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ON A NEW CLASS OF OPERATORS RELATED TO

QUASI-FREDHOLM OPERATORS

ZIED GARBOUJ AND HAÏKEL SKHIRI

Abstract. In this paper, we introduce a generalization of quasi-Fredholm oper-

ators [7] to k-quasi-Fredholm operators on Hilbert spaces for nonnegative integer

k. The case when k = 0, represents the set of quasi-Fredholm operators and the
meeting of the classes of k-quasi-Fredholm operators is called the class of pseudo-

quasi-Fredholm operators. We present some fundamental properties of the operators
belonging to these classes and, as applications, we prove some spectral theorem and

finite-dimensional perturbations results for these classes. Also, the notion of new

index of a pseudo-quasi-Fredholm operator called pq-index is introduced and the sta-
bility of this index by finite-dimensional perturbations is proved. This paper extends

some results proved in [5] to closed unbounded operators.

1. Introduction and terminology

Let H be a Hilbert space and let T : D(T ) ⊆ H −→ H be an unbounded operator
with domain D(T ). We denote by ker(T ) the kernel of T, α(T ) = dim ker(T ) the nullity
of T, Im(T ) = T (H) the range of T and β(T ) = dimH/Im(T ) its defect. By ϕ(H) (resp.
B(H)) we denote the set of all closed (resp. bounded) linear operators on H. Recall
that an operator T ∈ ϕ(H) is said to be s-regular (semi-regular) if Im(T ) is closed and
ker(Tn) ⊆ Im(T ), for all n ≥ 0. Let T ∈ ϕ(H), if Im(T ) is closed and α(T ) < +∞ (resp.
β(T ) < +∞), then T is called an upper semi-Fredholm (resp. a lower semi-Fredholm)
operator. A semi-Fredholm operator is upper or lower semi-Fredholm. Let Φ+(H) (resp.
Φ−(H)) denote the set of upper (resp. lower) semi-Fredholm operators. If both α(T ) and
β(T ) are finite then T is called a Fredholm operator. This class of operators is denoted
by Φ(H). The index of a semi-Fredholm operator T is defined by

ind(T ) = α(T )− β(T ) ∈ Z ∪ {+∞, −∞},
with the usual convention : n −∞ = −∞ and +∞− n = +∞, for all n ∈ N. Let σ(T )
(resp. %(T )) denote the spectrum (resp. the resolvent set) of T.

An operator T is called a Kato type operator if we can write T = A ⊕ S where A
is a nilpotent operator and S is a s-regular one. In 1958, Kato proved that a closed
semi-Fredholm operator is of Kato type. J. P. Labrousse [7] studied and characterized
a new class of operators named quasi-Fredholm operators, in the case of Hilbert spaces
and he proved that this class coincide with the set of Kato type operators and the Kato
decomposition becomes a characterization of the quasi-Fredholm operators. But in the
case of Banach spaces the Kato type operator is also quasi-Fredholm, the converse is
not true. A bounded operator T on a Banach space is called has a topological uniform
descent for n ≥ d if Im(T )+ker(T k) = Im(T )+ker(T d), for all k ≥ d and Im(T )+ker(T d)
is closed [5, Definition 2.5, Theorem 3.2]. This class contains the bounded operators
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belonging to the class of quasi-Fredholm operators. We can find some examples and
basic properties of topological uniform descent of bounded operators in [5].

In this paper we introduce two new classes of closed operators in Hilbert spaces,
namely, k-quasi-Fredholm and pseudo-quasi-Fredholm operators. The first class is an
extension of the class quasi-Fredholm operators, and the second class is the meeting
of the classes of k-quasi-Fredholm operators. The study of first (resp. second) class
of operators gives a new important part of the ordinary spectrum called the k-quasi-
Fredholm (resp. pseudo-quasi-Fredholm) spectrum σkqΦ(T ) (resp. σ∞qΦ(T )) which is the

set of all complex λ such that λI − T is not k-quasi-Fredholm (resp. pseudo-quasi-
Fredholm). Several properties like, spectrum, topological uniform descent, pq-index, and
finite perturbation are investigated. Our paper is organized as follows :

In Section 2, we are interested to know the relationship of pseudo-quasi-Fredholm
operators and operators having topological uniform descent. We show that the class of
pseudo-quasi-Fredholm operators is not stable by the adjoint.

In Sections 3 and 4, we are interested in the spectral theory of k-quasi-Fredholm
and pseudo-quasi-Fredholm. We show that they are closed subsets of the spectrum,
and that for T ∈ B(H), σ∞qΦ(T ) (resp. σkqΦ(T )) is empty precisely when T is algebraic.
We also show a spectral mapping theorem for pseudo-quasi-Fredholm operators, more
precisely in Theorem 4.12, for T ∈ Γ(H) (see page 149) and P is a non-constant complex
polynomial, we prove that P (σ∞qΦ(T )) = σ∞qΦ(P (T )) and σkqΦ(P (T )) ⊆ P (σkqΦ(T )), for

k ∈ N. Furthermore, in Theorem 4.16, we prove that if T ∈ B(H) and f is an analytic
function in a neighborhood of the usual spectrum σ(T ) and not locally constant in σ(T ),
then f(σ∞qΦ(T )) = σ∞qΦ(f(T )) and σkqΦ(f(T )) ⊆ f(σkqΦ(T )), for k ∈ N (in particular, the
topological uniform descent spectrum of a bounded operator on a Hilbert space satisfies
the spectral mapping theorem).

In Section 5, we are concerned with the stability of the pseudo-quasi-Fredholm spec-
trum and the k-quasi-Fredholm spectrum under commuting finite rank perturbations.
We show that the class of pseudo-quasi-Fredholm operators is not stable under commut-
ing quasi-nilpotent perturbations. We also show that the set of all k-quasi-Fredholm
(resp. pseudo-quasi-Fredholm) operators on a Hilbert space H is not open in B(H).

In Section 6, we introduce, indpq(T ), the pq-index of a k-quasi-Fredholm operator
which coincide with the usual index in the case of a semi-Fredholm operator. The aim of
this section is to show that if T possesses pq-index, then Tn (resp. T+F ) is also a k-quasi-
Fredholm operator possesses pq-index and indpq(T

n) = n indpq(T ) (resp. indpq(T +F ) =
indpq(T )), where n ∈ N\{0} and T, F ∈ B(H) such that TF = FT and dim Im(F ) <
+∞. We also show that if T ∈ B(H) is k-quasi-Fredholm and V ∈ B(H) commutes with
T such that V − T is invertible (resp. V is pseudo-quasi-Fredholm) and that V − T is
small in norm, then T possesses pq-index if and only if V is semi-Fredholm (resp. V
possesses pq-index). In this case indpq(T ) = ind(V ) (resp. indpq(T ) = indpq(V )).

Finally, in Section 7, as an application, some examples are given to illustrate our
theorems.

2. Definitions and first Results

For T ∈ ϕ(H), we consider the sequence

Skj (T ) =
(
Im(T j) ∩ ker(T k+1) + ker(T k)

)
/
(
Im(T j+1) ∩ ker(T k+1) + ker(T k)

)
,

j, k ∈ N. For k ∈ N, we denote

qk(T ) = inf{n ∈ N : Skj (T ) = 0, ∀ j ≥ n},
where the infimum over the empty set is taken to be infinite.

We have the following lemma, which will be needed in the sequel.
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Lemma 2.1. Let k ∈ N and T ∈ ϕ(H), then

qk(T ) = inf{m ∈ N : Im(T ) + ker(T k+n) = Im(T ) + ker(T k+m), ∀ n ≥ m}
= max{q0(T )− k, 0}.

Proof. Let k ∈ N and T̃k be the operator induced by T on H/ker(T k). It is easy to see
that

ker[(T̃k)n] = ker(T k+n)/ker(T k),

Im[(T̃k)n] = [Im(Tn) + ker(T k)]/ker(T k),

for all n ∈ N. This gives that

(1)
ker(T̃k) ∩ Im(T̃k

n
) =

(
[Im(Tn) + ker(T k)] ∩ ker(T k+1)

)
/ker(T k)

=
(
Im(Tn) ∩ ker(T k+1) + ker(T k)

)
/ker(T k),

(2) Im(T̃k) + ker(T̃k
n
) = [Im(T ) + ker(Tn+k)]/ker(T k).

From [4, Lemma 2.3], (1) and (2), it follows that

qk(T ) = inf{m ∈ N : ker(T̃k) ∩ Im(T̃k
n
) = ker(T̃k) ∩ Im(T̃k

m
), ∀ n ≥ m}

= inf{m ∈ N : Im(T̃k) + ker(T̃k
n
) = Im(T̃k) + ker(T̃k

m
), ∀ n ≥ m}

= inf{m ∈ N : Im(T ) + ker(T k+n) = Im(T ) + ker(T k+m), ∀ n ≥ m}.

So we deduce that if k ≥ q0(T ), then qk(T ) = 0 and if k < q0(T ), then q0(T ) = qk(T )+k.
This proves that qk(T ) = max{q0(T )− k, 0}. The proof is complete. �

The following definition describes the first class of operators we will study.

Definition 2.2. Let k ∈ N. An operator T ∈ ϕ(H) is called k-quasi-Fredholm of degree
d (d ∈ N) if :

(i) qk(T ) = d;
(ii) Im(T d) ∩ ker(T k+1) + ker(T k) is closed in H;

(iii) Im(T ) + ker(T d+k) is closed in H.

In the sequel k-qΦ(d)(H), will denote the set of k-quasi-Fredholm operators of degree d. If
there is an integer d ∈ N such that T ∈ k-qΦ(d)(H), then T is called a k-quasi-Fredholm
operator. We will denote by k-qΦ(H) the set of k-quasi-Fredholm operators.

Remark 2.3. Definition 2.2 generalize the well-known notion of a quasi-Fredholm op-
erator (see [7, Definition 3.1.2]), since a quasi-Fredholm operator is a 0-quasi-Fredholm
operator.

The following definition describes the second class of operators we will study.

Definition 2.4. Let T ∈ ϕ(H). Then T is called a pseudo-quasi-Fredholm operator if
there is an integer k ∈ N such that T ∈ k-qΦ(H). By pqΦ(H) we denote the set of all
pseudo-quasi-Fredholm operators.

The following example shows that the class of quasi-Fredholm operators is a proper
subclass of pseudo-quasi-Fredholm operators.

Example 2.5.



144 ZIED GARBOUJ AND HAÏKEL SKHIRI

(i) Let H be a Hilbert space with an orthonormal basis {ei, j : i, j ∈ N\{0}} and let
T be the operator defined by

Tei, j =


0 if j = 1,
ei, 1
i+ 1

if j = 2,

ei, j−1 otherwise.

We denote by M (resp. N), the vector subspace generated by (ei, j)i≥1, j ≥2 (resp.
(ei, 2)i≥1). It is easy to check that Im(T ) = M + T (N), T (M) = M + T (N) and
T 2(N) = {0}. Therefore Im(T ) = Im(T 2). Since for all i ≥ 1, we have ‖T (ei, 2)‖ =

1

i+ 1
, then Im(T ) is not closed. Hence Im(Tn) is not closed for all n ≥ 1 and so T

is not quasi-Fredholm (see, [7, Corollary 3.3.1]). We have Im(T ) + ker(T ) = H, so
by Lemma 2.1, we deduce that T ∈ 1-qΦ(0)(H).

