorname{Im}(B^n) + \operatorname{ker}(B^k)] \cap \operatorname{ker}(B^{k+1}) \\ &= Z_n^k(A) + Z_n^k(B) \end{split}$$

and

$$Z_n^k(A)\cap Z_n^k(B)\subseteq \ker(A^{k+1})\cap \ker(B^{k+1})=\{0\}.$$

Therefore

$$q_k(A^n B^n) = \max\{q_k(A^n), q_k(B^n)\}, \quad \forall \ n \in \mathbb{N}.$$

(*ii*) First, recall that from Lemma 4.4, we get $\ker(A^k)$ and $\ker(B^k)$ are closed, for all $k \in \mathbb{N}$. For $j, n \in \mathbb{N}$, we have

(1)
$$\begin{aligned} \mathsf{Im}(A^nB^n) + \mathsf{ker}(A^jB^j) &= \mathsf{Im}(A^n) \cap \mathsf{Im}(B^n) + \mathsf{ker}(A^j) + \mathsf{ker}(B^j) \\ &= [\mathsf{Im}(A^n) + \mathsf{ker}(A^j)] \cap [\mathsf{Im}(B^n) + \mathsf{ker}(B^j)]. \end{aligned}$$

Assume that $A, B \in k - q\Phi(\mathsf{H})$ and let $d = q_k(AB) = \max\{q_k(A), q_k(B)\}$. In particular, this allows us to see

(2)
$$\operatorname{Im}(A) + \ker(A^{k+d})$$
 and $\operatorname{Im}(B) + \ker(B^{k+d})$ are closed.

Furthermore, from Proposition 4.3, it follows that

(3)
$$\operatorname{Im}(A^d) + \ker(A^k)$$
 and $\operatorname{Im}(B^d) + \ker(B^k)$ are closed.

Thus, taking into account of the equalities (1), (2), (3) and Corollary 2.12, we deduce that $AB \in k\text{-}q\Phi(\mathsf{H})$.

(*iii*) Taking into account of [7, Proposition 2.1.3] and Lemma 2.9, we obtain that $Z_n^k(A)$ (resp. $Z_n^k(B)$) is paracomplete and applying [7, Proposition 2.1.1], we conclude that

(4)
$$Z_n^k(AB)$$
 is closed $\implies Z_n^k(A)$ and $Z_n^k(B)$ are closed

Since for $j \in \mathbb{N}$ and $n \geq \mathsf{do}(T)$, we have

$$[\operatorname{Im}(A^n) + \ker(A^j)] + [\operatorname{Im}(B^n) + \ker(B^j)] = \operatorname{Im}(A^n) + \operatorname{Im}(B^n) = \mathsf{D}(T^q),$$

it follows from [7, Proposition 2.1.1, Proposition 2.1.3], Lemma 2.9 and (1) that (5)

$$\mathsf{Im}(A^n B^n) + \mathsf{ker}(A^j B^j) \text{ is closed } \iff \begin{cases} \mathsf{Im}(A^n) + \mathsf{ker}(A^j), \\ \mathsf{Im}(B^n) + \mathsf{ker}(B^j) \end{cases} \text{ are closed, } \forall n \ge \mathsf{do}(T).$$

Assume that $AB \in k \cdot q\Phi(\mathsf{H})$, then $A^n B^n \in k \cdot q\Phi(\mathsf{H})$, for $n \geq \mathsf{do}(T)$ according to Lemma 4.5. In particular $Z_d^k(A^n B^n)$ and $\mathsf{Im}(B^n A^n) + \mathsf{ker}[(A^n B^n)^{k+d}]$ are closed, with $d = q_k(A^n B^n)$. Since $q_k(A^n) \leq d$, taking into account of (4) and (5), we deduce that $Z_{q_k(A^n)}^k(A^n) = Z_d^k(A^n)$ and $\mathsf{Im}(A^n) + \mathsf{ker}[(A^n)^{k+q_k(A^n)}] = \mathsf{Im}(A^n) + \mathsf{ker}[(A^n)^{k+d}]$ are closed. Therefore by Corollary 2.12, we obtain that $A^n \in k \cdot q\Phi(\mathsf{H})$ and hence $A \in pq\Phi(\mathsf{H})$ according to Lemma 4.5. Consequently if $AB \in pq\Phi(\mathsf{H})$, then $A, B \in pq\Phi(\mathsf{H})$. Suppose, conversely, that $A, B \in pq\Phi(\mathsf{H})$, then there exists $k_1, k_2 \in \mathbb{N}$ such that $A \in k_1 - q\Phi(\mathsf{H})$ and $B \in k_2 - q\Phi(\mathsf{H})$. Now from Lemma 4.7, it follows that $A, B \in k - q\Phi(\mathsf{H})$, with $k = \max\{k_1, k_2\}$. Finally, by (*ii*), we obtain $AB \in pq\Phi(\mathsf{H})$. This completes the proof.

Using Proposition 2.7, [10, Lemma 12.8] and the proof of Lemma 4.8, one proves the following result.

Corollary 4.9. Let $T, S, L, R \in \mathscr{B}(\mathsf{H})$ be mutually commuting operators, satisfying TR + LS = I. Then T has topological uniform descent if and only if the same holds for S.

Corollary 4.10. Let $T \in \varphi(\mathsf{H})$ and $P(Z) = (\lambda_1 - Z)^{m_1} (\lambda_2 - Z)^{m_2} \cdots (\lambda_s - Z)^{m_s}$ be a complex polynomial such that $m_i \neq 0$ for all $i = 1, 2, \ldots, s$.

(i) Let $k \in \mathbb{N}$, if $q = do(T) < +\infty$ and $D(T^q)$ is closed, then

$$\forall \ 1 \leq i \leq s, \quad \lambda_i \in \varrho_{q\Phi}^k(T) \Longrightarrow 0 \in \varrho_{q\Phi}^k(P(T)).$$

(*ii*) If $T \in \Gamma(H)$, then

$$0 \in \varrho^{\infty}_{q\Phi}(P(T)) \Longleftrightarrow \lambda_i \in \varrho^{\infty}_{q\Phi}(T), \quad \forall \ 1 \le i \le s.$$

Proof. From Lemmas 4.5 and 4.8, it follows that

$$\begin{array}{ll} \forall \ 1 \leq i \leq s, \ \lambda_i \in \varrho_{q\Phi}^k(T) & \Longrightarrow & 0 \in \bigcap_{1 \leq i \leq s} \varrho_{q\Phi}^k(\lambda_i I - T) \\ & \Longrightarrow & 0 \in \bigcap_{1 \leq i \leq s} \varrho_{q\Phi}^k[(\lambda_i I - T)^{m_i}] \\ & \Longrightarrow & 0 \in \varrho_{q\Phi}^k(P(T)) \end{array}$$

and

$$\begin{aligned} 0 \in \varrho_{q\Phi}^{\infty}(P(T)) & \iff & 0 \in \bigcap_{\substack{1 \leq i \leq s}} \varrho_{q\Phi}^{\infty}[(\lambda_i I - T)^{m_i}] \\ & \iff & 0 \in \bigcap_{\substack{1 \leq i \leq s}} \varrho_{q\Phi}^{\infty}(\lambda_i I - T) \\ & \iff & \lambda_i \in \varrho_{q\Phi}^{\infty}(T), \quad \forall \ 1 \leq i \leq s. \end{aligned}$$

This completes the proof.

Corollary 4.11. Let $T \in \mathscr{B}(\mathsf{H})$ and $P(Z) = (\lambda_1 - Z)^{m_1} (\lambda_2 - Z)^{m_2} \cdots (\lambda_s - Z)^{m_s}$ be a complex polynomial such that $m_i \neq 0$ for all i = 1, 2, ..., s. The following conditions are equivalent :

- (i) P(T) has topological uniform descent;
- (ii) $\lambda_i I T$ has topological uniform descent for all $1 \leq i \leq s$.

Now we give a spectral mapping theorem which is our main result.

Theorem 4.12. Let $T \in \varphi(\mathsf{H})$ and P be a non-constant complex polynomial.

(i) If $k \in \mathbb{N}$, $q = do(T) < +\infty$ and $D(T^q)$ is closed, then

$$\sigma_{q\Phi}^k(P(T)) \subseteq P(\sigma_{q\Phi}^k(T)).$$

(*ii*) If $T \in \Gamma(\mathsf{H})$, then

$$P(\sigma_{a\Phi}^{\infty}(T)) = \sigma_{a\Phi}^{\infty}(P(T)).$$

In particular, the topological uniform descent spectrum of a bounded operator on a Hilbert space satisfies the non-constant polynomial version of the spectral mapping theorem.

