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REPRESENTATIONS OF THE ORLICZ FIGÀ-TALAMANCA HERZ

ALGEBRAS AND SPECTRAL SUBSPACES

RATTAN LAL AND N. SHRAVAN KUMAR

Abstract. Let G be a locally compact group. In this note, we characterise non-
degenerate ∗-representations of AΦ(G) and BΦ(G). We also study spectral subspaces

associated to a non-degenerate Banach space representation of AΦ(G).

1. Introduction

Let G be a locally compact group. It is well known that there is a one to one correspon-
dence between the unitary representations of G and the non-degenerate ∗-representations
of L1(G) [5, p. 73]. Similarly, if X is any locally compact Hausdorff space, then there is
a one to one correspondence between the cyclic ∗-representations of C0(X) and positive
bounded Borel measures on X [8, p. 486]. The corresponding result for the Fourier al-
gebra A(G) of a locally compact group is due to Lau and Losert [10]. For more on the
Fourier algebra see [4, 9]. Recently, Guex [11] extended the result of Lau and Losert to
Figà-Talamanca Herz algebras. We refer the readers to [2] for more on Figà-Talamanca
Herz algebras.

In [14], the authors have introduced and studied the LΦ-versions of the Figà-Talamanca
Herz algebras. Here LΦ denotes the Orlicz space corresponding to the Young function
Φ. The space AΦ(G) is defined as the space of all continuous functions u, where u is of
the form

u =

∞∑
n=1

fn ∗ ǧn,

where fn ∈ LΦ(G), gn ∈ LΨ(G), (Φ,Ψ) is a pair of complementary Young functions
satisfying the ∆2-condition and

∞∑
n=1

NΦ(fn)‖gn‖ψ <∞.

It is shown in [14] that AΦ(G) is a regular, tauberian, semisimple commutative Banach
algebra with the Gelfand spectrum homeomorphic to G.

This paper has the modest aim of characterising the non-degenerate ∗-representations
of AΦ(G) in the spirit of [10]. This characterisation is given in Corollary 3.4. In Section
4, we show that any non-degenerate ∗-representation of AΦ(G) can be extended uniquely
to a non-degenerate ∗-representation of BΦ(G). In Section 5, we provide an application
to ergodic sequences.

Godement in his fundamental paper [6] on Wiener Tauberian theorems studied spectral
subspaces associated to a certain Banach space representations. This result was extended
to the Fourier algebra A(G) by Parthasarathy and Prakash [12]. In Section 6, we also
study spectral subspaces of AΦ(G).
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2. Preliminaries

Let Φ : R → [0,∞] be a convex function. Then Φ is called a Young function if it is
symmetric and satisfies Φ(0) = 0 and lim

x→∞
Φ(x) = +∞. If Φ is any Young function, then

define Ψ as

Ψ(y) := sup {x|y| − Φ(x) : x ≥ 0}, y ∈ R.

Then Ψ is also a Young function and is termed as the complementary function to Φ.
Further, the pair (Φ,Ψ) is called a complementary pair of Young functions.

Let G be a locally compact group with a left Haar measure dx. We say that a Young
function Φ satisfies the ∆2-condition, denoted Φ ∈ ∆2, if there exists a constant K > 0
and x0 > 0 such that Φ(2x) ≤ KΦ(x) whenever x ≥ x0 if G is compact and the same
inequality holds with x0 = 0 if G is non compact.

The Orlicz space, denoted LΦ(G), is a vector space consisting of measurable functions,
defined as

LΦ(G) =

{
f : G→ C : f is measurable and

∫
G

Φ(β|f |) dx <∞ for some β > 0

}
The Orlicz space LΦ(G) is a Banach space when equipped with the norm

NΦ(f) = inf

{
k > 0 :

∫
G

Φ

(
|f |
k

)
dx ≤ 1

}
.

The above norm is called as the Luxemburg norm or Gauge norm. If (Φ,Ψ) is a comple-
mentary Young pair, then there is a norm on LΦ(G), equivalent to the Luxemberg norm,
given by,

‖f‖Φ = sup

{∫
G

|fg|dx :

∫
G

Ψ(|g|)dx ≤ 1

}
.