(ii) Let H be a separable Hilbert space and let K ∈ B(H) such that Im(K) is not closed.

Consider the bounded operator T :
∞⊗
i=0

H −→
∞⊗
i=0

H defined by T (h0, h1, h2, . . .) =

(K(h1), h2, h3, . . .). Clearly, Im(T 2) = Im(T ) is not closed and as in (i), we prove
that T is 1-quasi-Fredholm but T is not a quasi-Fredholm operator.

Remark 2.6. For k ∈ N, we note from Lemma 2.1 that qk(T ) = 0 if and only if
q0(T ) ≤ k, and hence a bounded operator has a topological uniform descent for n ≥ k is
a k-quasi-Fredholm operator of zero degree.

Recall that P (T ) ∈ ϕ(H) for every complex polynomial P whenever %+
e (T ) = {λ ∈

C : λI − T ∈ Φ+(H)} 6= ∅.

In the following proposition, we establish the link between pseudo-quasi-Fredholm
operators and operators having a topological uniform descent.

Proposition 2.7. Let T ∈ ϕ(H) such that %+
e (T ) 6= ∅. The following statements are

equivalent :

(i) T ∈ pqΦ(H);
(ii) q0(T ) < +∞ and Im(T ) + ker(T q0(T )) is closed.

So the set of bounded operators belonging to the class of pseudo-quasi-Fredholm coincides
with the class of bounded operators having topological uniform descent in Hilbert spaces.

Proof. ”(i) =⇒ (ii)” Let k, d ∈ N such that T ∈ k-qΦ(d)(H), then by Lemma 2.1, we
have d+ k ≥ q0(T ) and Im(T ) + ker(T q0(T )) = Im(T ) + ker(T d+k) is closed.

”(ii) =⇒ (i)” We note first that ker(Tn) is closed for all n ∈ N because %+
e (T ) 6= ∅. Let

k = q0(T ), by Lemma 2.1, we get qk(T ) = 0 and hence T ∈ k-qΦ(0)(H). This completes
the proof. �

The techniques used in this work are based in the concept of paracomplete subspaces
of Hilbert spaces (see, [7, Chapter II]).

Definition 2.8 ([7], Definition 2.1.1, Definition 2.1.2).

(i) A subspace M of H is said to be paracomplete in H, if M is a Banach space and the
canonical injection of M in H is continuous. In particular, a closed subspace of a
Hilbert space H is a paracomplete subspace of H.

(ii) An operator T : D(T ) ⊆ H −→ H is called paracomplete if its graph is a paracom-
plete subspace of H×H. It is clear that a closed operator in a Hilbert space H is a
paracomplete operator in H.
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The following lemma follows immediately from [7, Proposition 2.2 page 183] and [7,
Proposition 2.1.3, Proposition 2.1.4].

Lemma 2.9. Let T : D(T ) ⊆ H −→ H be a paracomplete operator and let k, i, n ∈ N.
Then D(T k), Im(T k), ker(T k), ker(T k) + Im(Tn) and [ker(T k) + Im(Tn)] ∩ ker(T i) are
paracomplete subspaces in H.

The ascent and descent of T ∈ ϕ(H) are defined by

a(T ) = inf{n ∈ N : ker(Tn) = ker(Tn+1)},
d(T ) = inf{n ∈ N : Im(Tn) = Im(Tn+1)},

respectively, whenever these minima exist. If no such numbers exist the ascent and
descent of T are defined to be +∞. The notion of ascent and descent was studied in
several articles ([4], [8], [11]). Let d be a positive integer, from [11], we mention the
following useful characterizations :

a(T ) ≤ d⇐⇒ Im(T d) ∩ ker(Tn) = {0} for some (equivalently all) n ≥ 1,

d(T ) ≤ d⇐⇒ D(T d) ⊆ Im(Tn) + ker(T d) for some (equivalently all) n ≥ 1.

Remark 2.10.

(i) An operator T ∈ B(H) such that d(T ) < +∞ and Im(T d(T )) is not closed is a
pseudo-quasi-Fredholm operator but is not a quasi-Fredholm operator (see Example
2.5).

(ii) Let k ∈ N\{0}. We know that if T ∈ qΦ(H), then Im(Tn) is closed for all n ≥ q0(T ),
but if T ∈ k-qΦ(H), we cannot conclude that Im(Tn) is closed for some n > qk(T )
(see Example 2.5).

(iii) In operators theory, if T is semi-Fredholm (resp. semi-regular, quasi-Fredholm;
. . . ) and its domain is a dense subset of H, then its adjoint T ∗ is also semi-
Fredholm (resp. semi-regular, quasi-Fredholm; . . . ). Unfortunately, this is not
the case for pseudo-quasi-Fredholm operators. In Example 2.5, the operator T is
pseudo-quasi-Fredholm, but its adjoint T ∗ is not pseudo-quasi-Fredholm. In fact,
if T ∗ is pseudo-quasi-Fredholm, then T ∗ ∈ k-qΦ(d)(H), for some k, d ∈ N. Hence

Im(T ∗) + ker(T ∗k+d) is closed. Since Im(T 2) = Im(T ), it follows that ker(T ∗2) =

ker(T ∗) and so a(T ∗) ≤ 1. Therefore Im(T ∗) + ker(T ∗) = Im(T ∗) + ker(T ∗k+d) is
closed and Im(T ∗)∩ker(T ∗) = {0} (k ≥ 1 because T ∗ is not quasi-Fredholm). From
[7, Proposition 2.1.1] and Lemma 2.9, we can see that Im(T ∗) is closed. Hence Im(T )
is closed, which is a contradiction. Consequently, T ∗ is not pseudo-quasi-Fredholm.

Let M be a closed subspace of H, then H/M is a Hilbert space with the following scalar
product

〈· , ·〉M : H/M× H/M −→ R
(x , y) 7−→ 〈P (x) , P (y)〉,

where P is the orthogonal projection on M⊥ and 〈· , ·〉 is the scalar product of H.
Note that the topology in the Hilbert space (H/M, 〈· , ·〉M) coincides with the quotient
topology in H/M :

‖x‖ =
√
〈x, x〉M =

√
〈P (x), P (x)〉 = dist(x, M),

where dist(x, M) is the distance of x to M. In particular, if T ∈ ϕ(H) such that ker(T k)

is closed for k ∈ N, then H/ker(T k) is a Hilbert space. For k ∈ N, let T̃k denote the
following operator

T̃k : D(T̃k) ⊆ H/ker(T k) −→ H/ker(T k)
x 7−→ Tx.
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By qΦ(H) (resp. qΦ(d)(H)) we denote the set of all quasi-Fredholm operators (resp.
of degree d).

Proposition 2.11. Let T : D(T ) ⊆ H −→ H be a paracomplete operator and k, d ∈ N
such that ker(T k) is closed. Then

T ∈ k-qΦ(d)(H)⇐⇒ T̃k ∈ qΦ(d)(H/ker(T k)).

Proof. Define

π : H× H −→ (H/ker(T k))× (H/ker(T k))
(x, y) 7−→ (x, y).

Since G(T̃k), the graph of T̃k is equal to π(G(T )), we deduce from [7, Proposition 2.1.4],

that G(T̃k) is paracomplete. For all n ∈ N, we have

(1) Im(T̃k) + ker(T̃k
n
) = [Im(T ) + ker(Tn+k)]/ker(T k)

and

(2) ker(T̃k) ∩ Im(T̃k
n
) =

(
Im(Tn) ∩ ker(T k+1) + ker(T k)

)
/ker(T k).

Now by (2) we deduce that qk(T ) = q0(T̃k). If T̃k ∈ qΦ(d)(H/ker(T k)), from [7, Remark

page 205], it follows that T̃k is closed. So, by [9, Lemma 1.4], there exists λ ∈ C\{0} such

that λI − T̃k is s-regular. Since Im(λI − T̃k) = Im(λI − T )/ker(T k) and ker(λI − T̃k) =
[ker(λI−T )+ker(T k)]/ker(T k) are closed, then by Lemma 2.9 and [7, Proposition 2.1.1],
we see that Im(λI−T ) and ker(λI−T ) are also closed and consequently T = λI−(λI−T )
is closed (see, [7, Proposition 2.2.3]). So by (1) and (2), we get

T ∈ k-qΦ(d)(H)⇐⇒ T̃k ∈ qΦ(d)(H/ker(T k)).

The proof is complete. �

As a direct consequence of Proposition 2.11 and [7, Remark page 205] we obtain the
following result :

Corollary 2.12. Let k ∈ N and T : D(T ) ⊆ H −→ H be a paracomplete operator such
that

(i) qk(T ) = d < +∞ and ker(T k) is closed in H,
(ii) Im(T d) ∩ ker(T k+1) + ker(T k) is closed in H,

(iii) Im(T ) + ker(T d+k) is closed in H,

then T is closed operator i.e., T ∈ k-qΦ(d)(H).

Next we proceed to obtain a necessary condition and a sufficient condition for that a
k-quasi-Fredholm operator is a quasi-Fredholm operator.

Theorem 2.13. Let k, d ∈ N and T ∈ k-qΦ(d)(H). Then

T ∈ qΦ(H)⇐⇒ ker(T ) ∩ Im(T d+k) is closed.

Proof. By Lemma 2.1, we conclude that q0(T ) ≤ d+ k and

Im(T ) + ker(T q0(T )) = Im(T ) + ker(T d+k)

is closed. Hence

T ∈ qΦ(q0(T ))(H)⇐⇒ ker(T ) ∩ Im(T q0(T )) = ker(T ) ∩ Im(T k+d) is closed.

This completes the proof of the theorem. �
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3. Pseudo-quasi-Fredholm spectrum and k-quasi-Fredholm spectrum

Throughout the remainder of the paper, for T ∈ ϕ(H) and λ ∈ C, we denote by Tλ
the operator λI − T.

For k ∈ N, the k-quasi-Fredholm resolvent and k-quasi-Fredholm spectrum of an
operator T ∈ ϕ(H) are defined respectively by

%kqΦ(T ) = {λ ∈ C : Tλ ∈ k-qΦ(H)}

and

σkqΦ(T ) = C\%kqΦ(T ).

We denote by σe(T ) the essential quasi-Fredholm spectrum of T (see [9]). We note that
σe(T ) = σ0

qΦ(T ). The set σ∞qΦ(T ) :=
⋂
k≥0

σkqΦ(T ) is called pseudo-quasi-Fredholm spectrum

of T. The complementary set %∞qΦ(T ) = C\σ∞qΦ(T ) is the pseudo-quasi-Fredholm resolvent.
For all k ∈ N, it is clear that

%(T ) ⊆ %kqΦ(T ) ⊆ %∞qΦ(T ).

If T ∈ B(H), it follows from Proposition 2.7 that

%∞qΦ(T ) = {λ ∈ C : Tλ has topological uniform descent}.

Throughout this section we assume that %+
e (T ) 6= ∅.

Now, we are ready to state our main result of this section, which represents an im-
provement of [9, Lemma 1.4] to the class of k-quasi-Fredholm operators.