Proof. (i) Let $\lambda \in \sigma_{q\Phi}^k(P(T))$ and suppose that $\lambda - P(Z) = (\mu_1 - Z)^{m_1} \cdots (\mu_s - Z)^{m_s}$. From Corollary 4.10, it follows that there exists $i \in \{1, 2, \ldots, s\}$ such that $\mu_i \in \sigma_{q\Phi}^k(T)$. Hence $\lambda = P(\mu_i) \in P(\sigma_{q\Phi}^k(T))$.

(ii) From Corollary 4.10, it follows that

$$\begin{array}{lll} \lambda \in P(\sigma_{q\Phi}^{\infty}(T)) & \Longleftrightarrow & \lambda = P(\mu), \text{ with } \mu \in \sigma_{q\Phi}^{\infty}(T), \\ & \Leftrightarrow & \lambda - P(Z) = (\mu - Z)^k Q(Z), \text{ with } Q(\mu) \neq 0, \\ & \Leftrightarrow & \lambda \in \sigma_{q\Phi}^{\infty}(P(T)), \end{array}$$

which completes the proof.

Question 1. Let $T \in \Gamma(H)$, $k \in \mathbb{N}$ and P be a non-constant complex polynomial. It is not clear at present whether $P(\sigma_{q\Phi}^k(T)) = \sigma_{q\Phi}^k(P(T))$?

Corollary 4.13. Let $T \in \varphi(\mathsf{H})$ such that $q = \mathsf{do}(T) < +\infty$ and $\mathsf{D}(T^q)$ is closed, and P be a complex polynomial having no roots in $\sigma_{q\Phi}^k(T)$, for $k \in \mathbb{N}$, then P(T) is a k-quasi-Fredholm operator.

Corollary 4.14. Let $T \in \Gamma(\mathsf{H})$ and P be a complex polynomial having no roots in $\sigma_{q\Phi}^{\infty}(T)$, then P(T) is pseudo-quasi-Fredholm. Furthermore, P(T) has topological uniform descent, when $T \in \mathscr{B}(\mathsf{H})$.

The next lemma is used to prove Theorem 4.16.

Lemma 4.15. Let $T, L \in \mathscr{B}(\mathsf{H})$ such that TL = LT. If L is invertible, then for all $k \in \mathbb{N}$, we have $T \in k$ - $q\Phi(\mathsf{H})$ if and only if $TL \in k$ - $q\Phi(\mathsf{H})$.

Proof. For $n \in \mathbb{N}$, we know that $\ker(T^n) = \ker(T^nL^n)$ and $\operatorname{Im}(T^n) = \operatorname{Im}(T^nL^n)$. For every $k, n, i \in \mathbb{N}$, we deduce that $q_k(T) = q_k(TL)$, $\operatorname{Im}(T^i) + \ker(T^n)$ is closed if and only if $\operatorname{Im}(L^iT^i) + \ker(L^nT^n)$ is closed and $[\operatorname{Im}(T^i) + \ker(T^k)] \cap \ker(T^{k+1})$ is closed if and only if $[\operatorname{Im}(L^iT^i) + \ker(L^kT^k)] \cap \ker(L^{k+1}T^{k+1})$ is closed. Therefore,

$$T \in k - q\Phi(\mathsf{H}) \iff TL \in k - q\Phi(\mathsf{H}).$$

This completes the proof.

The spectral mapping theorem holds for the pseudo-quasi-Fredholm spectrum.

Theorem 4.16. Let $T \in \mathscr{B}(\mathsf{H})$ and f be an analytic function in a neighborhood of the usual spectrum $\sigma(T)$ and not locally constant in $\sigma(T)$. For $k \in \mathbb{N}$, we have

$$\sigma_{q\Phi}^k\big(f(T)\big) \subseteq f\big(\sigma_{q\Phi}^k(T)\big) \quad and \quad f\big(\sigma_{q\Phi}^\infty(T)\big) = \sigma_{q\Phi}^\infty\big(f(T)\big).$$

So, the topological uniform descent spectrum of a bounded operator on a Hilbert space satisfies the spectral mapping theorem.

Proof. Let $\mu \in \mathbb{C}$ and f be an analytic function in a neighborhood of $\sigma(T)$. Since $\sigma(T)$ is a compact subset of \mathbb{C} , the function $f(z) - f(\mu)$ possesses at most a finite number of zeros in $\sigma(T)$. So

$$f(z) - f(\mu) = (z - \mu)^{m_0} (z - \lambda_1)^{m_1} \cdots (z - \lambda_n)^{m_n} g(z),$$

where g(z) is a non-vanishing analytic function on $\sigma(T)$. Using the functional calculus we deduce that :

$$f(T) - f(\mu)I = (T - \mu I)^{m_0} (T - \lambda_1 I)^{m_1} \cdots (T - \lambda_n I)^{m_n} g(T),$$

where g(T) is an invertible operator. Therefore

$$[f(T) - f(\mu)I](g(T)^{-1}) = (T - \mu I)^{m_0}(T - \lambda_1 I)^{m_1} \cdots (T - \lambda_n I)^{m_n}.$$

So from Corollary 4.10 and Lemma 4.15, it follows that

$$\begin{split} \mu &\in \sigma_{q\Phi}^{\infty}(T) & \iff \quad [f(T) - f(\mu)I] \big(g(T)^{-1} \big) \not\in pq\Phi(\mathsf{H}) \\ & \iff \quad f(T) - f(\mu)I \not\in pq\Phi(\mathsf{H}) \\ & \iff \quad f(\mu) \in \sigma_{q\Phi}^{\infty} \big(f(T) \big). \end{split}$$

In the same way, we obtain that

$$\sigma_{q\Phi}^k(f(T)) \subseteq f(\sigma_{q\Phi}^k(T)).$$

This proves the theorem.

Corollary 4.17. Let $T \in \mathscr{B}(\mathsf{H})$ and f be an analytic function in a neighborhood of the usual spectrum $\sigma(T)$ having no roots in $\sigma_{q\Phi}^{\infty}(T)$ (resp. $\sigma_{q\Phi}^{k}(T)$, for $k \in \mathbb{N}$) and not locally constant in $\sigma(T)$. Then f(T) is a pseudo-quasi-Fredholm (resp. k-quasi-Fredholm) operator.

Remark 4.18. Recall that if $T \in \varphi(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$, then $\ker(P(T))$ is closed, for all complex polynomial P. Thus, the first assertion of Lemma 4.5 and the second assertion of Lemma 4.8 are true also for a closed operator T on a Hilbert space such that $\varrho_e^+(T) \neq \emptyset$ and not necessarily $q = \operatorname{do}(T) < +\infty$ and $\mathsf{D}(T^q)$ is closed. Hence, we can prove that all results in Section 4 related to the k-quasi-Fredholm spectrum remain valid for an operator $T \in \varphi(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$ without the assumption that $q = \operatorname{do}(T) < +\infty$ and $\mathsf{D}(T^q)$ is closed.

5. The K-Quasi-Fredholm and finite-dimensional perturbations

For two subspaces M and N of H, we write $M \stackrel{e}{\subset} N$ if there exists a finite-dimensional subspace V of H such that $M \subset N + V$, i.e. $\dim M/(M \cap N) = \dim(M + N)/N < +\infty$. Similarly, we write $M \stackrel{e}{=} N$ if both $M \stackrel{e}{\subset} N$ and $N \stackrel{e}{\subset} M$.

The elementary next lemma is used to show Lemma 5.2.

Lemma 5.1. Let $T \in \varphi(\mathsf{H})$ and $F \in \mathscr{B}(\mathsf{H})$ such that $\dim \mathsf{Im}(F) < +\infty$, $\mathsf{Im}(F) \subset \mathsf{D}(T)$ and TFx = FTx, for all $x \in \mathsf{D}(T)$. Then for every $n \in \mathbb{N}$, we have

$$\operatorname{ker}[(T+F)^n] \stackrel{e}{=} \operatorname{ker}(T^n) \quad and \quad \operatorname{Im}[(T+F)^n] \stackrel{e}{=} \operatorname{Im}(T^n)$$

In particular,

$$\ker[(T+F)^n] + \operatorname{Im}[(T+F)^i] \stackrel{e}{=} \ker(T^n) + \operatorname{Im}(T^i), \quad \forall \ n, \ i \in \mathbb{N}.$$

Proof. For $n \in \mathbb{N}$, we define

We have

$$\dim \ker[(T+F)^n]/(\ker[(T+F)^n] \cap \ker(T^n)) = \dim \ker[(T+F)^n]/\ker(\theta)$$

$$< \dim \operatorname{Im}(F) < +\infty$$

and

$$\dim \ker(T^n) / \left(\ker[(T+F)^n] \cap \ker(T^n) \right) = \dim \ker(T^n) / \ker(\psi) \\ < \dim \operatorname{Im}(F) < +\infty.$$

This implies that

$$\ker[(T+F)^n] \stackrel{e}{=} \ker(T^n), \quad \forall \ n \in \mathbb{N}.$$

Since $(T+F)^n - T^n$ is a finite dimensional operator, then $\text{Im}[(T+F)^n] \stackrel{e}{=} \text{Im}(T^n)$. This completes the proof.

