REPRESENTATIONS OF THE ORLICZ FIGÀ-TALAMANCA HERZ ALGEBRAS AND SPECTRAL SUBSPACES

RATTAN LAL AND N. SHRAVAN KUMAR

ABSTRACT. Let G be a locally compact group. In this note, we characterise nondegenerate *-representations of $A_{\Phi}(G)$ and $B_{\Phi}(G)$. We also study spectral subspaces associated to a non-degenerate Banach space representation of $A_{\Phi}(G)$.

1. INTRODUCTION

Let G be a locally compact group. It is well known that there is a one to one correspondence between the unitary representations of G and the non-degenerate *-representations of $L^1(G)$ [5, p. 73]. Similarly, if X is any locally compact Hausdorff space, then there is a one to one correspondence between the cyclic *-representations of $C_0(X)$ and positive bounded Borel measures on X [8, p. 486]. The corresponding result for the Fourier algebra A(G) of a locally compact group is due to Lau and Losert [10]. For more on the Fourier algebra see [4, 9]. Recently, Guex [11] extended the result of Lau and Losert to Figà-Talamanca Herz algebras. We refer the readers to [2] for more on Figà-Talamanca Herz algebras.

In [14], the authors have introduced and studied the L^{Φ} -versions of the Figà-Talamanca Herz algebras. Here L^{Φ} denotes the Orlicz space corresponding to the Young function Φ . The space $A_{\Phi}(G)$ is defined as the space of all continuous functions u, where u is of the form

$$u = \sum_{n=1}^{\infty} f_n * \check{g_n},$$

where $f_n \in L^{\Phi}(G), g_n \in L^{\Psi}(G), (\Phi, \Psi)$ is a pair of complementary Young functions satisfying the Δ_2 -condition and

$$\sum_{n=1}^{\infty} N_{\Phi}(f_n) \|g_n\|_{\psi} < \infty.$$

It is shown in [14] that $A_{\Phi}(G)$ is a regular, tauberian, semisimple commutative Banach algebra with the Gelfand spectrum homeomorphic to G.

This paper has the modest aim of characterising the non-degenerate *-representations of $A_{\Phi}(G)$ in the spirit of [10]. This characterisation is given in Corollary 3.4. In Section 4, we show that any non-degenerate *-representation of $A_{\Phi}(G)$ can be extended uniquely to a non-degenerate *-representation of $B_{\Phi}(G)$. In Section 5, we provide an application to ergodic sequences.

Godement in his fundamental paper [6] on Wiener Tauberian theorems studied spectral subspaces associated to a certain Banach space representations. This result was extended to the Fourier algebra A(G) by Parthasarathy and Prakash [12]. In Section 6, we also study spectral subspaces of $A_{\Phi}(G)$.

²⁰¹⁰ Mathematics Subject Classification. Primary 43A15, 46J25; Secondary 22D99.

Key words and phrases. Orlicz Figà-Talamanca Herz algebra, representation, spectral subspaces.

2. Preliminaries

Let $\Phi : \mathbb{R} \to [0, \infty]$ be a convex function. Then Φ is called a Young function if it is symmetric and satisfies $\Phi(0) = 0$ and $\lim_{x \to \infty} \Phi(x) = +\infty$. If Φ is any Young function, then define Ψ as

$$\Psi(y) := \sup \{ x|y| - \Phi(x) : x \ge 0 \}, \quad y \in \mathbb{R}$$

Then Ψ is also a Young function and is termed as the complementary function to Φ . Further, the pair (Φ, Ψ) is called a complementary pair of Young functions.

Let G be a locally compact group with a left Haar measure dx. We say that a Young function Φ satisfies the Δ_2 -condition, denoted $\Phi \in \Delta_2$, if there exists a constant K > 0 and $x_0 > 0$ such that $\Phi(2x) \leq K\Phi(x)$ whenever $x \geq x_0$ if G is compact and the same inequality holds with $x_0 = 0$ if G is non compact.

The Orlicz space, denoted $L^{\Phi}(G),$ is a vector space consisting of measurable functions, defined as

$$L^{\Phi}(G) = \left\{ f: G \to \mathbb{C} : \text{f is measurable and } \int_{G} \Phi(\beta|f|) \ dx < \infty \text{ for some } \beta > 0 \right\}$$

The Orlicz space $L^{\Phi}(G)$ is a Banach space when equipped with the norm

$$N_{\Phi}(f) = \inf\left\{k > 0 : \int_{G} \Phi\left(\frac{|f|}{k}\right) dx \le 1\right\}$$

The above norm is called as the Luxemburg norm or Gauge norm. If (Φ, Ψ) is a complementary Young pair, then there is a norm on $L^{\Phi}(G)$, equivalent to the Luxemberg norm, given by,

$$||f||_{\Phi} = \sup \left\{ \int_{G} |fg| dx : \int_{G} \Psi(|g|) dx \le 1 \right\}.$$

This norm is called as the Orlicz norm.