Lemma 3.1. Let d, k ∈ N and T ∈ k-qΦ(d)(H), then there exists ε > 0 such that for all
λ ∈ C, 0 < |λ| < ε :

(i) Tλ is a s-regular operator,
(ii) α(Tλ) = dim ker(T ) ∩ Im(T d+k),

(iii) β(Tλ) = dimH/[Im(T ) + ker(T d+k)].

Proof. From Proposition 2.11, we know that T̃k ∈ qΦ(d)(H/ker(T k)). We apply now [9,
Lemma 1.4], we deduce that there exists ε > 0 such that for all λ ∈ C, 0 < |λ| < ε, we
have

(1) λI − T̃k is s-regular,

(2) α(λI − T̃k) = dim(ker(T̃k) ∩ Im(T̃k
d
)),

(3) β(λI − T̃k) = dim(H/ker(T k))/[Im(T̃k) + ker(T̃k
d
)].

As ker(T k) ⊆ Im[(Tλ)n], we have for all n ∈ N,

Im[(λI − T̃k)n] = [Im[(Tλ)n] + ker(T k)]/ker(T k) = Im[(Tλ)n]/ker(T k)

and

ker[(λI − T̃k)n] =
(
ker[(Tλ)n] + ker(T k)

)
/ker(T k).

(i) By (1), we obtain

ker(Tλ) ⊆ ker(Tλ) + ker(T k) ⊆ Im[(Tλ)n], ∀ n ∈ N
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and it follows that Im(Tλ) is closed. So Tλ is s-regular for all 0 < |λ| < ε.

(ii) Since ker(T k) ∩ ker(Tλ) = {0}, it follows from (2) that

α(Tλ) = dim[ker(Tλ) + ker(T k)]/ker(T k)

= α(λI − T̃k)

= dim ker(T̃k) ∩ Im(T̃k
d
)

= dim
(
[Im(T d) + ker(T k)] ∩ ker(T k+1)

)
/ker(T k)

= dim
(
Im(T d) ∩ ker(T k+1) + ker(T k)

)
/ker(T k)

= dim
(
Im(T d) ∩ ker(T k+1)

)
/
(
Im(T d) ∩ ker(T k)

)
= dim ker(Sk+1)/ker(Sk), where S = T|Im(Td)

= dim ker(S) ∩ Im(Sk)
= dim ker(T ) ∩ Im(T d+k).

(iii) From (3), we get

β(Tλ) = β(λI − T̃k)

= dim
(
H/ker(T k)

)
/
(
Im(T̃k) + ker(T̃k

d
)
)

= dimH/
(
Im(T ) + ker(T d+k)

)
.

The proof is complete. �

Corollary 3.2. Let T ∈ ϕ(H) and k ∈ N. Then σkqΦ(T ) and σ∞qΦ(T ) are closed.

For T ∈ ϕ(H), we consider the following :

E(T ) = {λ ∈ σ(T ) : λ an isolated point, a(Tλ) < +∞,
d(Tλ) = m < +∞ and Im[(Tλ)m] is closed}.

Let’s recall that if %(T ) 6= ∅, (see, [8, Theorem 2.1])

E(T ) = {λ ∈ σ(T ) : a(Tλ) = d(Tλ) < +∞}.

Theorem 3.3. Let T ∈ ϕ(H) and k ∈ N. Then

∂σ(T ) ∩ %kqΦ(T ) = ∂σ(T ) ∩ %∞qΦ(T ) = E(T ).

Proof. The case %(T ) = ∅ is trivial, so assume that %(T ) 6= ∅. Clearly, the following
inclusions hold :

E(T ) ⊆ ∂σ(T ) ∩ %kqΦ(T ) ⊆ ∂σ(T ) ∩ %∞qΦ(T ).

For the reverse inclusions, let µ ∈ ∂σ(T )∩%∞qΦ(T ), we denote by R = µI−T. Let k, d ∈ N
such that R ∈ k-qΦ(d)(H). We know from Lemma 3.1, that there exists ε > 0 such that

α(λI −R) = dim ker(R) ∩ Im(Rd+k) and β(λI −R) = dimH/[Im(R) + ker(Rd+k)],

for all 0 < |λ| < ε. Since %(R) ∩ {λ ∈ C : 0 < |λ| < ε} 6= ∅, we deduce that

α(λI −R) = β(λI −R) = 0, ∀ 0 < |λ| < ε.

This leads to a(R) = d(R) ≤ d+ k and µ ∈ E(T ). This completes the proof. �

We recall that T ∈ B(H) is called algebraic if P (T ) = 0 for some nonzero polynomial
P. Arguing as in the proof of [2, Theorem 1.5], we get the following result :

T is algebraic ⇐⇒ σ(T ) = {λ1, λ2, . . . , λn} = E(T ).

In the following theorem, we show that the operators whose k-quasi-Fredholm spec-
trum is empty are exactly the algebraic operators.

Theorem 3.4. Let T ∈ B(H) and k ∈ N, then the following conditions are equivalent :



ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS 149

(i) σkqΦ(T ) = ∅;
(ii) σ∞qΦ(T ) = ∅;

(iii) T is algebraic.

Proof. ”(i) =⇒ (iii)” We have %kqΦ(T ) = C, this implies that E(T ) = %kqΦ(T ) ∩ ∂σ(T ) =

∂σ(T ) 6= ∅ and hence σ(T ) = E(T ). Consequently, T is algebraic.

”(iii) =⇒ (i)” T is algebraic implies that σ(T ) = E(T ) = %kqΦ(T ) ∩ ∂σ(T ) ⊆ %kqΦ(T ).

Therefore %kqΦ(T ) = C.

In the same way, we obtain the following equivalence :

σ∞qΦ(T ) = ∅ ⇐⇒ T is algebraic.

This completes the proof of the proposition. �

4. A spectral mapping theorem for pseudo-quasi-Fredholm

For T : D(T ) ⊆ H −→ H, we denote by

do(T ) = inf{n ∈ N : D(Tn) = D(Tn+1)},

where the infimum over the empty set is taken to be +∞ (see, [4, page 31]). We remark
that if do(T ) < +∞, then

D(T do(T )) = D(T do(T )+n) ⊆ D(Tn), ∀ n ∈ N.

Consequently T
(
D(T do(T ))

)
= T

(
D(T do(T )+1)

)
⊆ D(T do(T )).

Of course, there exist operators such that do(T ) = +∞ and operators such that
do(T ) < +∞. This can be illustrated in the following example.

Example 4.1.

(i) Let H = L2(R) and n ∈ N, we define the subspace Dn of H by

Dn =
{
f ∈ H :

∫
R
t2n|f(t)|2dt < +∞

}
,

and the operator T by

T : D(T ) ⊆ H −→ H
f 7−→ ψf, with ψ(t) = t.

It is clear that D(Tn) = Dn and hence do(T ) = +∞. For q ∈ N, we define

S : D(S) ⊆ H/D(T q) −→ H/D(T q)

f 7−→ T (f).

Since D(Sq) = {0} and D(Sq−1) 6= {0} (if q > 0), then do(S) = q.
(ii) Let H be a separable Hilbert space and let K : D(K) ⊆ H −→ H. Consider the

linear operator T : D(T ) ⊆
⊗∞

i=0 H −→
⊗∞

i=0 H defined by T (h0, h1, h2, . . .) =

(K(h1), h2, h3, . . .). Clearly, D(T k) = H×
⊗i=k

i=1 D(K)×
⊗∞

i=k+1 H. Hence do(T ) =
+∞ if D(K)  H and do(T ) = 0 when D(K) = H.

Let us consider the following class :

Γ(H) = {T : D(T ) ⊆ H −→ H paracomplete : q = do(T ) < +∞,
D(T q) and Im(Tλ) + D(T q) are closed, ∀ λ ∈ C}.
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It is clear that B(H) ⊆ Γ(H). Assume that T is a paracomplete operator such that
q = do(T ) < +∞. It is easy to see that if P is a complex polynomial, then P (T ) is para-
complete and do(P (T )) ≤ q. Furthermore, if P is a non-constant complex polynomial,
then D([P (T )]n) = D(T q), for all n ≥ do(P (T )). We will show that if T ∈ Γ(H), then
P (T ) ∈ Γ(H), for all complex polynomial P. Set q = do(T ) and define

T : D(T ) ⊆ H/D(T q) −→ H/D(T q)
x 7−→ Tx.

Let λ ∈ C and x ∈ ker(λI − T ), then Tλx ∈ D(T q). Clearly, x ∈ D(T q+1) = D(T q) and
x = 0, so ker(λI−T ) = {0}. Let us remark that Im(λI−T ) = [Im(Tλ)+D(T q)]/D(T q) is
closed. As in the proof of Proposition 2.11, we prove that λI −T is paracomplete and so
by [7, Proposition 2.2.3], λI −T ∈ ϕ(H/D(T q)). Hence λI −T ∈ Φ+(H/D(T q)). Now, let
P (Z) = (λ1 − Z)α1(λ2 − Z)α2 · · · (λm − Z)αm be a complex polynomial. We know that
if S, L ∈ ϕ(H) such that L ∈ Φ+(H) and Im(S) is closed, then LS ∈ ϕ(H) and Im(LS)
is closed. For i, j ∈ {1, 2, . . . ,m}, we have λiI − T ∈ Φ+(H/D(T q)) and Im(λjI − T )

is closed, therefore (λiI − T )(λjI − T ) ∈ ϕ(H/D(T q)) and Im[(λiI − T )(λjI − T )] is

closed. Since ker[(λiI − T )(λjI − T )] = {0}, then (λiI − T )(λjI − T ) ∈ Φ+(H/D(T q))

and consequently Im(P (T )) = [Im[P (T )] + D(T q)]/D(T q) is closed. Finally, we deduce
that Im[P (T )] + D(T q) = Im[P (T )] + D[(P (T ))do(P (T ))] is closed and P (T ) ∈ Γ(H).

Example 4.2.

(i) Let H be a separable Hilbert space and let K ∈ ϕ(H) such that D(K)  H is

closed. Let H =

3⊗
i=0

H and consider the linear operator T : H −→ H defined by

T (h0, h1, h2, h3) = (K(h1), h2, h3, h3). Clearly,

D(T k) =

 H× D(K)× H× H if k = 1,
H× D(K)× D(K)× H if k = 2,
H× D(K)× D(K)× D(K) if k ≥ 3

is closed. Hence do(T ) = 3. It is not difficult to see that

Im(Tλ) + D(T 3) =

{
H× H× H× D(K) if λ = 1,
H× H× H× H if λ 6= 1

is closed. Since T ∈ ϕ(H), it follows that T ∈ Γ(H).
(ii) Let H be a separable Hilbert space and {en : n ∈ N} be an orthonormal basis of H.

Define the following operators T and L on H by

D(T ) = D(L) = 〈en : n ≥ 2〉, T (en) = en+1 and L(en) = en−1, ∀ n ≥ 2.

It is clear that D(T k) = D(T ) and D(Lk) = 〈en : n ≥ 1 + k〉, for all k ≥ 1 and
hence do(T ) = 1 and do(L) = +∞ (L 6∈ Γ(H)). Since T ∈ ϕ(H), Im(Tλ) ⊆ D(T ) for
all λ ∈ C and D(T ) is closed, then T ∈ Γ(H).