This norm is called as the Orlicz norm.
Let Cc(G) denote the space of all continuous functions on G with compact support. If

a Young function Φ satisfies the ∆2 -condition, then Cc(G) is dense in LΦ(G). Further, if
the complementary function Ψ is such that Ψ is continuous and Ψ(x) = 0 iff x = 0, then
the dual of (LΦ(G), NΦ(·)) is isometrically isomorphic to (LΨ(G), ‖ · ‖Ψ). In particular,
if both Φ and Ψ satisfies the ∆2-condition, then LΦ(G) is reflexive.

For more details on Orlicz spaces, we refer the readers to [13].
Let Φ and Ψ be a pair of complementary Young functions satisfying the ∆2 condition.

Let

AΦ(G) =

{
u =

∞∑
n=1

fn ∗ ǧn : {fn} ⊂ LΦ(G), {gn} ∈ LΨ(G) and

∞∑
n=1

NΦ(fn)‖gn‖Ψ <∞

}
.

Note that if u ∈ AΦ(G) then u ∈ C0(G). If u ∈ AΦ(G), define ‖u‖AΦ as

‖u‖AΦ
:= inf

{ ∞∑
n=1

NΦ(fn)‖gn‖Ψ : u =

∞∑
n=1

fn ∗ ǧn

}
.

The spaceAΦ(G) equipped with the above norm and with the pointwise addition and mul-
tiplication becomes a commutative Banach algebra [14, Theorem 3.4]. In fact, AΦ(G) is
a commutative, regular and semisimple banach algebra with spectrum homeomorphic to
G [14, Corollary 3.8]. This Banach algebra AΦ(G) is called as the Orlicz Figà-Talamanca
Herz algebra. Let

BΦ(G) := {u ∈ C(G) : uv ∈ AΦ(G) ∀ v ∈ AΦ(G)}
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equipped with the norm ‖u‖BΦ
= sup {‖uv‖AΦ

: v ∈ AΦ(G), ‖v‖AΦ
= 1} . Then, with

the above norm, BΦ(G) becomes a commutative Banach algebra with pointwise addition
and multiplication.

Let B(LΦ(G)) be the linear space of all bounded linear operators on LΦ(G) equipped
with the operator norm. For a bounded complex Radon measure µ on G and f ∈ LΦ(G),
define Tµ : LΦ(G) → LΦ(G) by Tµ(f) = µ ∗ f. It is clear that Tµ ∈ B(LΦ(G)). Let
PMΦ(G) denote the closure of

{Tµ : µ is a bounded complex Radon measure}

in B(LΦ(G)) with respect to the ultraweak topology. It is proved in [14, Theorem 3.5],
that for a locally compact group G, the dual of AΦ(G) is isometrically isomorphic to
PMΨ(G). By [14, Theorem 3.6] singletons are sets of spectral synthesis for AΦ(G). Fur-
ther, every closed subgroup is a set of local synthesis for AΦ(G).

Throughout this paper, G will denote a locally compact group with a fixed left Haar
measure dx. Further Φ will always denote a Young function whose complementary Young
function is Ψ and the pair (Φ,Ψ) satisfies the ∆2-condition.

3. Non-degenerate ∗-representations of AΦ(G)

In this section, motivated by the results of [10, 11], we describe all the non-degenerate
∗-representations of AΦ(G). Throughout this section and the next,H will denote a Hilbert
space.

Proposition 3.1. Let µ be a bounded positive Radon measure on G.

(i) For each u ∈ AΦ(G), the mapping πµ(u) : f 7→ uf is a bounded linear operator on
L2(G, dµ).

(ii) The mapping u 7→ πµ(u) defines a ∗-representation of AΦ(G) on B(L2(G, dµ)).
(iii) If µ is bounded, then πµ is a cyclic representation of AΦ(G) with the constant 1

function as cyclic vector.

Proof. (i) and (ii) are just a routine check.
(iii) We show that the constant 1 function is a cyclic vector. Since the measure µ is

finite, the conclusion follows from the density of AΦ(G) ∩ Cc(G) in Cc(G) with respect
to the L2(G, dµ)-norm. �

Corollary 3.2. If µ is a positive Radon measure on G (not necessarily bounded) then
πµ (defined as in Proposition 3.1) is non-degenerate.