Lemma 5.2. Let $T \in \varphi(\mathsf{H})$ and $F \in \mathscr{B}(\mathsf{H})$ such that $\dim \mathsf{Im}(F) < +\infty$, $\mathsf{Im}(F) \subset \mathsf{D}(T)$ and TFx = FTx, for all $x \in \mathsf{D}(T)$. Then

$$q_0(T) < +\infty \iff q_0(T+F) < +\infty.$$

Proof. " \Longrightarrow " Let $q_0(T) = d < +\infty$, $\mathsf{M} = \mathsf{Im}(T^d)$ and put $\widetilde{T} = T_{|\mathsf{M}}$. Then $\mathsf{ker}(\widetilde{T}) \subseteq \mathsf{Im}^{\infty}(\widetilde{T})$ and $\widetilde{T}(\mathsf{Im}^{\infty}(T)) = \mathsf{Im}^{\infty}(T)$. Indeed, we have

$$\ker(\widetilde{T}) = \ker(T) \cap \operatorname{Im}(T^d) = \ker(T) \cap \operatorname{Im}(T^{d+n}) \subseteq \operatorname{Im}(\widetilde{T}^n), \quad \forall \ n \in \mathbb{N}$$

and so $\ker(\widetilde{T}) \subseteq \operatorname{Im}^{\infty}(\widetilde{T})$. Now let $z \in \operatorname{Im}^{\infty}(T) = \operatorname{Im}^{\infty}(\widetilde{T})$, then there exists $x \in \mathsf{D}(\widetilde{T})$ such that $z = \widetilde{T}x$. Moreover, for every $n \in \mathbb{N}$, there exists $y \in \mathsf{D}(\widetilde{T}^{n+1}) \subseteq \mathsf{D}(\widetilde{T}^n)$ such that $\widetilde{T}^{n+1}y = \widetilde{T}x$, so $x - \widetilde{T}^n y \in \ker(\widetilde{T}) \subseteq \operatorname{Im}^{\infty}(\widetilde{T}) \subseteq \operatorname{Im}(\widetilde{T}^n)$. Therefore $x \in \operatorname{Im}^{\infty}(\widetilde{T}) = \operatorname{Im}^{\infty}(T)$.

It clearly suffices to consider only the case when dim $\operatorname{Im}(F) = 1$. As in the proof of [6, Theorem, page 194], it is possible to show that $\operatorname{ker}(\widetilde{T}) \stackrel{e}{\subset} \operatorname{Im}^{\infty}(T+F)$. We know that if $\operatorname{M} \stackrel{e}{\subset} \operatorname{N}$ and $\operatorname{M} \stackrel{e}{\subset} \operatorname{L}$, then $\operatorname{M} \stackrel{e}{\subset} \operatorname{N} \cap \operatorname{L}$. Since by Lemma 5.1, we have

$$\ker(T+F)\cap \operatorname{Im}[(T+F)^d]\subseteq \ker(T+F) \stackrel{\circ}{\subset} \ker(T)$$

and

$$\ker(T+F) \cap \operatorname{Im}[(T+F)^d] \subseteq \operatorname{Im}[(T+F)^d] \stackrel{e}{\subset} \operatorname{Im}(T^d),$$

then we can deduce that

$$\ker(T+F)\cap \operatorname{Im}[(T+F)^d] \mathop{\subset}\limits^e \ker(T)\cap \operatorname{Im}(T^d)$$

Hence,

$$\ker(T+F) \cap \operatorname{Im}[(T+F)^d] \stackrel{e}{\subset} \ker(T) \cap \operatorname{Im}(T^d) = \ker(\widetilde{T}) \stackrel{e}{\subset} \operatorname{Im}^{\infty}(T+F)$$

and since $\ker(T+F) \cap \operatorname{Im}[(T+F)^d] \subseteq \ker(T+F)$, so

$$\ker(T+F)\cap \operatorname{Im}[(T+F)^d] \stackrel{\scriptscriptstyle {\scriptscriptstyle \leftarrow}}{\subset} \ker(T+F)\cap \operatorname{Im}^\infty(T+F)$$

This implies that

$$\alpha = \dim(\ker(T+F) \cap \operatorname{Im}[(T+F)^d]) / (\ker(T+F) \cap \operatorname{Im}^{\infty}(T+F)) < +\infty.$$

Let $n \ge d$ and $\alpha_n = \dim(\ker(T+F) \cap \operatorname{Im}[(T+F)^d])/(\ker(T+F) \cap \operatorname{Im}[(T+F)^n])$. It is clear that the sequence $(\alpha_n)_{n\ge d}$ is increasing and $\alpha_n \le \alpha$, for all $n \ge d$. Then there exist $n_0 \ge d$ and $\beta \le \alpha$ such that $\alpha_n = \beta$, for all $n \ge n_0$. Let $n \ge n_0$, since

$$\ker(T+F)\cap \operatorname{Im}[(T+F)^{n+1}] \subseteq \ker(T+F)\cap \operatorname{Im}[(T+F)^n] \subseteq \ker(T+F)\cap \operatorname{Im}[(T+F)^d]$$

we deduce that

$$\alpha_{n+1} = \alpha_n + \dim(\ker(T+F) \cap \operatorname{Im}[(T+F)^n]) / (\ker(T+F) \cap \operatorname{Im}[(T+F)^{n+1}]).$$

Thus, $\dim(\ker(T+F)\cap \operatorname{Im}[(T+F)^n])/(\ker(T+F)\cap \operatorname{Im}[(T+F)^{n+1}]) = \alpha_{n+1} - \alpha_n = 0.$ It follows from this that

$$\ker(T+F)\cap \operatorname{Im}[(T+F)^n] = \ker(T+F)\cap \operatorname{Im}[(T+F)^{n_0}], \quad \forall \ n \ge n_0.$$

This means that $q_0(T+F) \leq n_0$.

"
$$\Leftarrow$$
" If $q_0(T+F) < +\infty$, from the first sense $q_0(T) = q_0(T+F-F) < +\infty$.
This finishes the proof of the lemma.

The following corollary is a straightforward consequence of Lemma 2.1 and Lemma 5.2.

Corollary 5.3. Let $T \in \varphi(\mathsf{H})$ and $F \in \mathscr{B}(\mathsf{H})$ such that $\dim \mathsf{Im}(F) < +\infty$, $\mathsf{Im}(F) \subset \mathsf{D}(T)$ and TFx = FTx, for all $x \in \mathsf{D}(T)$. Then

$$q_k(T) < +\infty \iff q_k(T+F) < +\infty, \quad \forall \ k \in \mathbb{N}.$$

Recall that if T and F are bounded operators such dim $\text{Im}(F) < +\infty$, then T is quasi-Fredholm if and only if T + F is quasi-Fredholm (see [6, Theorem]). We generalize this result to the class of k-quasi-Fredholm operators as follows :

Theorem 5.4. Let $T \in \varphi(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$. Let $F \in \mathscr{B}(\mathsf{H})$ such that $\dim \mathsf{Im}(F) < +\infty$, $\mathsf{Im}(F) \subset \mathsf{D}(T)$ and TFx = FTx, for all $x \in \mathsf{D}(T)$. Then for all $k \in \mathbb{N}$, we have $\sigma_{q\Phi}^k(T+F) = \sigma_{q\Phi}^k(T)$ and $\sigma_{q\Phi}^\infty(T+F) = \sigma_{q\Phi}^\infty(T)$.