The following proposition generalizes [7, Proposition 3.3.2].

Proposition 4.3. Let T ∈ ϕ(H) and k ∈ N such that ker(T k) is closed. If T ∈ k-qΦ(H),
then

Im(T i) + ker(T k+j) is closed, for all i+ j ≥ qk(T ).

Proof. If T ∈ k-qΦ(H), then from Proposition 2.11, T̃k ∈ qΦ(qk(T ))(H/ker(T k)). But by
[7, Proposition 3.3.2], we have

Im[(T̃k)i] + ker[(T̃k)j ] = [Im(T i) + ker(T k+j)]/ker(T k) is closed, ∀i+ j ≥ qk(T ).
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Therefore
Im(T i) + ker(T k+j) is closed, ∀i+ j ≥ qk(T ).

and the proof of the proposition is complete. �

For T ∈ ϕ(H) and M a subspace of H, we define T|M as the restriction of T to M viewed
as a map from M onto M.

The next lemma is used in order to show Lemmas 4.5 and 4.8.

Lemma 4.4. Let T be a paracomplete operator on H and P be a non-constant complex
polynomial. If q = do(T ) < +∞ and D(T q) is closed, then

(i) T|D(T q) is a bounded operator,
(ii) ker[P (T )] = ker[P (T|D(T q))] is closed,

(iii) Im
(
[P (T )]n

)
⊆ D(T q), for all n ≥ q.

Proof. (i) Let T̂ (resp. T|D(T q)) be the restriction of T to D(T q) viewed as map from
D(T q) onto H (resp. D(T q) onto D(T q)). From [7, Proposition 2.1.4, Proposition 2.1.5],

it follows that T̂ is a bounded operator. Since for all x ∈ D(T q), we have ‖Tx‖ = ‖T̂ x‖ ≤
‖T̂‖ ‖x‖, then T|D(T q) is also a bounded operator.

(ii) Since ker[P (T )] ⊆ D
(
[P (T )]q

)
= D(T q), then ker[P (T )] = ker[P (T|D(T q))] is closed.

(iii) Let y ∈ Im
(
[P (T )]n

)
, then there exists x ∈ D

(
[P (T )]n

)
= D(T q) = D

(
[P (T )]n+q

)
such that y = [P (T )]nx i.e., y ∈ D(T q). This completes the proof. �

Lemma 4.5. Let T ∈ ϕ(H), m ∈ N\{0} and k ∈ N.
(i) If q = do(T ) < +∞ and D(T q) is closed, then

T ∈ k-qΦ(H) =⇒ Tm ∈ k-qΦ(H).

(ii) If T ∈ Γ(H), then
Tm ∈ k-qΦ(H) =⇒ T ∈ pqΦ(H).

Proof. (i) Let n ∈ N\{0} and d = qk(T ). Since d+ k ≥ q0(T ) (see Lemma 2.1), it follows
from [7, Proposition 3.1.1] that

ker[(Tn)j ] ⊆ Im(Tn) + ker(T d+k) ⊆ Im(Tn) + ker[(Tn)(d+k)], ∀ j ∈ N,
and so q0(Tn) ≤ d+ k. Hence, by Lemma 2.1, we obtain qk(Tn) ≤ d. In the other hand,
from Lemma 4.4, we have ker(T j) is closed for all j ∈ N and by Proposition 4.3, we
know that Im(Tnd) + ker(Tnk) and Im(Tn) + ker(Tn(d+k)) are closed, this proves that
[Im(Tnd) + ker(Tnk)] ∩ ker(Tn(k+1)) is closed. Since dn = qk(Tn) ≤ d, then(

Im[(Tn)dn ] + ker[(Tn)k]
)
∩ ker[(Tn)k+1] =

(
Im[(Tn)d] + ker[(Tn)k]

)
∩ ker[(Tn)k+1]

and
Im(Tn) + ker(Tn(dn+k)) = Im(Tn) + ker(Tn(d+k))

are closed. It follows now from Corollary 2.12, that Tn ∈ k-qΦ(H).

(ii) Let l ∈ N such that l m > do(T ), then by (i), Tn ∈ k-qΦ(H), with n = l m. Let
d = qk(Tn) = max{q0(Tn)−k, 0}, then d+k ≥ q0(Tn). For all j ∈ N, by [7, Proposition
3.1.1], we see that

ker(T j) ⊆ ker[(Tn)j ] ⊆ Im(Tn) + ker(Tn(d+k)) ⊆ Im(T ) + ker(Tn(d+k))

and hence q0(T ) ≤ n(d+ k). Let α = k n+ nd− d ≥ k and dα = qα(T ). Now by Lemma
2.1, we get

dα ≤ qk(T ) = max{q0(T )− k, 0} ≤ n(d+ k)− k.
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Therefore

Im(T ) + ker(T dα+α) = Im(T ) + ker(T qk(T )+α) = Im(T ) + ker(T qk(T )+k).

Since qk(T ) + k ≤ n(d+ k) ≤ n(d+ k) + n− 1, we deduce

Im(T ) + ker(T dα+α) = Im(T ) + ker(Tn(d+k)+n−1).

But n > do(T ), then D(Tn−1) = D(T q) and Im(Tn) ⊆ D(T q). We have by Lemma 4.4
that S = T|D(T q) is a bounded operator, so that

[Im(T ) + ker(T dα+α)] ∩ D(T q) = [Im(T ) + ker(Tn(d+k)+n−1)] ∩ D(Tn−1)
= T−(n−1)

(
Im(Tn) + ker(Tn(d+k))

)
= S−(n−1)

(
Im(Tn) + ker(Tn(d+k))

)
is closed. As [Im(T ) + ker(T dα+α)] + D(T q) = Im(T ) + D(T q) is closed, we infer by [7,
Proposition 2.1.1] and Lemma 2.9 that Im(T ) + ker(T dα+α) is closed. In the other hand,
from Proposition 4.3, for all i ≥ d the subspace Im(Tn i) + ker(T k n) is closed. Suppose
that i ≥ max{2 d + k, 1}, since Im(Tn i−(nd−d)) + ker(Tα) ⊆ D(T q) = D(T (nd−d)) and
Im(Tn i) + ker(T k n) ⊆ D(T q) (see Lemma 4.4), then

Im(Tn i−(nd−d)) + ker(Tα) = [Im(Tn i−(nd−d)) + ker(Tα)] ∩ D(T (nd−d))
= T−(nd−d)

(
Im(Tn i) + ker(Tnk)

)
= S−(nd−d)

(
Im(Tn i) + ker(Tnk)

)
is closed. This implies that Z = [Im(Tn i−(nd−d)) + ker(Tα)] ∩ ker(Tα+1) is closed. We
have

n i− (nd− d) = n(i− d) + d ≥ n(d+ k) + d ≥ n(d+ k) ≥ qk(T ) ≥ dα,
thus Z = [Im(T dα) + ker(Tα)] ∩ ker(Tα+1) is closed. Hence by Corollary 2.12, it follows
that T ∈ α-qΦ(dα)(H). This completes the proof. �

As an immediate consequence of Proposition 2.7 and Lemma 4.5, we obtain the fol-
lowing result.

Corollary 4.6. Let T ∈ B(H). The following conditions are equivalent :

(i) T has topological uniform descent;
(ii) Tn has topological uniform descent for all n ∈ N;

(iii) Tn has topological uniform descent for some n ∈ N.

The next lemma is used to prove Lemma 4.8.

Lemma 4.7. Let k ∈ N and T ∈ ϕ(H) such that ker(Tn) is closed for all n ∈ N. If
T ∈ k-qΦ(H), then T ∈ (k + 1)-qΦ(H).

Proof. Let T ∈ k-qΦ(H), from Lemma 2.1, d = qk+1(T ) ≤ qk(T ) < +∞ and hence

(1) [Im(T d) + ker(T k+1)] ∩ ker(T k+2) = [Im(T d+qk(T )) + ker(T k+1)] ∩ ker(T k+2)

and

(2) Im(T ) + ker(T d+k+1) = Im(T ) + ker(T qk(T )+k+1) = Im(T ) + ker(T qk(T )+k).

Since by Proposition 4.3, we know that Im(T d+qk(T ))+ker(T k+1) is closed, then it follows
from (1) and (2) that T ∈ (k + 1)-qΦ(H), and this completes the proof. �

The next lemma is used to prove Corollary 4.10.

Lemma 4.8. Let T : D(T ) ⊆ H −→ H be a paracomplete operator. Let A = P (T ),
B = Q(T ), where P and Q are relatively prime polynomials, and k ∈ N.
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(i) qk(AnBn) = max{qk(An), qk(Bn)}, for all n ∈ N.
(ii) If q = do(T ) < +∞ and D(T q) is closed, then

A, B ∈ k-qΦ(H) =⇒ AB ∈ k-qΦ(H).

(iii) If T ∈ Γ(H), then

A, B ∈ pqΦ(H)⇐⇒ AB ∈ pqΦ(H).

Proof. (i) For n, k ∈ N, we denote by Zkn(T ) = [Im(Tn) + ker(T k)] ∩ ker(T k+1). By [4,
Lemma 4.4], we see

Zkn(AB) = [Im(AnBn) + ker(AkBk)] ∩ ker(Ak+1Bk+1)
= [Im(An) ∩ Im(Bn) + ker(Ak) + ker(Bk)] ∩ [ker(Ak+1) + ker(Bk+1)]
= [[Im(An) + ker(Ak)] ∩ Im(Bn) + ker(Bk)] ∩ [ker(Ak+1) + ker(Bk+1)]
= [Im(An) + ker(Ak)] ∩ [Im(Bn) + ker(Bk)] ∩ [ker(Ak+1) + ker(Bk+1)]
= [Im(An) + ker(Ak)] ∩ [ker(Ak+1) + (Im(Bn) + ker(Bk)) ∩ ker(Bk+1)]
= [Im(An) + ker(Ak)] ∩ ker(Ak+1) + [Im(Bn) + ker(Bk)] ∩ ker(Bk+1)
= Zkn(A) + Zkn(B)

and
Zkn(A) ∩ Zkn(B) ⊆ ker(Ak+1) ∩ ker(Bk+1) = {0}.

Therefore
qk(AnBn) = max{qk(An), qk(Bn)}, ∀ n ∈ N.

(ii) First, recall that from Lemma 4.4, we get ker(Ak) and ker(Bk) are closed, for all
k ∈ N. For j, n ∈ N, we have

(1)
Im(AnBn) + ker(AjBj) = Im(An) ∩ Im(Bn) + ker(Aj) + ker(Bj)

= [Im(An) + ker(Aj)] ∩ [Im(Bn) + ker(Bj)].

Assume that A, B ∈ k-qΦ(H) and let d = qk(AB) = max{qk(A), qk(B)}. In particular,
this allows us to see

(2) Im(A) + ker(Ak+d) and Im(B) + ker(Bk+d) are closed.

Furthermore, from Proposition 4.3, it follows that

(3) Im(Ad) + ker(Ak) and Im(Bd) + ker(Bk) are closed.

Thus, taking into account of the equalities (1), (2), (3) and Corollary 2.12, we deduce
that AB ∈ k-qΦ(H).