Let $C_c(G)$ denote the space of all continuous functions on G with compact support. If a Young function Φ satisfies the Δ_2 -condition, then $C_c(G)$ is dense in $L^{\Phi}(G)$. Further, if the complementary function Ψ is such that Ψ is continuous and $\Psi(x) = 0$ iff x = 0, then the dual of $(L^{\Phi}(G), N_{\Phi}(\cdot))$ is isometrically isomorphic to $(L^{\Psi}(G), \|\cdot\|_{\Psi})$. In particular, if both Φ and Ψ satisfies the Δ_2 -condition, then $L^{\Phi}(G)$ is reflexive.

For more details on Orlicz spaces, we refer the readers to [13].

Let Φ and Ψ be a pair of complementary Young functions satisfying the Δ_2 condition. Let

$$A_{\Phi}(G) = \left\{ u = \sum_{n=1}^{\infty} f_n * \check{g_n} : \{f_n\} \subset L^{\Phi}(G), \{g_n\} \in L^{\Psi}(G) \text{ and } \sum_{n=1}^{\infty} N_{\Phi}(f_n) \|g_n\|_{\Psi} < \infty \right\}.$$

Note that if $u \in A_{\Phi}(G)$ then $u \in C_0(G)$. If $u \in A_{\Phi}(G)$, define $||u||_{A_{\Phi}}$ as

$$||u||_{A_{\Phi}} := \inf \left\{ \sum_{n=1}^{\infty} N_{\Phi}(f_n) ||g_n||_{\Psi} : u = \sum_{n=1}^{\infty} f_n * \check{g_n} \right\}.$$

The space $A_{\Phi}(G)$ equipped with the above norm and with the pointwise addition and multiplication becomes a commutative Banach algebra [14, Theorem 3.4]. In fact, $A_{\Phi}(G)$ is a commutative, regular and semisimple banach algebra with spectrum homeomorphic to G [14, Corollary 3.8]. This Banach algebra $A_{\Phi}(G)$ is called as the Orlicz Figà-Talamanca Herz algebra. Let

$$B_{\Phi}(G) := \{ u \in C(G) : uv \in A_{\Phi}(G) \forall v \in A_{\Phi}(G) \}$$

equipped with the norm $||u||_{B_{\Phi}} = \sup \{ ||uv||_{A_{\Phi}} : v \in A_{\Phi}(G), ||v||_{A_{\Phi}} = 1 \}$. Then, with the above norm, $B_{\Phi}(G)$ becomes a commutative Banach algebra with pointwise addition and multiplication.

Let $\mathcal{B}(L^{\Phi}(G))$ be the linear space of all bounded linear operators on $L^{\Phi}(G)$ equipped with the operator norm. For a bounded complex Radon measure μ on G and $f \in L^{\Phi}(G)$, define $T_{\mu} : L^{\Phi}(G) \to L^{\Phi}(G)$ by $T_{\mu}(f) = \mu * f$. It is clear that $T_{\mu} \in \mathcal{B}(L^{\Phi}(G))$. Let $PM_{\Phi}(G)$ denote the closure of

 $\{T_{\mu}: \mu \text{ is a bounded complex Radon measure}\}$

in $\mathcal{B}(L^{\Phi}(G))$ with respect to the ultraweak topology. It is proved in [14, Theorem 3.5], that for a locally compact group G, the dual of $A_{\Phi}(G)$ is isometrically isomorphic to $PM_{\Psi}(G)$. By [14, Theorem 3.6] singletons are sets of spectral synthesis for $A_{\Phi}(G)$. Further, every closed subgroup is a set of local synthesis for $A_{\Phi}(G)$.

Throughout this paper, G will denote a locally compact group with a fixed left Haar measure dx. Further Φ will always denote a Young function whose complementary Young function is Ψ and the pair (Φ, Ψ) satisfies the Δ_2 -condition.

3. Non-degenerate *-representations of $A_{\Phi}(G)$

In this section, motivated by the results of [10, 11], we describe all the non-degenerate *-representations of $A_{\Phi}(G)$. Throughout this section and the next, \mathcal{H} will denote a Hilbert space.

Proposition 3.1. Let μ be a bounded positive Radon measure on G.

- (i) For each $u \in A_{\Phi}(G)$, the mapping $\pi_{\mu}(u) : f \mapsto uf$ is a bounded linear operator on $L^{2}(G, d\mu)$.
- (ii) The mapping $u \mapsto \pi_{\mu}(u)$ defines a *-representation of $A_{\Phi}(G)$ on $\mathcal{B}(L^2(G, d\mu))$.
- (iii) If μ is bounded, then π_{μ} is a cyclic representation of $A_{\Phi}(G)$ with the constant 1 function as cyclic vector.

Proof. (i) and (ii) are just a routine check.

(iii) We show that the constant 1 function is a cyclic vector. Since the measure μ is finite, the conclusion follows from the density of $A_{\Phi}(G) \cap C_c(G)$ in $C_c(G)$ with respect to the $L^2(G, d\mu)$ -norm.