Proof. Let $k \in \mathbb{N}$ and $T \in k$ -qΦ(H). By Corollary 5.3, we have $d = \max\{q_k(T), q_k(T + F)\} < +\infty$. It follows from Proposition 4.3 that $\operatorname{Im}(T^d) + \ker(T^k)$ and $\operatorname{Im}(T) + \ker(T^{d+k})$ are closed subspaces. From Lemma 5.1, we deduce that $\operatorname{Im}[(T + F)^d] + \ker[(T + F)^k]$ and $\operatorname{Im}(T + F) + \ker[(T + F)^{d+k}]$ are closed subspaces. Since $d_1 = q_k(T + F) \leq d$, then $\operatorname{Im}(T + F) + \ker[(T + F)^{d_1+k}]$ and $(\operatorname{Im}[(T + F)^{d_1}] + \ker[(T + F)^k]) \cap \ker[(T + F)^{k+1}]$ are closed and hence $T + F \in k$ -qΦ(H). Consequently, $\sigma_{q\Phi}^k(T + F) = \sigma_{q\Phi}^k(T)$ and

$$\sigma_{q\Phi}^{\infty}(T+F) = \bigcap_{k \ge 0} \sigma_{q\Phi}^k(T+F) = \bigcap_{k \ge 0} \sigma_{q\Phi}^k(T) = \sigma_{q\Phi}^{\infty}(T).$$

This completes the proof.

As consequence of Proposition 2.7 and Theorem 5.4 we derive the following corollary :

Corollary 5.5. Let $T, F \in \mathscr{B}(\mathsf{H})$ such that TF = FT and $\dim \mathsf{Im}(F) < +\infty$. Then T has topological uniform descent if and only if the same holds for T + F.

Remark 5.6.

- (i) Let $k \in \mathbb{N}$. It is clear that if T = 0, then $T \in k \cdot q\Phi(\mathsf{H})$ and if K is a one-to-one compact operator (so $\mathsf{Im}(K^n)$ is not closed for all $n \in \mathbb{N} \setminus \{0\}$), then $K \notin pq\Phi(\mathsf{H})$. Therefore if $T \in pq\Phi(\mathsf{H})$ and K is a compact operator such that TK = KT, then it is not necessary that $T + K \in pq\Phi(\mathsf{H})$.
- (*ii*) Let H be the Hilbert space with an orthonormal basis $\{e_n : n \in \mathbb{N}\}$. Let T = 0 and $S \in \mathscr{B}(\mathsf{H})$ be defined by

$$S(e_n) = 2^{-n} e_{n+1}, \quad \forall \ n \in \mathbb{N}.$$

It is clear that S is quasi-nilpotent and TS = ST. Since Im(S) is not closed and $ker(S) = \{0\}$, it follows that T + S is not pseudo-quasi-Fredholm. Therefore if $T \in pq\Phi(\mathsf{H})$ and S is a quasi-nilpotent operator such that TS = ST, then it is not necessary that $T + S \in pq\Phi(\mathsf{H})$.

Several questions still remain unanswered. Some of these are :

Question 2. Let $T \in \varphi(H)$ and $F \in \mathscr{B}(H)$ such that $Im(F) \subset D(T)$ and TFx = FTx, for all $x \in D(T)$.

- (i) If dim $\operatorname{Im}(F^n) < +\infty$, for some $n \in \mathbb{N}$, can we prove that $\sigma_{a\Phi}^{\infty}(T+F) = \sigma_{a\Phi}^{\infty}(T)$?
- (ii) Suppose that F is a nilpotent operator. We know from [3, Theorem 4.3] that

$$\sigma_{q\Phi}^0(T) = \sigma_{q\Phi}^0(T+F).$$

Can we prove that $\sigma_{q\Phi}^k(T) = \sigma_{q\Phi}^k(T+F)$, for all $k \ge 1$ or $\sigma_{q\Phi}^{\infty}(T) = \sigma_{q\Phi}^{\infty}(T+F)$? (iii) If F is s-regular, can we prove that $\sigma_{q\Phi}^{\infty}(T+F) = \sigma_{q\Phi}^{\infty}(T)$?

Remark 5.7. Let $k \in \mathbb{N}$. The set of all k-quasi-Fredholm (resp. pseudo-quasi-Fredholm) operators is not open. Indeed, consider the Hilbert space H with an orthonormal basis $\{e_{i,j}, i, j \text{ integers}, i \geq 1\}$. Let $T \in \mathscr{B}(\mathsf{H})$ be defined by

$$T(e_{i,j}) = \begin{cases} e_{i,j+1} & \text{if } j \neq 0\\ 0 & \text{if } j = 0 \end{cases}$$

Clearly $\ker(T)$ is the subspace of H spanned by $\{e_{i,0} : i \ge 1\}$, $\ker(T) \subseteq \bigcap_{n \ge 0} \operatorname{Im}(T^n)$ and

Im(T) is closed, so that T is k-quasi-Fredholm, for all $k \ge 0$.

Let $\varepsilon > 0$. Define $S_{\varepsilon} \in \mathscr{B}(\mathsf{H})$ by

$$S_{\varepsilon}(e_{i,j}) = \begin{cases} \frac{\varepsilon}{i+1} e_{i,1} & \text{if } j = 0, \\ 0 & \text{if } j \neq 0. \end{cases}$$

Clearly $||S_{\varepsilon}|| = \varepsilon$ and S_{ε} is an infinite dimensional compact operator so that $\operatorname{Im}(S_{\varepsilon})$ is not closed. Let M denote the closed subspace of H spanned by $\{e_{i,1}, i \geq 1\}$. We have $\operatorname{Im}(T) \perp M$ and $\operatorname{Im}(S_{\varepsilon}) \subseteq M$, so that $(T + S_{\varepsilon})x \in M$ implies $x \in \operatorname{ker}(T)$ and $(T + S_{\varepsilon})x = S_{\varepsilon}x$. Thus $\operatorname{Im}(T + S_{\varepsilon}) \cap M = S_{\varepsilon}(\operatorname{ker}(T)) = \operatorname{Im}(S_{\varepsilon})$, so that $\operatorname{Im}(T + S_{\varepsilon})$ is not closed. Therefore $T + S_{\varepsilon}$ is not pseudo-quasi-Fredholm because $\operatorname{ker}(T + S_{\varepsilon}) = \{0\}$.

6. pq-index of pseudo-quasi-Fredholm

In this section, we will associate to each pseudo-quasi-Fredholm operator an index "pq-index" which coincide with the usual index in the case of a semi-Fredholm operator.

For $T \in \varphi(\mathsf{H})$ and $n, k \in \mathbb{N}$, we denote by

$$\begin{split} \alpha_n^k(T) &= \dim \ker(T^k) \cap \operatorname{Im}(T^n), \\ \beta_n^k(T) &= \dim \operatorname{Im}(T^n) / \operatorname{Im}(T^{n+k}). \end{split}$$

The essential ascent and the essential descent of $T \in \varphi(\mathsf{H})$ are defined by

$$d_e(T) = \inf\{n \in \mathbb{N} : \beta_n^1(T) < +\infty\},\$$

$$a_e(T) = \inf\{n \in \mathbb{N} : \alpha_n^1(T) < +\infty\},\$$

respectively, whenever these minima exist. If no such numbers exist the essential ascent and the essential descent of T are defined to be $+\infty$.

Define

$$\mathscr{A}(\mathsf{H}) = \{T \in \varphi(\mathsf{H}) : \mathsf{D}(T^i) + \mathsf{Im}(T^j) = \mathsf{H}, \ \forall i, j \in \mathbb{N}\}$$

Clearly, $\mathscr{A}(\mathsf{H}) \neq \emptyset$, because $T \in \mathscr{A}(\mathsf{H})$, when T is a closed surjective operator.

For $T \in \mathscr{A}(\mathsf{H})$, we can see the following

$$\begin{array}{lll} \beta_n^k(T) &=& \dim \operatorname{Im}(T^n)/\operatorname{Im}(T^{n+k}), \\ &=& \dim \operatorname{D}(T^n)/[\operatorname{Im}(T^k) + \ker(T^n)] \cap \operatorname{D}(T^n), \\ &=& \dim [\operatorname{D}(T^n) + \operatorname{Im}(T^k)]/[\operatorname{Im}(T^k) + \ker(T^n)] \\ &=& \dim \operatorname{H}/[\operatorname{Im}(T^k) + \ker(T^n)]. \end{array}$$

We note from [4, Lemma 2.2] that if $a_e(T) < +\infty$, then

$$q_0(T) = \inf\{n \in \mathbb{N} : \alpha_n^1(T) = \alpha_{n+1}^1(T)\} < +\infty,$$

and we also note from [4, Lemma 2.5] that if $T \in \mathscr{A}(\mathsf{H})$ such that $d_e(T) < +\infty$, then

$$q_0(T) = \inf\{n \in \mathbb{N} : \beta_n^1(T) = \beta_{n+1}^1(T)\} < +\infty.$$

We start our study with the following lemma.