(iii) Taking into account of [7, Proposition 2.1.3] and Lemma 2.9, we obtain that Zkn(A)
(resp. Zkn(B)) is paracomplete and applying [7, Proposition 2.1.1], we conclude that

(4) Zkn(AB) is closed =⇒ Zkn(A) and Zkn(B) are closed.

Since for j ∈ N and n ≥ do(T ), we have

[Im(An) + ker(Aj)] + [Im(Bn) + ker(Bj)] = Im(An) + Im(Bn) = D(T q),

it follows from [7, Proposition 2.1.1, Proposition 2.1.3], Lemma 2.9 and (1) that
(5)

Im(AnBn)+ker(Aj Bj) is closed ⇐⇒
{

Im(An) + ker(Aj),
Im(Bn) + ker(Bj)

are closed, ∀ n ≥ do(T ).

Assume that AB ∈ k-qΦ(H), then AnBn ∈ k-qΦ(H), for n ≥ do(T ) according to
Lemma 4.5. In particular Zkd (AnBn) and Im(BnAn) + ker[(AnBn)k+d] are closed, with
d = qk(AnBn). Since qk(An) ≤ d, taking into account of (4) and (5), we deduce that
Zkqk(An)(A

n) = Zkd (An) and Im(An) + ker[(An)k+qk(An)] = Im(An) + ker[(An)k+d] are

closed. Therefore by Corollary 2.12, we obtain that An ∈ k-qΦ(H) and hence A ∈ pqΦ(H)
according to Lemma 4.5. Consequently if AB ∈ pqΦ(H), then A, B ∈ pqΦ(H).
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Suppose, conversely, that A, B ∈ pqΦ(H), then there exists k1, k2 ∈ N such that
A ∈ k1-qΦ(H) and B ∈ k2-qΦ(H). Now from Lemma 4.7, it follows that A, B ∈ k-qΦ(H),
with k = max{k1, k2}. Finally, by (ii), we obtain AB ∈ pqΦ(H). This completes the
proof. �

Using Proposition 2.7, [10, Lemma 12.8] and the proof of Lemma 4.8, one proves the
following result.

Corollary 4.9. Let T, S, L, R ∈ B(H) be mutually commuting operators, satisfying
TR + LS = I. Then T has topological uniform descent if and only if the same holds for
S.

Corollary 4.10. Let T ∈ ϕ(H) and P (Z) = (λ1 − Z)m1(λ2 − Z)m2 · · · (λs − Z)ms be a
complex polynomial such that mi 6= 0 for all i = 1, 2, . . . , s.

(i) Let k ∈ N, if q = do(T ) < +∞ and D(T q) is closed, then

∀ 1 ≤ i ≤ s, λi ∈ %kqΦ(T ) =⇒ 0 ∈ %kqΦ(P (T )).

(ii) If T ∈ Γ(H), then

0 ∈ %∞qΦ(P (T ))⇐⇒ λi ∈ %∞qΦ(T ), ∀ 1 ≤ i ≤ s.

Proof. From Lemmas 4.5 and 4.8, it follows that

∀ 1 ≤ i ≤ s, λi ∈ %kqΦ(T ) =⇒ 0 ∈
⋂

1≤i≤s
%kqΦ(λiI − T )

=⇒ 0 ∈
⋂

1≤i≤s
%kqΦ[(λiI − T )mi ]

=⇒ 0 ∈ %kqΦ(P (T ))

and
0 ∈ %∞qΦ(P (T )) ⇐⇒ 0 ∈

⋂
1≤i≤s

%∞qΦ[(λiI − T )mi ]

⇐⇒ 0 ∈
⋂

1≤i≤s
%∞qΦ(λiI − T )

⇐⇒ λi ∈ %∞qΦ(T ), ∀ 1 ≤ i ≤ s.
This completes the proof. �

Corollary 4.11. Let T ∈ B(H) and P (Z) = (λ1 − Z)m1(λ2 − Z)m2 · · · (λs − Z)ms be
a complex polynomial such that mi 6= 0 for all i = 1, 2, . . . , s. The following conditions
are equivalent :

(i) P (T ) has topological uniform descent;
(ii) λiI − T has topological uniform descent for all 1 ≤ i ≤ s.

Now we give a spectral mapping theorem which is our main result.

Theorem 4.12. Let T ∈ ϕ(H) and P be a non-constant complex polynomial.

(i) If k ∈ N, q = do(T ) < +∞ and D(T q) is closed, then

σkqΦ(P (T )) ⊆ P (σkqΦ(T )).

(ii) If T ∈ Γ(H), then

P (σ∞qΦ(T )) = σ∞qΦ(P (T )).

In particular, the topological uniform descent spectrum of a bounded operator on a Hilbert
space satisfies the non-constant polynomial version of the spectral mapping theorem.
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Proof. (i) Let λ ∈ σkqΦ(P (T )) and suppose that λ− P (Z) = (µ1 − Z)m1 · · · (µs − Z)ms .

From Corollary 4.10, it follows that there exists i ∈ {1, 2, . . . , s} such that µi ∈ σkqΦ(T ).

Hence λ = P (µi) ∈ P (σkqΦ(T )).

(ii) From Corollary 4.10, it follows that

λ ∈ P (σ∞qΦ(T )) ⇐⇒ λ = P (µ), with µ ∈ σ∞qΦ(T ),

⇐⇒ λ− P (Z) = (µ− Z)kQ(Z), with Q(µ) 6= 0,
⇐⇒ λ ∈ σ∞qΦ(P (T )),

which completes the proof. �

Question 1. Let T ∈ Γ(H), k ∈ N and P be a non-constant complex polynomial. It is
not clear at present whether P (σkqΦ(T )) = σkqΦ(P (T ))?

Corollary 4.13. Let T ∈ ϕ(H) such that q = do(T ) < +∞ and D(T q) is closed, and P
be a complex polynomial having no roots in σkqΦ(T ), for k ∈ N, then P (T ) is a k-quasi-
Fredholm operator.

Corollary 4.14. Let T ∈ Γ(H) and P be a complex polynomial having no roots in σ∞qΦ(T ),

then P (T ) is pseudo-quasi-Fredholm. Furthermore, P (T ) has topological uniform descent,
when T ∈ B(H).

The next lemma is used to prove Theorem 4.16.

Lemma 4.15. Let T, L ∈ B(H) such that TL = LT. If L is invertible, then for all
k ∈ N, we have T ∈ k-qΦ(H) if and only if TL ∈ k-qΦ(H).

Proof. For n ∈ N, we know that ker(Tn) = ker(TnLn) and Im(Tn) = Im(TnLn). For
every k, n, i ∈ N, we deduce that qk(T ) = qk(TL), Im(T i) + ker(Tn) is closed if and only
if Im(LiT i) + ker(LnTn) is closed and [Im(T i) + ker(T k)]∩ ker(T k+1) is closed if and only
if [Im(LiT i) + ker(LkT k)] ∩ ker(Lk+1T k+1) is closed. Therefore,

T ∈ k-qΦ(H)⇐⇒ TL ∈ k-qΦ(H).

This completes the proof. �

The spectral mapping theorem holds for the pseudo-quasi-Fredholm spectrum.

Theorem 4.16. Let T ∈ B(H) and f be an analytic function in a neighborhood of the
usual spectrum σ(T ) and not locally constant in σ(T ). For k ∈ N, we have

σkqΦ
(
f(T )

)
⊆ f

(
σkqΦ(T )

)
and f

(
σ∞qΦ(T )

)
= σ∞qΦ

(
f(T )

)
.

So, the topological uniform descent spectrum of a bounded operator on a Hilbert space
satisfies the spectral mapping theorem.

Proof. Let µ ∈ C and f be an analytic function in a neighborhood of σ(T ). Since σ(T )
is a compact subset of C, the function f(z)− f(µ) possesses at most a finite number of
zeros in σ(T ). So

f(z)− f(µ) = (z − µ)m0(z − λ1)m1 · · · (z − λn)mng(z),

where g(z) is a non-vanishing analytic function on σ(T ). Using the functional calculus
we deduce that :

f(T )− f(µ)I = (T − µI)m0(T − λ1I)m1 · · · (T − λnI)mng(T ),

where g(T ) is an invertible operator. Therefore

[f(T )− f(µ)I]
(
g(T )−1

)
= (T − µI)m0(T − λ1I)m1 · · · (T − λnI)mn .
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So from Corollary 4.10 and Lemma 4.15, it follows that

µ ∈ σ∞qΦ(T ) ⇐⇒ [f(T )− f(µ)I]
(
g(T )−1

)
6∈ pqΦ(H)

⇐⇒ f(T )− f(µ)I 6∈ pqΦ(H)
⇐⇒ f(µ) ∈ σ∞qΦ

(
f(T )

)
.

In the same way, we obtain that

σkqΦ
(
f(T )

)
⊆ f

(
σkqΦ(T )

)
.

This proves the theorem. �

Corollary 4.17. Let T ∈ B(H) and f be an analytic function in a neighborhood of
the usual spectrum σ(T ) having no roots in σ∞qΦ(T ) (resp. σkqΦ(T ), for k ∈ N) and not

locally constant in σ(T ). Then f(T ) is a pseudo-quasi-Fredholm (resp. k-quasi-Fredholm)
operator.

Remark 4.18. Recall that if T ∈ ϕ(H) such that %+
e (T ) 6= ∅, then ker(P (T )) is closed,

for all complex polynomial P. Thus, the first assertion of Lemma 4.5 and the second
assertion of Lemma 4.8 are true also for a closed operator T on a Hilbert space such that
%+
e (T ) 6= ∅ and not necessarily q = do(T ) < +∞ and D(T q) is closed. Hence, we can prove

that all results in Section 4 related to the k-quasi-Fredholm spectrum remain valid for an
operator T ∈ ϕ(H) such that %+

e (T ) 6= ∅ without the assumption that q = do(T ) < +∞
and D(T q) is closed.

5. The k-quasi-Fredholm and finite-dimensional perturbations

For two subspaces M and N of H, we write M
e
⊂N if there exists a finite-dimensional

subspace V of H such that M ⊂ N + V, i.e. dimM/(M ∩ N) = dim(M + N)/N < +∞.
Similarly, we write M

e
=N if both M

e
⊂N and N

e
⊂M.

The elementary next lemma is used to show Lemma 5.2.

Lemma 5.1. Let T ∈ ϕ(H) and F ∈ B(H) such that dim Im(F ) < +∞, Im(F ) ⊂ D(T )
and TFx = FTx, for all x ∈ D(T ). Then for every n ∈ N, we have

ker[(T + F )n]
e
= ker(Tn) and Im[(T + F )n]

e
= Im(Tn).

In particular,

ker[(T + F )n] + Im[(T + F )i]
e
= ker(Tn) + Im(T i), ∀ n, i ∈ N.

Proof. For n ∈ N, we define

θ : ker[(T + F )n] −→ Im(F ) and ψ : ker(Tn) −→ Im(F )
x 7−→ Tnx, x 7−→ (T + F )nx.

We have

dim ker[(T + F )n]/
(
ker[(T + F )n] ∩ ker(Tn)

)
= dim ker[(T + F )n]/ker(θ)
≤ dim Im(F ) < +∞

and
dim ker(Tn)/

(
ker[(T + F )n] ∩ ker(Tn)

)
= dim ker(Tn)/ker(ψ)
≤ dim Im(F ) < +∞.