Corollary 3.2. If μ is a positive Radon measure on G (not necessarily bounded) then π_{μ} (defined as in Proposition 3.1) is non-degenerate.

Proof. Let μ be a positive Radon measure on G. By [3, Pg. 33, 2.2.7], it is enough to show that the representation π_{μ} is a direct sum of cyclic representations. By [1, INT IV.77] and [1, INT V.14, Proposition 4], it follows that

$$L^2(G, d\mu) \cong \bigoplus_{\alpha \in \wedge} L^2(G, d\mu_\alpha),$$

where $\{\mu_{\alpha}\}_{\alpha \in \wedge}$ is a summable family of measures with pairwise disjoint support. Now the conclusion follows from (iii) of Proposition 3.1.

In the next result, we characterise all cyclic *-representations.

Theorem 3.3. Let $\{\pi, \mathcal{H}\}$ be a cyclic *-representation of $A_{\Phi}(G)$. Then there exists a bounded positive Radon measure μ such that π is unitarily equivalent to the representation $\{\pi_{\mu}, L^2(G, d\mu)\}$ given in Proposition 3.1.

Proof. Let $u \in A_{\Phi}(G)$. Then, by [15, Pg. 22], it follows that $||\pi(u)||_{sp} \leq ||u||_{sp}$. By [14, Theorem 3.4], $A_{\Phi}(G)$ is a commutative Banach algebra and hence the spectral norm and

the operator norm for $\pi(u)$ coincides. Further, as $A_{\Phi}(G)$ is semi-simple and the fact that the spectrum of $A_{\Phi}(G)$ is G [14, Corollary 3.81], $||u||_{sp} = ||u||_{\infty}$. Thus,

$$\|\pi(u)\|_{\mathcal{B}(\mathcal{H})} \le \|u\|_{\infty}.$$

As a consequence of this inequality and the fact that $A_{\Phi}(G)$ is dense in $C_0(G)$, it follows that π extends to a *-representation of $C_0(G)$ on \mathcal{H} , still denoted as π . Note that π is a cyclic *-representation of the C*-algebra $C_0(G)$. Let φ be the cyclic vector of the representation $\{\pi, C_0(G)\}$. Define $T_{\varphi}: C_0(G) \to \mathbb{C}$ as

$$T_{\varphi}(u) = \langle \pi(u)\varphi, \varphi \rangle, \ u \in C_0(G).$$

It is clear that T_{φ} is a positive linear functional on $C_0(G)$ and hence, by Riesz representation theorem, there exists a bounded positive Radon measure μ such that

(3.1)
$$T_{\varphi}(u) = \int_{G} u \ d\mu.$$

Let π_{μ} denote the cyclic *-representation of $A_{\Phi}(G)$ on $L^{2}(G, d\mu)$, given by Proposition 3.1.

We now claim that the representations π and π_{μ} of $A_{\Phi}(G)$ are unitarily equivalent. Since φ is a cyclic vector, in order to prove the above claim, it is enough to show that the correspondence $\pi(u)\varphi \mapsto u.1$ is an isometry and commutes with π and π_{μ} . Note that the above correspondence is well-defined by (3.1). Let T denote the above well-defined correspondence.

We now show that T is an isometry. Let $u \in A_{\Phi}(G)$. Then

$$\begin{aligned} \pi(u)\varphi, \pi(u)\varphi\rangle &= \langle \pi^*(u)\pi(u)\varphi, \varphi\rangle \\ &= \langle \pi(\bar{u}u)\varphi, \varphi\rangle \; (\pi \text{ is a }*\text{-homomorphism}) \\ &= \int_G |u|^2 \; d\mu = \langle \varphi, \varphi\rangle. \end{aligned}$$

Finally, we show that T intertwines with π and π_{μ} . Let $u \in A_{\Phi}(G)$. Then, for $v \in A_{\phi}(G)$, we have,

$$T(\pi(u)(\pi(v)\varphi)) = T((\pi(u)\pi(v))\varphi)$$

= $T(\pi(uv)\varphi) = uv.1$
= $\pi_{\mu}(u)(v.1) = \pi_{\mu}(u)(T(\pi(v)\varphi)).$

Here is the main result of this section, describing all the non-degenerate Hilbert space representations of $A_{\Phi}(G)$.

Corollary 3.4. If $\{\pi, \mathcal{H}\}$ is any non-degenerate *-representation of $A_{\Phi}(G)$ then π is unitarily equivalent to $\{\pi_{\mu}, L^2(G, d\mu)\}$ for some positive measure μ .

Proof. Let $\{\pi, \mathcal{H}\}$ be a non-degenerate *-representation of $A_{\Phi}(G)$. By [3, Proposition 2.2.7], π is a direct sum of cyclic *-representations $\{\pi_{\alpha}, \mathcal{H}_{\alpha}\}_{\alpha \in \Lambda}$. For each $\alpha \in \Lambda$, by Theorem 3.3, there exists a bounded positive measure μ_{α} such that the representations $\{\pi_{\alpha}, \mathcal{H}_{\alpha}\}\$ and $\{\pi_{\mu_{\alpha}}, L^2(G, d\mu_{\alpha})\}\$ are unitarily equivalent.