Lemma 6.1. Let $T \in \mathscr{A}(\mathsf{H})$ such that $\ker(T^n) \subseteq \operatorname{Im}(T)$, for all $n \in \mathbb{N}$. Then

$$\alpha(T^n) = n \, \alpha(T), \quad \beta(T^n) = n \, \beta(T), \quad \forall \ n \in \mathbb{N} \setminus \{0\}.$$

Proof. Let $n \in \mathbb{N} \setminus \{0\}$, and we consider the following map :

$$\begin{array}{rccc} \theta & : & \ker(T^n) & \longrightarrow & \ker(T^{n-1}) \\ & x & \longmapsto & Tx \, . \end{array}$$

Clearly θ is a surjective linear operator and hence $\alpha(T^n) = \alpha(T) + \alpha(T^{n-1}) = n \alpha(T)$. Now, we define the following linear operator :

$$\begin{array}{rccc} S & : & \mathsf{D}(T^{n-1}) & \longrightarrow & \mathsf{H}/\mathsf{Im}(T^n) \\ & x & \longmapsto & \overline{T^{n-1}x}. \end{array}$$

Since $\ker(S) = [\operatorname{Im}(T) + \ker(T^{n-1})] \cap \mathsf{D}(T^{n-1}) = \operatorname{Im}(T) \cap \mathsf{D}(T^{n-1})$, we deduce that
$$\begin{split} \operatorname{Im}(T^{n-1})/\operatorname{Im}(T^n) &\approx \quad \mathsf{D}(T^{n-1})/[\operatorname{Im}(T) \cap \mathsf{D}(T^{n-1})] \\ &\approx \quad [\mathsf{D}(T^{n-1}) + \operatorname{Im}(T)]/\operatorname{Im}(T) \\ &\approx \quad \mathsf{H}/\operatorname{Im}(T). \end{split}$$

But, $\operatorname{Im}(T^n) \subseteq \operatorname{Im}(T^{n-1}) \subseteq H$, so

$$\dim \mathsf{H}/\mathsf{Im}(T^n) = \dim \mathsf{H}/\mathsf{Im}(T^{n-1}) + \dim \mathsf{Im}(T^{n-1})/\mathsf{Im}(T^n).$$

Therefore

$$\beta(T^n) = \beta(T^{n-1}) + \beta(T) = n\,\beta(T).$$

This completes the proof.

Lemma 6.2. Let $T \in \mathscr{A}(\mathsf{H})$ such that $\min\{d_e(T), a_e(T)\} < +\infty$ and let $p = q_0(T) < +\infty$. Then for all $n \ge p$, we have

$$\alpha_n^k(T) = k \, \alpha_p^1(T), \quad \beta_n^k(T) = k \, \beta_p^1(T), \quad \forall \ k \in \mathbb{N} \backslash \{0\}.$$

Proof. Let $m \ge p$ and let $\widetilde{T_m}$ be the operator induced by T on $\mathsf{H}/\mathsf{ker}(T^m)$. Since $\mathsf{ker}[(\widetilde{T_m})^n] \subseteq \mathsf{Im}(\widetilde{T_m})$, for every $n \in \mathbb{N}$, by Lemma 6.1, we get

$$\beta_m^k(T) = \beta(\widetilde{T_m}^k) = k\,\beta(\widetilde{T_m}) = k\,\beta_m^1(T) = k\,\beta_p^1(T), \quad \forall \ k \ge 1$$

and

$$\alpha_m^k(T) = \alpha(\widetilde{T_m}^k) = k \, \alpha(\widetilde{T_m}) = k \, \alpha_m^1(T) = k \, \alpha_p^1(T), \quad \forall \ k \ge 1.$$

This completes the proof.

Remark 6.3. Let $k, d \in \mathbb{N}$ and $T \in k \cdot q \Phi(d)(\mathsf{H})$ such that $\boldsymbol{a}_{\boldsymbol{e}}(T) < +\infty$ or $\boldsymbol{d}_{\boldsymbol{e}}(T) < +\infty$. Let $m = \min\{\boldsymbol{a}_{\boldsymbol{e}}(T), \boldsymbol{d}_{\boldsymbol{e}}(T)\}$, we denote by

$$\delta_m^k(T) = \alpha_m^k(T) - \beta_m^k(T) \in \mathbb{Z} \cup \{-\infty, +\infty\}.$$

If $T \in \mathscr{A}(\mathsf{H})$ from [4, Lemma 2.2, Lemma 2.5], we deduce that $\delta_m^k(T) = \delta_n^k(T)$, for all $n \ge m$. Therefore for $k \in \mathbb{N} \setminus \{0\}$, by Lemma 6.2, we obtain

$$\begin{split} \delta_m^k(T) &= \delta_{q_0(T)}^k(T) &= \alpha_{q_0(T)}^k(T) - \beta_{q_0(T)}^k(T) \\ &= k \, \alpha_{q_0(T)}^1(T) - k \, \beta_{q_0(T)}^1(T) \\ &= k \, \delta_{q_0(T)}^1(T) \\ &= k \, \delta_m^1(T). \end{split}$$

Remark 6.3 enables us to define the pq-index of pseudo-quasi-Fredholm operator.

Definition 6.4. We say that an operator $T \in pq\Phi(\mathsf{H})$ possesses pq-index if $\ell = \min\{a_e(T), d_e(T)\} < +\infty$, in this case the pq-index of T is defined by

$$\operatorname{ind}_{pq}(T) = \alpha_{\ell}^{1}(T) - \beta_{\ell}^{1}(T) \in \mathbb{Z} \cup \{-\infty, +\infty\}.$$

Example 6.5.

- (i) Let T be a pseudo-quasi-Fredholm operator such that $a(T) < +\infty$ (resp. $d(T) < +\infty$, max $\{a(T), d(T)\} < +\infty$), then T possesses a pq-index and $\operatorname{ind}_{pq}(T) \leq 0$ (resp. $\operatorname{ind}_{pq}(T) \geq 0$, $\operatorname{ind}_{pq}(T) = 0$).
- (*ii*) Let H be the Hilbert space with an orthonormal basis $\{e_{i,j} : i, j \in \mathbb{N} \setminus \{0\}\}$. Let $T \in \mathscr{B}(\mathsf{H})$ be defined by

$$T(e_{i,j}) = \begin{cases} 0 & \text{if } i = 1, \\ e_{i,j+1} & \text{if } i \ge 2. \end{cases}$$

Clearly $\operatorname{ker}(T^k)$ (resp. $\operatorname{Im}(T^k)$) is the subspace of H spanned by $\{e_{1,j} : j \geq 1\}$ (resp. $\{e_{i,j} : i \geq 2, j \geq k+1\}$), for all $k \geq 1$, so that $q_0(T) = \mathbf{a}(T) = \mathbf{a}_e(T) = 1$ and $\mathbf{d}_e(T) = +\infty$. Since $\operatorname{Im}(T)$ is closed and $\operatorname{Im}(T) \perp \operatorname{ker}(T)$, then $\operatorname{Im}(T) + \operatorname{ker}(T)$ is closed, this implies that T is k-quasi-Fredholm of degree $q_k(T) = \max\{1-k, 0\}$, for every $k \in \mathbb{N}$ and the pq-index of T is equal to

$$\operatorname{ind}_{pq}(T) = \alpha_1^1(T) - \beta_1^1(T) = -\infty.$$

Moreover, $T \notin \Phi_{\pm}(\mathsf{H})$, but there exists $\varepsilon > 0$ such that $\lambda I - T \in \Phi_{+}(\mathsf{H})$ and $\alpha(\lambda I - T) = 0$, for all $\lambda \in \mathbb{C}$ and $0 < |\lambda| < \varepsilon$ according to Lemma 3.1.