Proof. Let µ be a positive Radon measure on G. By [3, Pg. 33, 2.2.7], it is enough to
show that the representation πµ is a direct sum of cyclic representations. By [1, INT
IV.77] and [1, INT V.14, Proposition 4], it follows that

L2(G, dµ) ∼= ⊕
α∈∧

L2(G, dµα),

where {µα}α∈∧ is a summable family of measures with pairwise disjoint support. Now
the conclusion follows from (iii) of Proposition 3.1. �

In the next result, we characterise all cyclic ∗-representations.

Theorem 3.3. Let {π,H} be a cyclic ∗-representation of AΦ(G). Then there exists a
bounded positive Radon measure µ such that π is unitarily equivalent to the representation
{πµ, L2(G, dµ)} given in Proposition 3.1.

Proof. Let u ∈ AΦ(G). Then, by [15, Pg. 22], it follows that ‖π(u)‖sp ≤ ‖u‖sp. By [14,
Theorem 3.4], AΦ(G) is a commutative Banach algebra and hence the spectral norm and
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the operator norm for π(u) coincides. Further, as AΦ(G) is semi-simple and the fact that
the spectrum of AΦ(G) is G [14, Corollary 3.81], ‖u‖sp = ‖u‖∞. Thus,

‖π(u)‖B(H) ≤ ‖u‖∞.

As a consequence of this inequality and the fact that AΦ(G) is dense in C0(G), it follows
that π extends to a ∗-representation of C0(G) on H, still denoted as π. Note that π
is a cyclic ∗-representation of the C∗-algebra C0(G). Let ϕ be the cyclic vector of the
representation {π,C0(G)}. Define Tϕ : C0(G)→ C as

Tϕ(u) = 〈π(u)ϕ,ϕ〉, u ∈ C0(G).

It is clear that Tϕ is a positive linear functional on C0(G) and hence, by Riesz represen-
tation theorem, there exists a bounded positive Radon measure µ such that

(3.1) Tϕ(u) =

∫
G

u dµ.

Let πµ denote the cyclic ∗-representation of AΦ(G) on L2(G, dµ), given by Proposition
3.1.

We now claim that the representations π and πµ of AΦ(G) are unitarily equivalent.
Since ϕ is a cyclic vector, in order to prove the above claim, it is enough to show that
the correspondence π(u)ϕ 7→ u.1 is an isometry and commutes with π and πµ. Note that
the above correspondence is well-defined by (3.1). Let T denote the above well-defined
correspondence.

We now show that T is an isometry. Let u ∈ AΦ(G). Then

〈π(u)ϕ, π(u)ϕ〉 =〈π∗(u)π(u)ϕ,ϕ〉
=〈π(ūu)ϕ,ϕ〉 (π is a ∗-homomorphism)

=

∫
G

|u|2 dµ = 〈ϕ,ϕ〉.

Finally, we show that T intertwines with π and πµ. Let u ∈ AΦ(G). Then, for v ∈ Aφ(G),
we have,

T (π(u)(π(v)ϕ)) =T ((π(u)π(v))ϕ)

=T (π(uv)ϕ) = uv.1

=πµ(u)(v.1) = πµ(u)(T (π(v)ϕ)).

�

Here is the main result of this section, describing all the non-degenerate Hilbert space
representations of AΦ(G).

Corollary 3.4. If {π,H} is any non-degenerate ∗-representation of AΦ(G) then π is
unitarily equivalent to {πµ, L2(G, dµ)} for some positive measure µ.

Proof. Let {π,H} be a non-degenerate ∗-representation of AΦ(G). By [3, Proposition
2.2.7], π is a direct sum of cyclic ∗-representations {πα,Hα}α∈∧. For each α ∈ ∧, by
Theorem 3.3, there exists a bounded positive measure µα such that the representations
{πα,Hα} and {πµα , L2(G, dµα)} are unitarily equivalent.

Suppose that the family {µα}α∈∧ is summable. Let µ =
∑
α∈∧

µα. Then µ will be a

positive measure and

{πµ, L2(G, dµ)} ∼= ⊕
α∈∧
{πµα , L2(G, dµα)} ∼= ⊕

α∈∧
{πα,Hα} ∼= {π,H}.
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Thus, we are done if we can show that {µα}α∈∧ is a summable family. Let f : G→ C
be a continuous function with compact support. Then ⊕

α∈∧
f ∈ ⊕

α∈∧
L2(G,µα) and hence,

(3.2)
∑
α∈∧

(∫
G

|f |2 dµα

)1/2

<∞.