Suppose that the family $\{\mu_{\alpha}\}_{\alpha\in\wedge}$ is summable. Let $\mu = \sum_{\alpha\in\wedge}\mu_{\alpha}$. Then μ will be a

positive measure and

$$\{\pi_{\mu}, L^{2}(G, d\mu)\} \cong \bigoplus_{\alpha \in \wedge} \{\pi_{\mu_{\alpha}}, L^{2}(G, d\mu_{\alpha})\} \cong \bigoplus_{\alpha \in \wedge} \{\pi_{\alpha}, \mathcal{H}_{\alpha}\} \cong \{\pi, \mathcal{H}\}.$$

Thus, we are done if we can show that $\{\mu_{\alpha}\}_{\alpha \in \wedge}$ is a summable family. Let $f : G \to \mathbb{C}$ be a continuous function with compact support. Then $\bigoplus_{\alpha \in \wedge} f \in \bigoplus_{\alpha \in \wedge} L^2(G, \mu_{\alpha})$ and hence,

(3.2)
$$\sum_{\alpha \in \wedge} \left(\int_{G} \left| f \right|^{2} d\mu_{\alpha} \right)^{1/2} < \infty$$

Now,

$$\begin{split} \sum_{\alpha \in \wedge} |\mu_{\alpha}(f)| &= \sum_{\alpha \in \wedge} \left| \int_{G} f \ d\mu_{\alpha} \right| \leq \sum_{\alpha \in \wedge} \int_{G} |f| \ d\mu_{\alpha} \\ &\leq \sum_{\alpha \in \wedge} \left(\int_{G} |f|^{2} \ d\mu_{\alpha} \right)^{1/2} \left(\int_{G} |1|^{2} \ d\mu_{\alpha} \right)^{1/2} \\ &= \sum_{\alpha \in \wedge} \left(\int_{G} |f|^{2} \ d\mu_{\alpha} \right)^{1/2} (\mu_{\alpha}(G))^{1/2} \\ &\leq \sup_{\alpha \in \wedge} (\mu_{\alpha}(G))^{1/2} \sum_{\alpha \in \wedge} \left(\int_{G} |f|^{2} \ d\mu_{\alpha} \right)^{1/2} < \infty. \end{split}$$

The boundedness of $\sup_{\alpha \in \wedge} \mu_{\alpha}(G)$ follows from the uniform boundedness principle and from (3.2).

4. Non-degenerate *-representations of $B_{\Phi}(G)$

In this section, we show that the non-degenerate representations described in the previous section can be extended uniquely to $B_{\Phi}(G)$.

Theorem 4.1. Let $\{\pi, \mathcal{H}\}$ be a non-degenerate *-representation of $A_{\Phi}(G)$.

(i) For each $u \in B_{\Phi}(G)$, there exists a unique operator $\widetilde{\pi}(u) \in \mathcal{B}(\mathcal{H})$ such that, $\forall v \in A_{\Phi}(G)$,

(4.1)
$$\widetilde{\pi}(u)\pi(v) = \pi(uv)$$

and

(4.2)
$$\widetilde{\pi}(v) = \pi(v)$$

(ii) The mapping $u \mapsto \widetilde{\pi}(u)$ defines a non-degenerate *-representation of $B_{\Phi}(G)$ on \mathcal{H} .

Proof. (i) Let π be a non-degenerate *-representation of $A_{\Phi}(G)$. By [3, Proposition 2.2.7], π is a direct sum of cyclic *-representations, say $\{\pi_{\alpha}, \mathcal{H}_{\alpha}\}_{\alpha \in \wedge}$. If we can prove (i) for each of these π_{α} 's, then the argument for π is similar to the one given in Corollary 3.4. Thus, in order to prove this, we assume that the representation π is cyclic. Since π is a cyclic *-representation, by Theorem 3.3, π is unitarily equivalent to π_{μ} , for some bounded positive Radon measure μ . So, without loss of generality, let us assume that the non-degenerate *-representation of $A_{\Phi}(G)$ is π_{μ} for some bounded positive Radon measure μ .

Let $u \in B_{\Phi}(G)$. By Proposition 3.1, the space $\mathcal{K} := span\{\pi_{\mu}(v).1 : v \in A_{\Phi}(G)\}$ is dense in $L^{2}(G, d\mu)$. Define $\widetilde{\pi_{\mu}}(u) : \mathcal{K} \to L^{2}(G, d\mu)$ as

$$\widetilde{\pi_{\mu}}(u)(\pi_{\mu}(v).1) = \pi_{\mu}(uv).1.$$

It is clear that $\widetilde{\pi_{\mu}}(u)$ is linear. We now claim that $\widetilde{\pi_{\mu}}(u)$ is bounded. Let $v \in A_{\Phi}(G)$. Then

$$\begin{split} \|\widetilde{\pi_{\mu}}(u) \left(\pi_{\mu}(v).1\right)\|_{2}^{2} &= \|\pi_{\mu}(uv).1\|_{2}^{2} \\ &= \int_{G} |\pi_{\mu}(uv).1|^{2} \ d\mu \\ &= \int_{G} |uv|^{2} \ d\mu \\ &\leq & \|u\|_{\infty}^{2} \ \int_{G} |v|^{2} \ d\mu \leq & \|u\|_{B_{\Phi}}^{2} \|\pi_{\mu}(v).1\|_{2}^{2} \end{split}$$