Remark 6.6. Let $k \in \mathbb{N}$ and $T \in \varphi(\mathsf{H})$ such that $\varrho(T) \neq \emptyset$ (in particular $T \in \mathscr{A}(\mathsf{H})$). If $T \in k \cdot q\Phi(\mathsf{H})$ possesses pq-index, then $T^n \in k \cdot q\Phi(\mathsf{H})$ and $\operatorname{ind}_{pq}(T^n) = n \operatorname{ind}_{pq}(T)$, for all $n \in \mathbb{N} \setminus \{0\}$. Indeed, by Lemma 4.5 and Remark 4.18, it follows that $T^n \in k \cdot q\Phi(\mathsf{H})$ and by [4, Lemma 2.1], we infer that T^n possesses pq-index. Let $d = q_0(T^n)$, since

$$\ker(T^j) \subseteq \ker[(T^n)^j] \subseteq \operatorname{Im}(T^n) + \ker[(T^n)^d] \subseteq \operatorname{Im}(T) + \ker(T^{dn}), \quad \forall \ j \in \mathbb{N},$$

then $l = q_0(T) \leq n d$. From Remark 6.3, we obtain

$$\begin{aligned} \operatorname{ind}_{pq}(T^n) &= \alpha_d^1(T^n) - \beta_d^1(T^n) \\ &= \alpha_{nd}^n(T) - \beta_{nd}^n(T) \\ &= \delta_{nd}^n(T) = \delta_l^n(T) = n \, \delta_l^1(T) = n \, \operatorname{ind}_{pq}(T). \end{aligned}$$

Proposition 6.7. Let $T \in \varphi(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$ and $k \in \mathbb{N}$. If $a_e(T) < +\infty$, then

$$T \in k \cdot q\Phi(\mathsf{H}) \iff \mathsf{Im}(T) + \mathsf{ker}(T^{a_e(T)})$$
 is closed.

Proof. " \implies " Let $d = q_k(T)$, by Lemma 2.1, we have $d + k \ge q_0(T) \ge a_e(T)$ and as $\operatorname{Im}(T) + \ker(T^{d+k})$ is closed, then from [4, Lemma 3.3], we get $\operatorname{Im}(T) + \ker(T^{a_e(T)})$ is closed.

" \Leftarrow " Since $\mathbf{a}_{e}(T)$ is finite, then $q_{0}(T)$ is also finite and hence $d = q_{k}(T) = \max\{q_{0}(T) - k, 0\} < +\infty$ according to Lemma 2.1. As $d + k \ge q_{0}(T) \ge \mathbf{a}_{e}(T)$, then we can deduce from [4, Lemma 3.3], that $\operatorname{Im}(T) + \ker(T^{d+k})$ is closed. Let $m = \max\{d, \mathbf{a}_{e}(T)\}$, we have $\dim \operatorname{Im}(T^{m}) \cap \ker(T^{k+1}) < +\infty$, this gives that

$$\mathsf{Im}(T^d) \cap \mathsf{ker}(T^{k+1}) + \mathsf{ker}(T^k) = \mathsf{Im}(T^m) \cap \mathsf{ker}(T^{k+1}) + \mathsf{ker}(T^k) \quad \text{is closed.}$$

Hence, $T \in k$ - $q\Phi(H)$ and the proof of the lemma is complete.

Proposition 6.8. Let $T \in \mathscr{A}(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$ and $d_e(T) < +\infty$. Then $T \in k \cdot q \Phi(\mathsf{H}), \quad \forall k \ge d_e(T).$

Proof. For $n \in \mathbb{N}$ and $i \in \mathbb{N} \setminus \{0\}$, we have

$$\beta_n^1(T) \le \beta_n^i(T) = \beta(\widetilde{T_n}^i) \le i\,\beta(\widetilde{T_n}) = i\,\beta_n^1(T),$$

where $\widetilde{T_n}$ is the operator induced by T on $H/\ker(T^n)$. This implies that

$$\beta_n^1(T) < +\infty \iff \beta_n^i(T) < +\infty.$$

Let
$$k \ge d_e(T)$$
 and $d = q_k(T) = \max\{q_0(T) - k, 0\} < +\infty$. Since

$$\dim \mathsf{H}/[\mathsf{Im}(T) + \mathsf{ker}(T^{d+k})] = \beta_{d+k}^1(T) < +\infty$$

and

$$\dim \mathsf{H}/[\mathsf{Im}(T^d) + \mathsf{ker}(T^k)] = \beta_k^d(T) < +\infty$$

then $\mathsf{Im}(T) + \mathsf{ker}(T^{d+k})$ and $[\mathsf{Im}(T^d) + \mathsf{ker}(T^k)] \cap \mathsf{ker}(T^{k+1})$ are closed (see Lemma 2.9) and [7, Proposition 2.1.1]). This completes the proof. \square

Remark 6.9. By Propositions 6.7 and 6.8, we remark that, we can replace the hypothesis of Definition 6.4 by : let $T \in \mathscr{A}(\mathsf{H})$ such that $\varrho_e^+(T) \neq \emptyset$ and $d_e(T) < +\infty$ or $a_e(T) < \varphi_e^+(T) < 0$ $+\infty$ and $\operatorname{Im}(T) + \ker(T^{a_e(T)})$ is closed. If additionally $T \in \mathscr{B}(\mathsf{H})$, then T is semi-B-Fredholm and the pq-index coincide with the index of a semi-B-Fredholm operator [1].

Theorem 6.10. Let $k \in \mathbb{N}$ and $T \in k$ - $q\Phi(\mathsf{H})$ such that $\rho(T) \neq \emptyset$. Let $F \in \mathscr{B}(\mathsf{H})$ such that dim $\text{Im}(F) < +\infty$, $\text{Im}(F) \subset D(T)$ and TFx = FTx, for all $x \in D(T)$. If T possesses pq-index, then $T + F \in k$ - $q\Phi(\mathsf{H}), T + F$ possesses pq-index and $\operatorname{ind}_{pq}(T + F) = \operatorname{ind}_{pq}(T)$.

Proof. From Theorem 5.4, we have $T + F \in k$ - $q\Phi(H)$. According to Lemma 2.1 and Corollary 5.3, $d = \max\{q_k(T), q_k(T+F)\}$ and $p = \max\{q_0(T), q_0(T+F)\}$ are finite. By Lemma 3.1, we know that there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that

$$\begin{aligned} \alpha(T_{\lambda}) &= \alpha_{d+k}^{1}(T) = \alpha_{p}^{1}(T), \ \beta(T_{\lambda}) = \beta_{d+k}^{1}(T) = \beta_{p}^{1}(T), \\ \alpha(\lambda I - T - F) &= \alpha_{d+k}^{1}(T + F) = \alpha_{p}^{1}(T + F), \\ \beta(\lambda I - T - F) &= \beta_{d+k}^{1}(T + F) = \beta_{p}^{1}(T + F). \end{aligned}$$

So, $T_{\lambda} \in \Phi_{\pm}(\mathsf{H})$, consequently $(T+F)_{\lambda} \in \Phi_{\pm}(\mathsf{H})$ and

$$l = \min\{\boldsymbol{a}_{\boldsymbol{e}}(T+F), \, \boldsymbol{d}_{\boldsymbol{e}}(T+F)\} \le p.$$

Now since $j = \min\{a_e(T), d_e(T)\} \le p$, then

This completes the proof.

Remark 6.11. Let $k \in \mathbb{N}$ and $T \in k \cdot q \Phi(\mathsf{H})$ such that $\varrho(T) \neq \emptyset$. From the proof of Theorem 6.10, we see that if T possesses pq-index, then there exists $\varepsilon > 0$ such that $T_{\lambda} \in \Phi_{\pm}(\mathsf{H})$ and $\operatorname{ind}(T_{\lambda}) = \operatorname{ind}_{pq}(T)$, for every $0 < |\lambda| < \varepsilon$.

Theorem 6.12. Let $d, k \in \mathbb{N}$, $T \in k \cdot q\Phi(d)(\mathsf{H})$ and $V \in \mathscr{B}(\mathsf{H})$. Suppose that T is a bounded operator that commutes with V and V - T is sufficiently small and invertible, then:

(i) V is a s-regular operator,

(ii) $\alpha_n^1(V) = \alpha_{d+k}^1(T)$, for all $n \ge 0$, (iii) $\beta_n^1(V) = \beta_{d+k}^1(T)$, for all $n \ge 0$.

Proof. It follows from Lemma 2.1 and Proposition 2.7 that T has topological uniform descent for $n \ge d + k$. The result now follows from [5, Theorem 4.7]. \square

Corollary 6.13. Let $T, V \in \mathscr{B}(\mathsf{H})$ such that TV = VT and V is sufficiently small and invertible. If $T \in pq\Phi(\mathsf{H})$, then $T + V \in pq\Phi(\mathsf{H})$.

Corollary 6.14. Let $d, k \in \mathbb{N}$, $T \in k$ - $q\Phi(d)(H)$ and $V \in \mathscr{B}(H)$. Suppose that T is a bounded operator that commutes with V and V - T is sufficiently small and invertible. then:

(i) V has infinite ascent or descent if and only if T does.