This implies that

ker[(T + F )n]
e
= ker(Tn), ∀ n ∈ N.

Since (T + F )n − Tn is a finite dimensional operator, then Im[(T + F )n]
e
= Im(Tn). This

completes the proof. �
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Lemma 5.2. Let T ∈ ϕ(H) and F ∈ B(H) such that dim Im(F ) < +∞, Im(F ) ⊂ D(T )
and TFx = FTx, for all x ∈ D(T ). Then

q0(T ) < +∞⇐⇒ q0(T + F ) < +∞.

Proof. ”=⇒” Let q0(T ) = d < +∞, M = Im(T d) and put T̃ = T|M. Then ker(T̃ ) ⊆
Im∞(T̃ ) and T̃ (Im∞(T )) = Im∞(T ). Indeed, we have

ker(T̃ ) = ker(T ) ∩ Im(T d) = ker(T ) ∩ Im(T d+n) ⊆ Im(T̃n), ∀ n ∈ N

and so ker(T̃ ) ⊆ Im∞(T̃ ). Now let z ∈ Im∞(T ) = Im∞(T̃ ), then there exists x ∈ D(T̃ )

such that z = T̃ x. Moreover, for every n ∈ N, there exists y ∈ D(T̃n+1) ⊆ D(T̃n) such

that T̃n+1y = T̃ x, so x − T̃ny ∈ ker(T̃ ) ⊆ Im∞(T̃ ) ⊆ Im(T̃n). Therefore x ∈ Im∞(T̃ ) =
Im∞(T ).

It clearly suffices to consider only the case when dim Im(F ) = 1. As in the proof of [6,

Theorem, page 194], it is possible to show that ker(T̃ )
e
⊂ Im∞(T + F ). We know that if

M
e
⊂N and M

e
⊂ L, then M

e
⊂N ∩ L. Since by Lemma 5.1, we have

ker(T + F ) ∩ Im[(T + F )d] ⊆ ker(T + F )
e
⊂ ker(T )

and

ker(T + F ) ∩ Im[(T + F )d] ⊆ Im[(T + F )d]
e
⊂ Im(T d),

then we can deduce that

ker(T + F ) ∩ Im[(T + F )d]
e
⊂ ker(T ) ∩ Im(T d).

Hence,

ker(T + F ) ∩ Im[(T + F )d]
e
⊂ ker(T ) ∩ Im(T d) = ker(T̃ )

e
⊂ Im∞(T + F )

and since ker(T + F ) ∩ Im[(T + F )d] ⊆ ker(T + F ), so

ker(T + F ) ∩ Im[(T + F )d]
e
⊂ ker(T + F ) ∩ Im∞(T + F ).

This implies that

α = dim(ker(T + F ) ∩ Im[(T + F )d])/(ker(T + F ) ∩ Im∞(T + F )) < +∞.

Let n ≥ d and αn = dim(ker(T + F ) ∩ Im[(T + F )d])/(ker(T + F ) ∩ Im[(T + F )n]). It is
clear that the sequence (αn)n≥d is increasing and αn ≤ α, for all n ≥ d. Then there exist
n0 ≥ d and β ≤ α such that αn = β, for all n ≥ n0. Let n ≥ n0, since

ker(T + F ) ∩ Im[(T + F )n+1] ⊆ ker(T + F ) ∩ Im[(T + F )n] ⊆ ker(T + F ) ∩ Im[(T + F )d],

we deduce that

αn+1 = αn + dim(ker(T + F ) ∩ Im[(T + F )n])/(ker(T + F ) ∩ Im[(T + F )n+1]).

Thus, dim(ker(T + F ) ∩ Im[(T + F )n])/(ker(T + F ) ∩ Im[(T + F )n+1]) = αn+1 − αn = 0.
It follows from this that

ker(T + F ) ∩ Im[(T + F )n] = ker(T + F ) ∩ Im[(T + F )n0 ], ∀ n ≥ n0.

This means that q0(T + F ) ≤ n0.

”⇐=” If q0(T + F ) < +∞, from the first sense q0(T ) = q0(T + F − F ) < +∞.
This finishes the proof of the lemma. �

The following corollary is a straightforward consequence of Lemma 2.1 and Lemma
5.2.
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Corollary 5.3. Let T ∈ ϕ(H) and F ∈ B(H) such that dim Im(F ) < +∞, Im(F ) ⊂ D(T )
and TFx = FTx, for all x ∈ D(T ). Then

qk(T ) < +∞⇐⇒ qk(T + F ) < +∞, ∀ k ∈ N.

Recall that if T and F are bounded operators such dim Im(F ) < +∞, then T is quasi-
Fredholm if and only if T + F is quasi-Fredholm (see [6, Theorem]). We generalize this
result to the class of k-quasi-Fredholm operators as follows :

Theorem 5.4. Let T ∈ ϕ(H) such that %+
e (T ) 6= ∅. Let F ∈ B(H) such that dim Im(F ) <

+∞, Im(F ) ⊂ D(T ) and TFx = FTx, for all x ∈ D(T ). Then for all k ∈ N, we have
σkqΦ(T + F ) = σkqΦ(T ) and σ∞qΦ(T + F ) = σ∞qΦ(T ).

Proof. Let k ∈ N and T ∈ k-qΦ(H). By Corollary 5.3, we have d = max{qk(T ), qk(T +
F )} < +∞. It follows from Proposition 4.3 that Im(T d)+ker(T k) and Im(T )+ker(T d+k)
are closed subspaces. From Lemma 5.1, we deduce that Im[(T + F )d] + ker[(T + F )k]
and Im(T + F ) + ker[(T + F )d+k] are closed subspaces. Since d1 = qk(T + F ) ≤ d, then
Im(T + F ) + ker[(T + F )d1+k] and

(
Im[(T + F )d1 ] + ker[(T + F )k]

)
∩ ker[(T + F )k+1] are

closed and hence T + F ∈ k-qΦ(H). Consequently, σkqΦ(T + F ) = σkqΦ(T ) and

σ∞qΦ(T + F ) =
⋂
k≥0

σkqΦ(T + F ) =
⋂
k≥0

σkqΦ(T ) = σ∞qΦ(T ).

This completes the proof. �

As consequence of Proposition 2.7 and Theorem 5.4 we derive the following corollary :

Corollary 5.5. Let T, F ∈ B(H) such that TF = FT and dim Im(F ) < +∞. Then T
has topological uniform descent if and only if the same holds for T + F.

Remark 5.6.

(i) Let k ∈ N. It is clear that if T = 0, then T ∈ k-qΦ(H) and if K is a one-to-one
compact operator (so Im(Kn) is not closed for all n ∈ N\{0}), then K 6∈ pqΦ(H).
Therefore if T ∈ pqΦ(H) and K is a compact operator such that TK = KT, then
it is not necessary that T +K ∈ pqΦ(H).

(ii) Let H be the Hilbert space with an orthonormal basis {en : n ∈ N}. Let T = 0 and
S ∈ B(H) be defined by

S(en) = 2−nen+1, ∀ n ∈ N.
It is clear that S is quasi-nilpotent and TS = ST. Since Im(S) is not closed and
ker(S) = {0}, it follows that T + S is not pseudo-quasi-Fredholm. Therefore if
T ∈ pqΦ(H) and S is a quasi-nilpotent operator such that TS = ST, then it is not
necessary that T + S ∈ pqΦ(H).

Several questions still remain unanswered. Some of these are :

Question 2. Let T ∈ ϕ(H) and F ∈ B(H) such that Im(F ) ⊂ D(T ) and TFx = FTx,
for all x ∈ D(T ).

(i) If dim Im(Fn) < +∞, for some n ∈ N, can we prove that σ∞qΦ(T + F ) = σ∞qΦ(T )?

(ii) Suppose that F is a nilpotent operator. We know from [3, Theorem 4.3] that

σ0
qΦ(T ) = σ0

qΦ(T + F ).

Can we prove that σkqΦ(T ) = σkqΦ(T + F ), for all k ≥ 1 or σ∞qΦ(T ) = σ∞qΦ(T + F )?

(iii) If F is s-regular, can we prove that σ∞qΦ(T + F ) = σ∞qΦ(T )?



ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS 159

Remark 5.7. Let k ∈ N. The set of all k-quasi-Fredholm (resp. pseudo-quasi-Fredholm)
operators is not open. Indeed, consider the Hilbert space H with an orthonormal basis
{ei, j , i, j integers, i ≥ 1}. Let T ∈ B(H) be defined by

T (ei, j) =

{
ei, j+1 if j 6= 0,

0 if j = 0.

Clearly ker(T ) is the subspace of H spanned by {ei, 0 : i ≥ 1}, ker(T ) ⊆
⋂
n≥0

Im(Tn) and

Im(T ) is closed, so that T is k-quasi-Fredholm, for all k ≥ 0.
Let ε > 0. Define Sε ∈ B(H) by

Sε(ei, j) =


ε

i+ 1
ei, 1 if j = 0,

0 if j 6= 0.

Clearly ‖Sε‖ = ε and Sε is an infinite dimensional compact operator so that Im(Sε)
is not closed. Let M denote the closed subspace of H spanned by {ei, 1, i ≥ 1}. We
have Im(T ) ⊥ M and Im(Sε) ⊆ M, so that (T + Sε)x ∈ M implies x ∈ ker(T ) and
(T +Sε)x = Sεx. Thus Im(T +Sε)∩M = Sε(ker(T )) = Im(Sε), so that Im(T +Sε) is not
closed. Therefore T + Sε is not pseudo-quasi-Fredholm because ker(T + Sε) = {0}.

6. pq-index of pseudo-quasi-Fredholm

In this section, we will associate to each pseudo-quasi-Fredholm operator an index
”pq-index” which coincide with the usual index in the case of a semi-Fredholm operator.

For T ∈ ϕ(H) and n, k ∈ N, we denote by

αkn(T ) = dim ker(T k) ∩ Im(Tn),

βkn(T ) = dim Im(Tn)/Im(Tn+k).

The essential ascent and the essential descent of T ∈ ϕ(H) are defined by

de(T ) = inf{n ∈ N : β1
n(T ) < +∞},

ae(T ) = inf{n ∈ N : α1
n(T ) < +∞},

respectively, whenever these minima exist. If no such numbers exist the essential ascent
and the essential descent of T are defined to be +∞.

Define

A (H) = {T ∈ ϕ(H) : D(T i) + Im(T j) = H, ∀ i, j ∈ N}.
Clearly, A (H) 6= ∅, because T ∈ A (H), when T is a closed surjective operator.

For T ∈ A (H), we can see the following

βkn(T ) = dim Im(Tn)/Im(Tn+k),
= dimD(Tn)/[Im(T k) + ker(Tn)] ∩ D(Tn),
= dim[D(Tn) + Im(T k)]/[Im(T k) + ker(Tn)],
= dimH/[Im(T k) + ker(Tn)].

We note from [4, Lemma 2.2] that if ae(T ) < +∞, then

q0(T ) = inf{n ∈ N : α1
n(T ) = α1

n+1(T )} < +∞,

and we also note from [4, Lemma 2.5] that if T ∈ A (H) such that de(T ) < +∞, then

q0(T ) = inf{n ∈ N : β1
n(T ) = β1

n+1(T )} < +∞.