Thus, $\widetilde{\pi_{\mu}}(u)$ extends to a bounded linear operator on $L^2(G, d\mu)$, still denoted $\widetilde{\pi_{\mu}}(u)$. Further, it is clear that, for $u \in B_{\Phi}(G)$ and $v \in A_{\Phi}(G)$, $\widetilde{\pi_{\mu}}(u)\pi_{\mu}(v) = \pi_{\mu}(uv)$. Now, let $v \in A_{\Phi}(G)$. Then, for $u \in A_{\Phi}(G)$,

$$\widetilde{\pi_{\mu}}(v)(\pi_{\mu}(u).1) = \pi_{\mu}(vu).1 = \pi_{\mu}(v)(\pi_{\mu}(u).1).$$

Again, as \mathcal{K} is dense in $L^2(G, d\mu)$, it follows that $\widetilde{\pi_{\mu}}(v) = \pi_{\mu}(v)$ for all $v \in A_{\Phi}(G)$. Finally, uniqueness follows from condition (4.1).

(ii) Non-degeneracy of $\tilde{\pi}$ follows from the fact that π is non-degenerate. Further, homomorphism property of $\tilde{\pi}$ follows from (4.1). Now, we show that $\tilde{\pi}$ preserves involution. Let $u \in B_{\Phi}(G)$. Then, for $v \in A_{\Phi}(G)$ and $\xi, \eta \in \mathcal{H}$, we have

$$\begin{split} \langle \widetilde{\pi}(u)^* \pi(v)\xi, \eta \rangle &= \langle \xi, \pi(\overline{v})\widetilde{\pi}(u)\eta \rangle \\ &= \langle \xi, \widetilde{\pi}(\overline{v})\widetilde{\pi}(u)\eta \rangle \text{ (by (4.2))} \\ &= \langle \xi, \widetilde{\pi}(u\overline{v})\eta \rangle (\widetilde{\pi} \text{ is a homomorphism}) \\ &= \langle \xi, \pi(u\overline{v})\eta \rangle (\text{by (4.2)}) \\ &= \langle \xi, \pi(\overline{u}\overline{v})^*\eta \rangle (\pi \text{ preserves involution}) \\ &= \langle \pi(\overline{u}v)\xi, \eta \rangle \\ &= \langle \widetilde{\pi}(\overline{u})\pi(v)\xi, \eta \rangle. \text{ (by (4.1))} \end{split}$$

Since the representation π is non-degenerate, the space $\{\pi(u)\xi : u \in A_{\Phi}(G), \xi \in \mathcal{H}\}$ is dense in \mathcal{H} . Thus, it follows that $\tilde{\pi}(u)^* = \tilde{\pi}(\overline{u})$ for all $u \in B_{\Phi}(G)$. \Box

The following corollary is the converse of the above theorem.

Corollary 4.2. Let $\{\pi, \mathcal{H}\}$ be a *-representation of $B_{\Phi}(G)$ such that $\pi|_{A_{\Phi}}$ is nondegenerate. Then, $\pi|_{A_{\Phi}} = \pi$ and π is non-degenerate.

Proof. Let $u \in B_{\Phi}(G)$ and $v \in A_{\Phi}(G)$. Then

$$\pi(u)\pi|_{A_{\Phi}}(v) = \pi(u)\pi(v) = \pi(uv) = \pi|_{A_{\Phi}}(uv).$$

Thus, by Theorem 4.1, it follows that $\widetilde{\pi|_{A_{\Phi}}} = \pi$. Again by Theorem 4.1, $\widetilde{\pi|_{A_{\Phi}}}$ is non-degenerate and hence it follows that the representation π is non-degenerate.

5. Application to ergodic sequences in $A_{\Phi}(G)$

In this section, we discuss an application of ergodic sequences. This section is also motivated from [10] and [11].

Let

$$S_B^{\Phi} = \{ u \in B_{\Phi}(G) : ||u||_{B_{\Phi}} = u(e) = 1 \}$$

$$S_A^{\Phi} = \{ u \in A_{\Phi}(G) : ||u||_{A_{\Phi}} = u(e) = 1 \}.$$

Before we proceed to the main result of this section, here we give an appropriate definition.