- (ii) V is onto if and only if T has finite descent.
- (iii) V is one-to-one (or bounded below) if and only if T has finite ascent.
- (iv) V is invertible if and only if $0 \in \mathsf{E}(T)$.
- (v) V is semi-Fredholm if and only if T possesses pq-index. If $V \in \Phi_{\pm}(\mathsf{H})$, then

$$\operatorname{ind}_{pq}(T) = \operatorname{ind}(V) = \alpha_n^1(V) - \beta_n^1(V), \quad \forall n \ge 0.$$

Theorem 6.15. Let $V, T \in pq\Phi(\mathsf{H})$. Suppose that $V, T \in \mathscr{B}(\mathsf{H})$ such that TV = VT and V - T is sufficiently small, then T possesses pq-index if and only if V possesses pq-index. If T or V possesses pq-index, then

$$\operatorname{ind}_{pq}(T) = \operatorname{ind}_{pq}(V).$$

Proof. Let $k_1, k_2, d_1, d_2 \in \mathbb{N}$ such that $T \in k_1 \cdot q\Phi(d_1)(\mathsf{H})$ and $V \in k_2 \cdot q\Phi(d_2)(\mathsf{H})$, then T and V having topological uniform descent for $n \geq \max\{d_1 + k_1, d_2 + k_2\}$. Now the proof follows from [5, Theorem 4.6].

7. Examples

In this section we present some examples that are applications of the abstract theory of the pseudo-quasi-Fredholm.

Example 7.1. In $H = L^2([0, 1])$ define the second-order differential operator T by

$$\mathsf{D}(T) = \{ u \in \mathsf{H}^2([0, 1]) : u'(0) + u'(1) = 0, u(0) = 0 \}, \quad Tu = -u'',$$

where $H^2([0, 1])$ denotes the subspace of H consisting of all functions $u \in C^1([0, 1])$ with u' absolutely continuous on [0, 1] and $u'' \in H$. Then T is a discrete operator in H. In [4, Example 3.12], it is proved that $\sigma(T) = \{\lambda_i\}_{i=1}^{\infty}$ where $\lambda_i = (2i-1)^2 \pi^2$, and $a(\lambda_i I - T) = d(\lambda_i I - T) = 2$, for $i = 1, 2, \ldots$. This shows that $q_0(\lambda_i I - T) = 2$,

$$\operatorname{Im}(\lambda_i I - T) + \ker[(\lambda_i I - T)^n] = \mathsf{H}_i$$

$$\operatorname{Im}[(\lambda_i I - T)^n] \cap \ker[(\lambda_i I - T)^{j+1}] + \ker[(\lambda_i I - T)^j] = \ker[(\lambda_i I - T)^j]$$

for all $j \in \mathbb{N}$, $n \geq 2$ and $i \geq 1$. For $i \geq 1$ and $k \in \mathbb{N}$, by Lemma 2.1, we obtain $\lambda_i I - T$ is k-quasi-Fredholm of degree $d_k = \max\{2 - k, 0\}$. Hence $\mathbb{C} = \varrho(T) \cup \sigma(T) \subseteq \varrho_{q\Phi}^k(T)$ i.e., $\sigma_{q\Phi}^k(T) = \sigma_{q\Phi}^\infty(T) = \emptyset$, for all $k \in \mathbb{N}$.

Remark 7.2. If $T \in \mathscr{B}(\mathsf{H})$ by Theorem 3.4, we observe that

(1)
$$\sigma_{q\Phi}^{\infty}(T) = \emptyset \Longrightarrow \sigma(T) = \{\lambda_1, \lambda_2, \dots, \lambda_n\} = \mathsf{E}(T),$$

for some $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$. From Example 7.1 the conclusion (1) fails when $\mathsf{D}(T) \subsetneq \mathsf{H}$.

Example 7.3. Consider the operator S defined on $\ell^2(\mathbb{N})$ by

$$S(x_1, x_2, x_3, \ldots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \frac{x_4}{4}, \cdots\right)$$

and the operator T defined on $\ell^2(\mathbb{N}) \times \ell^2(\mathbb{N})$ by

$$T((x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots)) = ((0, x_2, x_3, \ldots), S(y_1, y_2, y_3, \ldots)).$$

(a) It is clear that S is a quasi-nilpotent operator and dim $\ker(S^n) = n$, for all $n \in \mathbb{N}$. Thus, $\sigma_{q\Phi}^{\infty}(S) \subseteq \sigma_{q\Phi}^k(S) \subseteq \sigma(S) = \{0\}$, for all $k \in \mathbb{N}$. Suppose that $\sigma_{q\Phi}^{\infty}(S) = \emptyset$, then by Theorem 3.4, T is algebraic. This implies that $\mathsf{E}(S) = \{0\}$, which is a contradiction because $\mathbf{a}(S) = +\infty$. It follows that $\sigma_{q\Phi}^{\infty}(S) = \{0\}$ and hence $\sigma_{q\Phi}^k(S) = \{0\}$, for all $k \in \mathbb{N}$. Let f be an analytic function in a neighborhood of the usual spectrum $\sigma(S)$ and not locally constant in a neighborhood of 0 and $f(0) \neq 0$, then by Corollary 4.17, f(S) is a k-quasi-Fredholm operator, for all $k \in \mathbb{N}$. (b) Let $F \in \mathscr{B}(\ell^2(\mathbb{N}) \times \ell^2(\mathbb{N}))$ be defined by

$$F((x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots)) = ((x_1, 0, 0, \ldots), (0, 0, 0, \ldots)).$$

Note that (T + F)(x, y) = (x, Sy), for all $x, y \in \ell^2(\mathbb{N})$, which implies that $\sigma_{pq}^k(T + F) = \sigma_{pq}^k(I) \cup \sigma_{pq}^k(S) = \{0\}$, because $\sigma_{pq}^k(I) = \emptyset$, for all $k \in \mathbb{N}$. Furthermore, since dim $\mathsf{Im}(F) = 1$ and TF = FT = 0, by Theorem 5.4, it follows that

$$\sigma_{pq}^k(T) = \sigma_{pq}^k(T+F) = \{0\}, \quad \forall \ k \in \mathbb{N}.$$

Example 7.4. For each $n \in \mathbb{N} \setminus \{0\}$, set

$$\nu(n) = \max\{k \in \mathbb{N} : 2^k \text{ divides } n\}.$$

Let $T \in \mathscr{B}(\ell^2(\mathbb{N}))$ be defined by

$$T\left(\sum_{n=0}^{+\infty} x_n e_n\right) = \sum_{n=1}^{+\infty} \frac{1}{2^{\nu(n)}} x_n e_n$$

with $\{e_n : n \in \mathbb{N}\}$ is an orthonormal basis of $\ell^2(\mathbb{N})$.

(a) We remark that $\ker(T)$ is the subspace of $\ell^2(\mathbb{N})$ spanned by e_0 , which gives $\mathbf{a}_e(T) = 0$. Since $\operatorname{Im}(T)$ is easily seen to be non-closed, it follows from Proposition 6.7 that

$$T \notin k - q\Phi(\ell^2(\mathbb{N})), \quad \forall k \in \mathbb{N}$$

Now Proposition 6.8 gives $d_e(T) = +\infty$.

(b) It is not difficult to see that

$$\sigma(T) = \{0\} \cup \Big\{\lambda_n = \frac{1}{2^n} : n \in \mathbb{N}\Big\}.$$

Besides, for each $n \in \mathbb{N}$, $\ker(\lambda_n I - T)$ is the closed subspace of $\ell^2(\mathbb{N})$ spanned by $\{e_{2^n(2j+1)}: j \in \mathbb{N}\}$, and $\operatorname{Im}(\lambda_n I - T) = \ker(\lambda_n I - T)^{\perp}$. It follows that $a(\lambda_n I - T) = d(\lambda_n I - T) = 1$. Since $\operatorname{Im}[(\lambda_n I - T)^i] + \ker[(\lambda_n I - T)^j] = \ell^2(\mathbb{N})$ and $\operatorname{Im}[(\lambda_n I - T)^i] \cap \ker[(\lambda_n I - T)^j] = \{0\}$, for all $i, j \geq 1$, it follows that $\lambda_n \in \varrho_{q\Phi}^k(T)$, for all $n, k \in \mathbb{N}$. This shows that $\mathbb{C} \setminus \{0\} \subseteq \varrho_{q\Phi}^k(T)$, and as $0 \in \sigma_{q\Phi}^k(T)$, we obtain

$$\sigma_{q\Phi}^{\infty}(T) = \sigma_{q\Phi}^k(T) = \{0\}, \quad \forall \ k \in \mathbb{N}.$$