We start our study with the following lemma.
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Lemma 6.1. Let T ∈ A (H) such that ker(Tn) ⊆ Im(T ), for all n ∈ N. Then

α(Tn) = nα(T ), β(Tn) = nβ(T ), ∀ n ∈ N\{0}.

Proof. Let n ∈ N\{0}, and we consider the following map :

θ : ker(Tn) −→ ker(Tn−1)
x 7−→ Tx .

Clearly θ is a surjective linear operator and hence α(Tn) = α(T ) + α(Tn−1) = nα(T ).
Now, we define the following linear operator :

S : D(Tn−1) −→ H/Im(Tn)

x 7−→ Tn−1x.

Since ker(S) = [Im(T ) + ker(Tn−1)] ∩ D(Tn−1) = Im(T ) ∩ D(Tn−1), we deduce that

Im(Tn−1)/Im(Tn) ≈ D(Tn−1)/[Im(T ) ∩ D(Tn−1)]
≈ [D(Tn−1) + Im(T )]/Im(T )
≈ H/Im(T ).

But, Im(Tn) ⊆ Im(Tn−1) ⊆ H, so

dimH/Im(Tn) = dimH/Im(Tn−1) + dim Im(Tn−1)/Im(Tn).

Therefore
β(Tn) = β(Tn−1) + β(T ) = nβ(T ).

This completes the proof. �

Lemma 6.2. Let T ∈ A (H) such that min{de(T ), ae(T )} < +∞ and let p = q0(T ) <
+∞. Then for all n ≥ p, we have

αkn(T ) = k α1
p(T ), βkn(T ) = k β1

p(T ), ∀ k ∈ N\{0}.

Proof. Let m ≥ p and let T̃m be the operator induced by T on H/ker(Tm). Since

ker[(T̃m)n] ⊆ Im(T̃m), for every n ∈ N, by Lemma 6.1, we get

βkm(T ) = β(T̃m
k
) = k β(T̃m) = k β1

m(T ) = k β1
p(T ), ∀ k ≥ 1

and

αkm(T ) = α(T̃m
k
) = k α(T̃m) = k α1

m(T ) = k α1
p(T ), ∀ k ≥ 1.

This completes the proof. �

Remark 6.3. Let k, d ∈ N and T ∈ k-qΦ(d)(H) such that ae(T ) < +∞ or de(T ) < +∞.
Let m = min{ae(T ), de(T )}, we denote by

δkm(T ) = αkm(T )− βkm(T ) ∈ Z ∪ {−∞, +∞}.
If T ∈ A (H) from [4, Lemma 2.2, Lemma 2.5], we deduce that δkm(T ) = δkn(T ), for all
n ≥ m. Therefore for k ∈ N\{0}, by Lemma 6.2, we obtain

δkm(T ) = δkq0(T )(T ) = αkq0(T )(T )− βkq0(T )(T )

= k α1
q0(T )(T )− k β1

q0(T )(T )

= k δ1
q0(T )(T )

= k δ1
m(T ).

Remark 6.3 enables us to define the pq-index of pseudo-quasi-Fredholm operator.

Definition 6.4. We say that an operator T ∈ pqΦ(H) possesses pq-index if ` = min{ae(T ),
de(T )} < +∞, in this case the pq-index of T is defined by

indpq(T ) = α1
` (T )− β1

` (T ) ∈ Z ∪ {−∞, +∞}.



ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS 161

Example 6.5.

(i) Let T be a pseudo-quasi-Fredholm operator such that a(T ) <+∞ (resp. d(T ) <
+∞, max{a(T ), d(T )} < +∞), then T possesses a pq-index and indpq(T ) ≤ 0
(resp. indpq(T ) ≥ 0, indpq(T ) = 0).

(ii) Let H be the Hilbert space with an orthonormal basis {ei, j : i, j ∈ N\{0}}. Let
T ∈ B(H) be defined by

T (ei, j) =

{
0 if i = 1,
ei, j+1 if i ≥ 2.

Clearly ker(T k) (resp. Im(T k)) is the subspace of H spanned by {e1, j : j ≥ 1}
(resp. {ei, j : i ≥ 2, j ≥ k + 1}), for all k ≥ 1, so that q0(T ) = a(T ) = ae(T ) = 1
and de(T ) = +∞. Since Im(T ) is closed and Im(T ) ⊥ ker(T ), then Im(T ) + ker(T )
is closed, this implies that T is k-quasi-Fredholm of degree qk(T ) = max{1− k, 0},
for every k ∈ N and the pq-index of T is equal to

indpq(T ) = α1
1(T )− β1

1(T ) = −∞.
Moreover, T 6∈ Φ±(H), but there exists ε > 0 such that λI − T ∈ Φ+(H) and
α(λI − T ) = 0, for all λ ∈ C and 0 < |λ| < ε according to Lemma 3.1.

Remark 6.6. Let k ∈ N and T ∈ ϕ(H) such that %(T ) 6= ∅ (in particular T ∈ A (H)). If
T ∈ k-qΦ(H) possesses pq-index, then Tn ∈ k-qΦ(H) and indpq(T

n) = n indpq(T ), for all
n ∈ N\{0}. Indeed, by Lemma 4.5 and Remark 4.18, it follows that Tn ∈ k-qΦ(H) and
by [4, Lemma 2.1], we infer that Tn possesses pq-index. Let d = q0(Tn), since

ker(T j) ⊆ ker[(Tn)j ] ⊆ Im(Tn) + ker[(Tn)d] ⊆ Im(T ) + ker(T dn), ∀ j ∈ N,
then l = q0(T ) ≤ nd. From Remark 6.3, we obtain

indpq(T
n) = α1

d(T
n)− β1

d(Tn)
= αnnd(T )− βnnd(T )
= δnnd(T ) = δnl (T ) = n δ1

l (T ) = n indpq(T ).

Proposition 6.7. Let T ∈ ϕ(H) such that %+
e (T ) 6= ∅ and k ∈ N. If ae(T ) < +∞, then

T ∈ k-qΦ(H)⇐⇒ Im(T ) + ker(T ae(T )) is closed.

Proof. ” =⇒ ” Let d = qk(T ), by Lemma 2.1, we have d + k ≥ q0(T ) ≥ ae(T ) and as
Im(T ) + ker(T d+k) is closed, then from [4, Lemma 3.3], we get Im(T ) + ker(T ae(T )) is
closed.

”⇐= ” Since ae(T ) is finite, then q0(T ) is also finite and hence d = qk(T ) = max{q0(T )−
k, 0} < +∞ according to Lemma 2.1. As d + k ≥ q0(T ) ≥ ae(T ), then we can deduce
from [4, Lemma 3.3], that Im(T )+ker(T d+k) is closed. Let m = max{d, ae(T )}, we have
dim Im(Tm) ∩ ker(T k+1) < +∞, this gives that

Im(T d) ∩ ker(T k+1) + ker(T k) = Im(Tm) ∩ ker(T k+1) + ker(T k) is closed.

Hence, T ∈ k-qΦ(H) and the proof of the lemma is complete. �

Proposition 6.8. Let T ∈ A (H) such that %+
e (T ) 6= ∅ and de(T ) < +∞. Then

T ∈ k-qΦ(H), ∀ k ≥ de(T ).

Proof. For n ∈ N and i ∈ N\{0}, we have

β1
n(T ) ≤ βin(T ) = β(T̃n

i
) ≤ i β(T̃n) = i β1

n(T ),

where T̃n is the operator induced by T on H/ker(Tn). This implies that

β1
n(T ) < +∞⇐⇒ βin(T ) < +∞.
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Let k ≥ de(T ) and d = qk(T ) = max{q0(T )− k, 0} < +∞. Since

dimH/[Im(T ) + ker(T d+k)] = β1
d+k(T ) < +∞

and
dimH/[Im(T d) + ker(T k)] = βdk(T ) < +∞,

then Im(T ) + ker(T d+k) and [Im(T d) + ker(T k)] ∩ ker(T k+1) are closed (see Lemma 2.9
and [7, Proposition 2.1.1]). This completes the proof. �

Remark 6.9. By Propositions 6.7 and 6.8, we remark that, we can replace the hypothesis
of Definition 6.4 by : let T ∈ A (H) such that %+

e (T ) 6= ∅ and de(T ) < +∞ or ae(T ) <
+∞ and Im(T ) + ker(T ae(T )) is closed. If additionally T ∈ B(H), then T is semi-B-
Fredholm and the pq-index coincide with the index of a semi-B-Fredholm operator [1].

Theorem 6.10. Let k ∈ N and T ∈ k-qΦ(H) such that %(T ) 6= ∅. Let F ∈ B(H) such
that dim Im(F ) < +∞, Im(F ) ⊂ D(T ) and TFx = FTx, for all x ∈ D(T ). If T possesses
pq-index, then T +F ∈ k-qΦ(H), T +F possesses pq-index and indpq(T +F ) = indpq(T ).

Proof. From Theorem 5.4, we have T + F ∈ k-qΦ(H). According to Lemma 2.1 and
Corollary 5.3, d = max{qk(T ), qk(T + F )} and p = max{q0(T ), q0(T + F )} are finite.
By Lemma 3.1, we know that there exists λ ∈ C\{0} such that

α(Tλ) = α1
d+k(T ) = α1

p(T ), β(Tλ) = β1
d+k(T ) = β1

p(T ),

α(λI − T − F ) = α1
d+k(T + F ) = α1

p(T + F ),

β(λI − T − F ) = β1
d+k(T + F ) = β1

p(T + F ).

So, Tλ ∈ Φ±(H), consequently (T + F )λ ∈ Φ±(H) and

l = min{ae(T + F ), de(T + F )} ≤ p.
Now since j = min{ae(T ), de(T )} ≤ p, then

indpq(T ) = α1
j (T )− β1

j (T ) = α1
p(T )− β1

p(T ) = ind(Tλ)
= ind[(T + F )λ] = α1

p(T + F )− β1
p(T + F )

= α1
l (T + F )− β1

l (T + F ) = indpq(T + F ).

This completes the proof. �

Remark 6.11. Let k ∈ N and T ∈ k-qΦ(H) such that %(T ) 6= ∅. From the proof of
Theorem 6.10, we see that if T possesses pq-index, then there exists ε > 0 such that
Tλ ∈ Φ±(H) and ind(Tλ) = indpq(T ), for every 0 < |λ| < ε.

Theorem 6.12. Let d, k ∈ N, T ∈ k-qΦ(d)(H) and V ∈ B(H). Suppose that T is a
bounded operator that commutes with V and V − T is sufficiently small and invertible,
then :

(i) V is a s-regular operator,
(ii) α1

n(V ) = α1
d+k(T ), for all n ≥ 0,

(iii) β1
n(V ) = β1

d+k(T ), for all n ≥ 0.

Proof. It follows from Lemma 2.1 and Proposition 2.7 that T has topological uniform
descent for n ≥ d+ k. The result now follows from [5, Theorem 4.7]. �

Corollary 6.13. Let T, V ∈ B(H) such that TV = V T and V is sufficiently small and
invertible. If T ∈ pqΦ(H), then T + V ∈ pqΦ(H).