Definition 5.1. A sequence $\{u_n\} \subset S_B^{\Phi}$ is said to be strongly (resp. weakly) ergodic if for any non-degenerate *-representation $\{\pi, \mathcal{H}_{\pi}\}$ of $A_{\Phi}(G)$ the sequence $\{\tilde{\pi}(u_n)\eta\}$ converges strongly (resp. weakly) to an element of \mathcal{H}_f , for every $\eta \in \mathcal{H}$, where

$$\mathcal{H}_f = \{\xi \in \mathcal{H} : \pi(u)\xi = \xi \ \forall \ u \in S_A^\Phi\}.$$

Our next theorem is the main result of this section.

Theorem 5.2. For a sequence $\{u_n\}$ in S_B^{Φ} , the following statements are equivalent:

- (i) the sequence $\{u_n\}$ is strongly ergodic.
- (ii) the sequence $\{u_n\}$ is weakly ergodic.
- (iii) the sequence $\{u_n(x)\}$ converges to 0 for every $x \in G$ with $x \neq e$.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii). Fix $x \in G$ with $x \neq e$. Define $\pi : A_{\Phi}(G) \to \mathbb{C}$ as $\pi(u) = u(x)$. Then π defines a non-degenerate *-representation of $A_{\Phi}(G)$ on \mathbb{C} . By Theorem 4.1, the representation $\{\pi, \mathbb{C}\}$ can be extended uniquely to a non-degenerate *-representation $\tilde{\pi}$ of $B_{\Phi}(G)$ on \mathbb{C} such that $\tilde{\pi}(u)z = u(x)z$ for all $u \in B_{\Phi}(G)$. Since $\{u_n\}$ is weakly ergodic the set $\{\mathbb{C}_f\}$ is non-empty. In order to prove (iii) it is enough to show that the set \mathbb{C}_f consists only of the zero vector. Suppose to the contrary that there exists $0 \neq z \in \mathbb{C}_f$. Since G is Hausdorff, there exists an open set U containing e but not x. Let v denote the function given by [14, Proposition 5.5], corresponding the open set U. Then $v \in S_A^{\Phi}$ and v(x)z = 0, which is a contradiction. Thus the set \mathbb{C}_f consists only of the zero vector. Hence (iii).

(iii) \Rightarrow (i). Let π be a non-degenerate *-representation of $A_{\Phi}(G)$. By Corollary 3.4, π is unitarily equivalent to the representation $\{\pi_{\mu}, L^2(G, d\mu)\}$ for some positive measure μ defined on G. So, without loss of generality, let us assume that π is of the form π_{μ} for some positive measure μ on G. Let $\widetilde{\pi_{\mu}}$ denote the extension of π_{μ} from $A_{\Phi}(G)$ to $B_{\Phi}(G)$ as in Theorem 4.1. Let $f \in L^2(G, d\mu)$. We now claim that the sequence $\{\widetilde{\pi_{\mu}}(u_n)(f)\}$ converges strongly. As $L^2(G, d\mu)$ is complete, in order to prove the claim, it is enough to show that the sequence $\{\widetilde{\pi_{\mu}}(u_n)(f)\}$ is Cauchy. Note that, for any $n, m \in \mathbb{N}$,

$$|u_n(x) - u_m(x)|^2 |f(x)|^2 \le 4|f(x)|^2$$
 a.e.

Thus, by dominated convergence theorem and by (iv), we have,

$$\begin{split} \|\widetilde{\pi_{\mu}}(u_{n})(f) - \widetilde{\pi_{\mu}}(u_{m})(f)\|_{2}^{2} &= \int_{G} |\widetilde{\pi_{\mu}}(u_{n})(f)(x) - \widetilde{\pi_{\mu}}(u_{m})(f)(x)|^{2} \ d\mu(x) \\ &= \int_{G} |u_{n}(x) - u_{m}(x)|^{2} |f(x)|^{2} \ d\mu(x) \\ &\to 0. \end{split}$$

Let $g \in L^2(G, d\mu)$ denote the limit of the sequence $\{\widetilde{\pi_{\mu}}(u_n)(f)\}$. Our next claim is that g is a fixed point of $\pi_{\mu}(u)$ for each $u \in S_A^{\Phi}$. Again, this is a consequence of the dominated convergence theorem.

6. Spectral subspaces

In this section, we study the spectral subspaces associated to a non-degenerate Banach space representation of $A_{\Phi}(G)$. Our main aim in this section is to prove Corollary 6.9. Most of the ideas of this section are taken from [12].

Definition 6.1. Let $T \in PM_{\Psi}(G)$. Then the support of T is defined as

$$supp(T) = \{ x \in G : u \in A_{\Phi}(G), u(x) \neq 0 \Rightarrow u \cdot T \neq 0 \}.$$

Here we recall some of the properties of the support of T in the form of a Lemma [7, Pg. 101].

Lemma 6.2.

- (i) If $T_1, T_2 \in PM_{\Psi}(G)$ then $supp(T_1 + T_2) \subseteq supp(T_1) \cup supp(T_2)$.
- (ii) If $u \in A_{\Phi}(G)$ and $T \in PM_{\Psi}(G)$ then $supp(u,T) \subseteq supp(u) \cap supp(T)$.
- (iii) If $c \in \mathbb{C}$ and $T \in PM_{\Psi}(G)$ then $supp(cT) \subseteq supp(T)$.
- (iv) Let $T \in PM_{\Psi}(G)$ and let E be a closed subset of G. If a net $\{T_{\alpha}\} \subset PM_{\Psi}(G)$ converges weakly to T with $supp(T_{\alpha}) \subset E$ for all α , then $supp(T) \subset E$.