(c) Since for all $\lambda \in \sigma(T) \setminus \{0\}$, we have $\mathbf{a}(\lambda I - T) = \mathbf{d}(\lambda I - T) = 1$, it follows that $\lambda I - T \in pq\Phi(\ell^2(\mathbb{N}))$ possesses pq-index, for all $\lambda \in \mathbb{C} \setminus \{0\}$. Furthermore, since $\max\{\mathbf{a}(\lambda I - T), \mathbf{d}(\lambda I - T)\} \leq 1$, for all $\lambda \in \mathbb{C} \setminus \{0\}$, by Remark 6.3, we deduce that

$$\operatorname{ind}_{pq}(\lambda I - T) = \alpha_1^1(\lambda I - T) - \beta_1^1(\lambda I - T) = 0$$

(d) Fix $c \in \mathbb{C}$ and consider the polynomial P defined by P(Z) = c. Then P(T) = cI. Since $\sigma_{q\Phi}^{\infty}(T)$ is nonempty, it follows that

$$P(\sigma_{a\Phi}^{\infty}(T)) = \{c\}.$$

However, $\varrho_{q\Phi}^{\infty}(P(T)) = \mathbb{C}$: indeed, $\mathbb{C} \setminus \{c\} = \varrho(cI) \subseteq \varrho_{q\Phi}^{\infty}(cI)$, and cI - cI (that is, the zero operator on $\ell^2(\mathbb{N})$) is pseudo-quasi-Fredholm. Consequently, $\varrho_{q\Phi}^{\infty}(P(T)) = \mathbb{C}$ and

$$\sigma_{q\Phi}^{\infty}(P(T)) = \emptyset \neq P(\sigma_{q\Phi}^{\infty}(T)).$$

Hence the conclusion of Theorem 4.12 fails in the presence of a constant complex polynomial.

Example 7.5. Consider the infinite-dimensional complex Hilbert space $\mathsf{H} = \mathbb{C}^3 \times \ell^2(\mathbb{N})$ and the operator $T \in \mathscr{B}(\mathsf{H})$ defined by

$$T\Big((z_1, z_2, z_3), \sum_{n=0}^{+\infty} x_n e_n\Big) = \Big((z_2, 0, 0), z_3 e_0 + \sum_{n=0}^{+\infty} x_{n+1} e_n\Big),$$

where $\{e_n : n \in \mathbb{N}\}$ is an orthonormal basis of $\ell^2(\mathbb{N})$.

(a) We remark that

$$\ker(T) = \left\{ \left((z_1, z_2, z_3), (x_n)_{n \in \mathbb{N}} \right) \in \mathsf{H} : z_2 = 0, \, x_1 = -z_3, \, x_n = 0, \, \forall \, n \ge 2 \right\}$$

and

$$\operatorname{Im}(T) = \left\{ \left((z_1, z_2, z_3), (x_n)_{n \in \mathbb{N}} \right) \in \mathsf{H} : z_2 = z_3 = 0 \right\}.$$

Hence $\alpha(T) = 3$ and $\beta(T) = 2$, and consequently

(1) $\operatorname{Im}(T^i) \cap \ker(T^{j+1}) + \ker(T^j)$ and $\operatorname{Im}(T) + \ker(T^j)$ are closed, $\forall i, j \in \mathbb{N}$. We observe that, for all $k \geq 2$,

(2)
$$T^{k}\Big((z_{1}, z_{2}, z_{3}), \sum_{n=0}^{+\infty} x_{n}e_{n}\Big) = \Big((0, 0, 0), \sum_{n=0}^{+\infty} x_{n+k}e_{n}\Big).$$

Hence

$$\operatorname{Im}(T^k) = \{0\} \times \ell^2(\mathbb{N}), \quad \forall \ k \ge 2.$$

Therefore,

$$\ker(T) \cap \operatorname{Im}(T) = \left\{ \left((z_1, \, z_2, \, z_3), \, (x_n)_{n \in \mathbb{N}} \right) \in \mathsf{H} : z_2 = z_3 = 0, \, x_n = 0, \, \forall \, n \ge 1 \right\},\$$

and, for all $k \geq 2$,

$$\ker(T) \cap \operatorname{Im}(T^k) = \left\{ \left((z_1, \, z_2, \, z_3), \, (x_n)_{n \in \mathbb{N}} \right) \in \mathsf{H} : z_1 = z_2 = z_3 = 0, \, x_n = 0, \, \forall \, n \ge 1 \right\}.$$

Thus

$$q_0(T) = \inf\{k \in \mathbb{N} : \ker(T) \cap \mathsf{Im}(T^k) = \ker(T) \cap \mathsf{Im}(T^m), \ \forall \ m \ge k\} = 2.$$

For $k \ge 2$, by using (1) and Lemma 2.1, we obtain that T is a quasi-Fredholm (resp. 1-quasi-Fredholm, k-quasi-Fredholm) operator of degree d = 2 (resp. d = 1, d = 0).

(b) Recall that the reduced minimum modulus of a non-zero operator $A\in \mathscr{B}(\mathsf{H})$ is defined by

$$\gamma(A) = \inf\{\|Ax\| : x \in \ker(A)^{\perp} \text{ and } \|x\| = 1\}.$$

If A = 0 then we take $\gamma(A) = +\infty$. Now let $S \in \ell^2(\mathbb{N})$ be defined by

$$S\left(\sum_{n=0}^{+\infty} x_n e_n\right) = \sum_{n=0}^{+\infty} x_{n+2} e_n.$$

We note from (2) that

(3)
$$(\lambda I - T^2)(z, x) = (\lambda z, (\lambda I - S)x), \quad \forall (z, x) \in \mathbb{C}^3 \times \ell^2(\mathbb{N}), \quad \forall \lambda \in \mathbb{C}.$$

It is clear that S is Fredholm ($\alpha(S) = 2, \beta(S) = 0$) and $\gamma(S) = ||S|| = 1$. Therefore, for all $\lambda_1, \lambda_2 \in \mathbb{C}$ such that $|\lambda_1| < 1 = \gamma(S)$ and $|\lambda_2| > 1 = ||S||$, we have $\lambda_1 I - S$ is Fredholm and $\lambda_2 I - S$ is invertible. Since T is Fredholm it follows from (3) that $\lambda I - T^2$ is Fredholm for all $\lambda \in \mathbb{C}$ such that $|\lambda| \neq 1$. Consequently, $\sigma_{q\Phi}^{\infty}(T^2) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and $\sigma_{q\Phi}^k(T^2) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}$, for all $k \in \mathbb{N}$. Now by Theorem 4.12, we see that if $\lambda \in \sigma_{q\Phi}^{\infty}(T)$ then $|\lambda^2| = 1$, this implies that $|\lambda| = 1$. Hence

$$\sigma_{q\Phi}^{\infty}(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}$$

ZIED GARBOUJ AND HAÏKEL SKHIRI

References

- M. Berkani, A. Arroud, B-Fredholm and spectral properties for multipliers in Banach algebras, Rendiconti Circolo Matematico di Palermo. Serie II 55 (2006), 385–397.
- M. Burgos, A. Kaidi, M. Mbekhta, and M. Oudghiri, *The descent spectrum and perturbations*, Journal of Operator Theory 56 (2006), 259–271.
- M. Benharrat, A. Ammar, B. Messirdi, On the Kato, semi-regular and essentially semi-regular spectra, Functional Analysis, Approximation and Computation 6 (2014), no. 2, 9–22.
- Z. Garbouj, H. Skhiri, Essential ascent of closed operator and some decomposition theorems, Commun. Math. Anal. 16 (2014), 19–47.
- S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317–337.
- J. J. Koliha, M. Mbekhta, V. Müller, Pak Wai Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II", Studia Math. 130 (1998), no. 2, 193–198.
- J. P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rendiconti Circolo Matematico di Palermo. Serie II, XXIX (1980), 161–258.
- D. C. Lay, Spectral analysis using ascent, descent, nullity, and defect, Math. Ann. 184 (1970), 197–214.
- 9. M. Mbekhta, Ascente, descente et spectre essentiel quasi-Fredholm, Rendiconti Circolo Matematico di Palermo. Serie II, XLVI (1997), 175–196.
- V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory Adv. Appl. 139, (2nd edition), Birkhäuser, Basel, 2007.
- 11. A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons Inc., New York, 1958.

Institut Supérieur des Sciences Appliquées et de Technologie de Kairouan, Département de Mathématiques, Avenue Beit El Hikma, 3100 Kairouan, Tunisia

E-mail address: zied.garbouj.fsm@gmail.com

Faculté des Sciences de Monastir, Département de Mathématiques, Avenue de l'environnement, 5019 Monastir, Tunisia

E-mail address: haikel.skhiri@gmail.com, haikel.skhiri@fsm.rnu.tn

Received 21.04.2019; Revised 02.01.2020