Corollary 6.14. Let d, k ∈ N, T ∈ k-qΦ(d)(H) and V ∈ B(H). Suppose that T is a
bounded operator that commutes with V and V − T is sufficiently small and invertible,
then :

(i) V has infinite ascent or descent if and only if T does.
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(ii) V is onto if and only if T has finite descent.
(iii) V is one-to-one (or bounded below) if and only if T has finite ascent.
(iv) V is invertible if and only if 0 ∈ E(T ).
(v) V is semi-Fredholm if and only if T possesses pq-index. If V ∈ Φ±(H), then

indpq(T ) = ind(V ) = α1
n(V )− β1

n(V ), ∀ n ≥ 0.

Theorem 6.15. Let V, T ∈ pqΦ(H). Suppose that V, T ∈ B(H) such that TV = V T and
V −T is sufficiently small, then T possesses pq-index if and only if V possesses pq-index.
If T or V possesses pq-index, then

indpq(T ) = indpq(V ).

Proof. Let k1, k2, d1, d2 ∈ N such that T ∈ k1-qΦ(d1)(H) and V ∈ k2-qΦ(d2)(H), then T
and V having topological uniform descent for n ≥ max{d1 + k1, d2 + k2}. Now the proof
follows from [5, Theorem 4.6]. �

7. Examples

In this section we present some examples that are applications of the abstract theory
of the pseudo-quasi-Fredholm.

Example 7.1. In H = L2([0, 1]) define the second-order differential operator T by

D(T ) = {u ∈ H2([0, 1]) : u′(0) + u′(1) = 0, u(0) = 0}, Tu = −u′′,

where H2([0, 1]) denotes the subspace of H consisting of all functions u ∈ C1([0, 1])
with u′ absolutely continuous on [0, 1] and u′′ ∈ H. Then T is a discrete operator in
H. In [4, Example 3.12], it is proved that σ(T ) = {λi}∞i=1 where λi = (2i − 1)2π2, and
a(λiI − T ) = d(λiI − T ) = 2, for i = 1, 2, . . . . This shows that q0(λiI − T ) = 2,

Im(λiI − T ) + ker[(λiI − T )n] = H,

Im[(λiI − T )n] ∩ ker[(λiI − T )j+1] + ker[(λiI − T )j ] = ker[(λiI − T )j ],

for all j ∈ N, n ≥ 2 and i ≥ 1. For i ≥ 1 and k ∈ N, by Lemma 2.1, we obtain λiI − T is
k-quasi-Fredholm of degree dk = max{2 − k, 0}. Hence C = %(T ) ∪ σ(T ) ⊆ %kqΦ(T ) i.e.,

σkqΦ(T ) = σ∞qΦ(T ) = ∅, for all k ∈ N.

Remark 7.2. If T ∈ B(H) by Theorem 3.4, we observe that

(1) σ∞qΦ(T ) = ∅ =⇒ σ(T ) = {λ1, λ2, . . . , λn} = E(T ),

for some λ1, λ2, . . . , λn ∈ C. From Example 7.1 the conclusion (1) fails when D(T )  H.

Example 7.3. Consider the operator S defined on `2(N) by

S(x1, x2, x3, . . .) =
(x2

2
,
x3

3
,
x4

4
, · · ·

)
and the operator T defined on `2(N)× `2(N) by

T
(
(x1, x2, x3, . . .), (y1, y2, y3, . . .)

)
=
(
(0, x2, x3, . . .), S(y1, y2, y3, . . .)

)
.

(a) It is clear that S is a quasi-nilpotent operator and dim ker(Sn) = n, for all n ∈ N.
Thus, σ∞qΦ(S) ⊆ σkqΦ(S) ⊆ σ(S) = {0}, for all k ∈ N. Suppose that σ∞qΦ(S) = ∅, then

by Theorem 3.4, T is algebraic. This implies that E(S) = {0}, which is a contradiction
because a(S) = +∞. It follows that σ∞qΦ(S) = {0} and hence σkqΦ(S) = {0}, for all

k ∈ N. Let f be an analytic function in a neighborhood of the usual spectrum σ(S)
and not locally constant in a neighborhood of 0 and f(0) 6= 0, then by Corollary
4.17, f(S) is a k-quasi-Fredholm operator, for all k ∈ N.
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(b) Let F ∈ B(`2(N)× `2(N)) be defined by

F
(
(x1, x2, x3, . . .), (y1, y2, y3, . . .)

)
=
(
(x1, 0, 0, . . .), (0, 0, 0, . . .)

)
.

Note that (T + F )(x, y) = (x, Sy), for all x, y ∈ `2(N), which implies that σkpq(T +

F ) = σkpq(I) ∪ σkpq(S) = {0}, because σkpq(I) = ∅, for all k ∈ N. Furthermore, since
dim Im(F ) = 1 and TF = FT = 0, by Theorem 5.4, it follows that

σkpq(T ) = σkpq(T + F ) = {0}, ∀ k ∈ N.

Example 7.4. For each n ∈ N\{0}, set

ν(n) = max{k ∈ N : 2k divides n}.

Let T ∈ B(`2(N)) be defined by

T
( +∞∑
n=0

xnen

)
=

+∞∑
n=1

1

2ν(n)
xnen,

with {en : n ∈ N} is an orthonormal basis of `2(N).

(a) We remark that ker(T ) is the subspace of `2(N) spanned by e0, which gives ae(T ) = 0.
Since Im(T ) is easily seen to be non-closed, it follows from Proposition 6.7 that

T 6∈ k-qΦ(`2(N)), ∀ k ∈ N.

Now Proposition 6.8 gives de(T ) = +∞.
(b) It is not difficult to see that

σ(T ) = {0} ∪
{
λn =

1

2n
: n ∈ N

}
.

Besides, for each n ∈ N, ker(λnI − T ) is the closed subspace of `2(N) spanned by
{e2n(2j+1) : j ∈ N}, and Im(λnI − T ) = ker(λnI − T )⊥. It follows that a(λnI − T ) =

d(λnI −T ) = 1. Since Im[(λnI −T )i] + ker[(λnI −T )j ] = `2(N) and Im[(λnI −T )i]∩
ker[(λnI − T )j ] = {0}, for all i, j ≥ 1, it follows that λn ∈ %kqΦ(T ), for all n, k ∈ N.
This shows that C\{0} ⊆ %kqΦ(T ), and as 0 ∈ σkqΦ(T ), we obtain

σ∞qΦ(T ) = σkqΦ(T ) = {0}, ∀ k ∈ N.

(c) Since for all λ ∈ σ(T )\{0}, we have a(λI − T ) = d(λI − T ) = 1, it follows that
λI − T ∈ pqΦ(`2(N)) possesses pq-index, for all λ ∈ C\{0}. Furthermore, since
max{a(λI − T ), d(λI − T )} ≤ 1, for all λ ∈ C\{0}, by Remark 6.3, we deduce that

indpq(λI − T ) = α1
1(λI − T )− β1

1(λI − T ) = 0.

(d) Fix c ∈ C and consider the polynomial P defined by P (Z) = c. Then P (T ) = cI.
Since σ∞qΦ(T ) is nonempty, it follows that

P (σ∞qΦ(T )) = {c}.

However, %∞qΦ(P (T )) = C : indeed, C\{c} = %(cI) ⊆ %∞qΦ(cI), and cI − cI (that is,

the zero operator on `2(N)) is pseudo-quasi-Fredholm. Consequently, %∞qΦ(P (T )) = C
and

σ∞qΦ(P (T )) = ∅ 6= P (σ∞qΦ(T )).

Hence the conclusion of Theorem 4.12 fails in the presence of a constant complex
polynomial.



ON A NEW CLASS OF OPERATORS RELATED TO QUASI-FREDHOLM OPERATORS 165

Example 7.5. Consider the infinite-dimensional complex Hilbert space H = C3× `2(N)
and the operator T ∈ B(H) defined by

T
(

(z1, z2, z3),

+∞∑
n=0

xnen

)
=
(

(z2, 0, 0), z3e0 +

+∞∑
n=0

xn+1en

)
,

where {en : n ∈ N} is an orthonormal basis of `2(N).

(a) We remark that

ker(T ) =
{(

(z1, z2, z3), (xn)n∈N
)
∈ H : z2 = 0, x1 = −z3, xn = 0, ∀ n ≥ 2

}
and

Im(T ) =
{(

(z1, z2, z3), (xn)n∈N
)
∈ H : z2 = z3 = 0

}
.

Hence α(T ) = 3 and β(T ) = 2, and consequently

(1) Im(T i) ∩ ker(T j+1) + ker(T j) and Im(T ) + ker(T j) are closed, ∀ i, j ∈ N.

We observe that, for all k ≥ 2,

(2) T k
(

(z1, z2, z3),

+∞∑
n=0

xnen

)
=
(

(0, 0, 0),

+∞∑
n=0

xn+ken

)
.

Hence

Im(T k) = {0} × `2(N), ∀ k ≥ 2.

Therefore,

ker(T ) ∩ Im(T ) =
{(

(z1, z2, z3), (xn)n∈N
)
∈ H : z2 = z3 = 0, xn = 0, ∀ n ≥ 1

}
,

and, for all k ≥ 2,

ker(T ) ∩ Im(T k) =
{(

(z1, z2, z3), (xn)n∈N
)
∈ H : z1 = z2 = z3 = 0, xn = 0, ∀ n ≥ 1

}
.

Thus

q0(T ) = inf{k ∈ N : ker(T ) ∩ Im(T k) = ker(T ) ∩ Im(Tm), ∀ m ≥ k} = 2.

For k ≥ 2, by using (1) and Lemma 2.1, we obtain that T is a quasi-Fredholm (resp.
1-quasi-Fredholm, k-quasi-Fredholm) operator of degree d = 2 (resp. d = 1, d = 0).

(b) Recall that the reduced minimum modulus of a non-zero operator A ∈ B(H) is
defined by

γ(A) = inf{‖Ax‖ : x ∈ ker(A)⊥ and ‖x‖ = 1}.
If A = 0 then we take γ(A) = +∞. Now let S ∈ `2(N) be defined by

S
( +∞∑
n=0

xnen

)
=

+∞∑
n=0

xn+2en.

We note from (2) that

(3) (λI − T 2)(z, x) =
(
λ z, (λI − S)x

)
, ∀ (z, x) ∈ C3 × `2(N), ∀ λ ∈ C.

It is clear that S is Fredholm (α(S) = 2, β(S) = 0) and γ(S) = ‖S‖ = 1. Therefore,
for all λ1, λ2 ∈ C such that |λ1| < 1 = γ(S) and |λ2| > 1 = ‖S‖, we have λ1I − S
is Fredholm and λ2I − S is invertible. Since T is Fredholm it follows from (3) that
λI − T 2 is Fredholm for all λ ∈ C such that |λ| 6= 1. Consequently, σ∞qΦ(T 2) ⊆ {λ ∈
C : |λ| = 1} and σkqΦ(T 2) ⊆ {λ ∈ C : |λ| = 1}, for all k ∈ N. Now by Theorem 4.12,

we see that if λ ∈ σ∞qΦ(T ) then |λ2| = 1, this implies that |λ| = 1. Hence

σ∞qΦ(T ) ⊆ {λ ∈ C : |λ| = 1}.



166 ZIED GARBOUJ AND HAÏKEL SKHIRI
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