Let X be a Banach space and let π be an algebra representation of $A_{\Phi}(G)$ on X. For $\varphi \in X$ and $x^* \in X^*$, define $T_{x^*,\varphi} : A_{\Phi}(G) \to \mathbb{C}$ as

 $\langle u, T_{x^*, \varphi} \rangle := \langle \pi(u)\varphi, x^* \rangle \ \forall \ u \in A_{\Phi}(G).$

We say that the representation π is continuous if $T_{x^*,\varphi}$ is a continuous linear functional on $A_{\Phi}(G)$ for each $\varphi \in X$ and $x^* \in X^*$. It follows from uniform boundedness principle that the linear map $\pi : A_{\Phi}(G) \to \mathcal{B}(X)$ is norm continuous.

From now onwards, X will denote a Banach space and π an algebra representation of $A_{\Phi}(G)$ on X.

Let E be a closed subset of G. Define

$$X_E := \{ \varphi \in X : supp(T_{x^*,\varphi}) \subseteq E \ \forall \ x^* \in X^* \}.$$

Remark 6.3. An immediate consequence of the above definition is that, if E = G then $X_E = X$.

Lemma 6.4. The set X_E is a closed π -invariant subspace of X.

Proof. Note that for any $x^* \in X^*$, $\varphi_1, \varphi_2 \in X_E$ and $\alpha \in \mathbb{C}$, we have

$$T_{x^*,\varphi_1+\alpha\varphi_2} = T_{x^*,\varphi_1} + \alpha T_{x^*,\varphi_2}.$$

Thus, it follows from (i) and (iii) of Lemma 6.2 that X_E is a linear space. Further, closedness of X_E is an immediate consequence of (iv) from Lemma 6.2. Again, note that, for any $u \in A_{\Phi}(G), \varphi \in X$ and $x^* \in X^*$, we have $T_{x^*,\pi(u)\varphi} = u.T_{x^*,\varphi}$ and hence the invariance of X_E under π follows from (ii) of Lemma 6.2.

The subspace X_E is called as the spectral subspace associated with the representation π and the closed set E.

Lemma 6.5. Let π be a non-degenerate representation of $A_{\Phi}(G)$.

(i) The space $X_{\emptyset} = \{0\}$.

(ii) If $\{E_i\}$ is an arbitrary collection of closed subsets of G, then $X_{\bigcap E_i} = \bigcap_i X_{E_i}$.

Proof. (i) is an easy consequence of the non-degeneracy of π , while (ii) is trivial.

The following is an immediate corollary of Remark 6.3 and Lemma 6.5.

Corollary 6.6. There exists a smallest closed non-empty set E of G such that $X_E = X$.

Proposition 6.7. Let K_1 and K_2 be disjoint compact subsets of G. Then $X_{K_1 \cup K_2} = X_{K_1} \oplus X_{K_2}$.

Proof. The proof of this follows exactly as given in [12, Proposition 2 (iii)]. \Box

Theorem 6.8. Let π be a non-degenerate representation of $A_{\Phi}(G)$ such that the only spectral subspaces are the trivial subspaces. Then there exists $x \in G$ such that $X_{\{x\}} = X$.

Proof. Choose a smallest non-empty closed set E such that $X_E = X$, which is possible by Corollary 6.6. Suppose there exists $x, y \in E$ such that $x \neq y$. As G is locally compact and Hausdorff, there exists an open set U and a compact set K such that $x \in U \subset K$ and $y \notin K$. Since $A_{\Phi}(G)$ is regular, there exists $u \in A_{\Phi}(G)$ such that u = 1 on U and $supp(u) \subset K$.

Let $v \in A_{\Phi}(G)$ be arbitrary. Let $v_1 = v - uv$ and $v_2 = uv$ so that $v = v_1 + v_2$. Let $V = \{z \in G : v_1(z) \neq 0\}$. The choice of u tells us that $x \notin \overline{V}$. Again, using the regularity of $A_{\Phi}(G)$, choose a function $w \in A_{\Phi}(G)$ such that w = 1 on some open set W containing x and $supp(w) \cap V = \emptyset$. Further, it is clear that $v_1w = 0$.

We now claim that $\pi(v) = 0$. Let $\varphi \in X$ and $x^* \in X^*$. If $z \in W$, then w(z) = 1and hence $T_{x^*,\pi(v_1w)\varphi} = 0$ as $T_{x^*,\pi(v_1w)\varphi} = w.T_{x^*,\pi(v_1)\varphi}$. Thus $supp(T_{x^*,\pi(v_1)\varphi}) \subset W^c$. Therefore, using the non-degeneracy of π , it follows that, if $\pi(v_1)\varphi \neq 0$ then $X_{W^c} = X$ and hence, by the choice of the set E, it follows that E is a subset of W^c . On the other hand, $x \notin W^c$ and $x \in E$ and hence E is not a subset of W^c . Therefore, $\pi(v_1) = 0$. Similarly, one can show that $\pi(v_2) = 0$. Thus $\pi(v) = 0$. Since v is arbitrary, it follows that $\pi(v) = 0$ for all $v \in A_{\Phi}(G)$, which is a contradiction. Thus the set E is a singleton. \Box

Corollary 6.9. Let π be a non-degenerate representation of $A_{\Phi}(G)$ such that the only spectral subspaces are the trivial subspaces. Then π is a character.

Proof. By Theorem 6.8, there exists $x \in G$ such that $X_{\{x\}} = X$, i.e.,

$$supp(T_{x^*,\varphi}) \subset \{x\}$$

for all $\varphi \in X$ and $x^* \in X^*$. As singletons are sets of spectral synthesis for $A_{\Phi}(G)$ [14, Theorem 3.6 (i)], it follows that

(6.1)
$$T_{x^*,\varphi} = c\delta_x$$

<

for some $c \in \mathbb{C}$. Let $u \in A_{\Phi}(G)$ such that u(x) = 1. Then

(6.2)
$$c = c\langle u, \delta_x \rangle = \langle u, c\delta_x \rangle = \langle u, T_{x^*, \varphi} \rangle = \langle \pi(u)\varphi, x^* \rangle$$

We now claim that π is a character. Let $v \in A_{\Phi}(G)$. Then, for $\varphi \in X$ and $x^* \in X^*$, we have

$$\pi(v)\varphi, x^*\rangle = \langle v, T_{x^*,\varphi} \rangle = \langle v, c\delta_x \rangle \text{ (by (6.1))}$$
$$= c \langle v, \delta_x \rangle = \langle \pi(u)\varphi, x^* \rangle \langle v, \delta_x \rangle \text{ (by (6.2))}$$
$$= v(x) \langle \pi(u)\varphi, x^* \rangle = \langle v(x)\pi(u)\varphi, x^* \rangle.$$

Since φ and x^* are arbitrary, it follows that $\pi(v) = u(x)\pi(u)$. Now

π

$$\pi(u) = u(x)\pi(u) = u^2(x)\pi(u) = \pi(u^2) = \pi(u)^2,$$

i.e., $\pi(u)$ is a projection. As π is non-degenerate, it follows that $\pi(u)$ is the identity operator I on X. Thus

$$v(v) = v(x)I \ \forall \ v \in A_{\Phi}(G),$$

i.e., π is a character.

Acknowledgement

The first author would like to thank the University Grants Commission, India, for research grant.

References

- N. BOURBAKI, Elements of Mathematics, Integration I, Chapters 1-6, Springer-Verlag, Berlin-Heidelberg, 2004.
- A.DERIGHETTI, Convolution Operators on Groups, Lecture Notes Un. Mat. Ital.11, Springer, Heidelberg, 2011.
- 3. J. DIXMIER, C^{*}- algebras, North Holland, 1977.
- P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964) 181-236.
- 5. G. B. FOLLAND, A course in abstract harmonic analysis, CRC Press, 1995.
- R. GODEMENT, Théorèmes taubériens et théorie spectrale, Ann. Sci. École Norm. Sup., 64 (1947), 119-138

RATTAN LAL AND N. SHRAVAN KUMAR

- C.HERZ, Harmonic synthesis for subgroups, Ann. Inst.Fourier (Grenoble) 23 (1973), no.3, 91-123.
- 8. E. HEWITT and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1979.
- E. KANIUTH and A. T. M. LAU, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, 231, American Mathematical Society, Providence, RI, 2018.
- 10. A. T. M. LAU and V. LOSERT, Ergodic sequences in the Fourier-Stieltjes algebra and measure algebra of a locally compact group, Trans. Amer. Math. Soc. 351 (1999), no. 1, 417428.
- 11. S. MATHIEU GUEX, Ergodic theorems for certain Banach algebras associated to locally compact groups, Ph.D. Thesis, University of Alberta, Canada, 2013.
- K. PARTHASARATHY and R. PRAKASH, Spectral subspaces for the Fourier algebra, Colloq. Math., 108 (2007), 179-182.
- 13. M.M.RAO and Z.D.REN, Theory of Orlicz Spaces, Dekker, New York, 1991.
- RATTAN LAL and N. SHRAVAN KUMAR, Orlicz Figà-Talamanca Herz algebras and invariant means, Indag. Math., 30 (2019), 340-354.
- M. TAKESAKI, Theory of Operator algebras I, Encyclopedia of Mathematics, Springer, Vol. 124, 2001.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY DELHI, DELHI, 110016, INDIA *E-mail address*: rattanlaltank@gmail.com

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY DELHI, DELHI, 110016, INDIA *E-mail address*: shravankumar@maths.iitd.ac.in

Received 19.11.2019; Revised 13.02.2020.