Now, ∑
α∈∧
|µα(f)| =

∑
α∈∧

∣∣∣∣∫
G

f dµα

∣∣∣∣ ≤∑
α∈∧

∫
G

|f | dµα

≤
∑
α∈∧

(∫
G

|f |2 dµα

)1/2(∫
G

|1|2 dµα

)1/2

=
∑
α∈∧

(∫
G

|f |2 dµα

)1/2

(µα(G))
1/2

≤sup
α∈∧

(µα(G))
1/2
∑
α∈∧

(∫
G

|f |2 dµα

)1/2

≤
(

sup
α∈∧

µα(G)

)1/2 ∑
α∈∧

(∫
G

|f |2 dµα

)1/2

<∞.

The boundedness of sup
α∈∧

µα(G) follows from the uniform boundedness principle and from

(3.2). �

4. Non-degenerate ∗-representations of BΦ(G)

In this section, we show that the non-degenerate representations described in the
previous section can be extended uniquely to BΦ(G).

Theorem 4.1. Let {π,H} be a non-degenerate ∗-representation of AΦ(G).

(i) For each u ∈ BΦ(G), there exists a unique operator π̃(u) ∈ B(H) such that, ∀ v ∈
AΦ(G),

(4.1) π̃(u)π(v) = π(uv)

and

(4.2) π̃(v) = π(v).

(ii) The mapping u 7→ π̃(u) defines a non-degenerate ∗-representation of BΦ(G) on H.

Proof. (i) Let π be a non-degenerate ∗-representation of AΦ(G). By [3, Proposition 2.2.7],
π is a direct sum of cyclic ∗-representations, say {πα,Hα}α∈∧. If we can prove (i) for
each of these πα’s, then the argument for π is similar to the one given in Corollary 3.4.
Thus, in order to prove this, we assume that the representation π is cyclic. Since π
is a cyclic ∗-representation, by Theorem 3.3, π is unitarily equivalent to πµ, for some
bounded positive Radon measure µ. So, without loss of generality, let us assume that
the non-degenerate ∗-representation of AΦ(G) is πµ for some bounded positive Radon
measure µ.

Let u ∈ BΦ(G). By Proposition 3.1, the space K := span{πµ(v).1 : v ∈ AΦ(G)} is
dense in L2(G, dµ). Define π̃µ(u) : K → L2(G, dµ) as

π̃µ(u)(πµ(v).1) = πµ(uv).1.
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It is clear that π̃µ(u) is linear. We now claim that π̃µ(u) is bounded. Let v ∈ AΦ(G).
Then

‖π̃µ(u) (πµ(v).1) ‖22 =‖πµ(uv).1‖22

=

∫
G

|πµ(uv).1|2 dµ

=

∫
G

|uv|2 dµ

≤‖u‖2∞
∫
G

|v|2 dµ ≤ ‖u‖2BΦ
‖πµ(v).1‖22.

Thus, π̃µ(u) extends to a bounded linear operator on L2(G, dµ), still denoted π̃µ(u).
Further, it is clear that, for u ∈ BΦ(G) and v ∈ AΦ(G), π̃µ(u)πµ(v) = πµ(uv). Now, let
v ∈ AΦ(G). Then, for u ∈ AΦ(G),

π̃µ(v)(πµ(u).1) = πµ(vu).1 = πµ(v) (πµ(u).1) .

Again, as K is dense in L2(G, dµ), it follows that π̃µ(v) = πµ(v) for all v ∈ AΦ(G).
Finally, uniqueness follows from condition (4.1).
(ii) Non-degeneracy of π̃ follows from the fact that π is non-degenerate. Further, ho-

momorphism property of π̃ follows from (4.1). Now, we show that π̃ preserves involution.
Let u ∈ BΦ(G). Then, for v ∈ AΦ(G) and ξ, η ∈ H, we have

〈π̃(u)∗π(v)ξ, η〉 = 〈ξ, π(v)π̃(u)η〉
= 〈ξ, π̃(v)π̃(u)η〉 (by (4.2))

= 〈ξ, π̃(uv)η〉 (π̃ is a homomorphism)

= 〈ξ, π(uv)η〉 (by (4.2))

= 〈ξ, π(uv)∗η〉 (π preserves involution)

= 〈π(uv)ξ, η〉
= 〈π̃(u)π(v)ξ, η〉. (by (4.1))

Since the representation π is non-degenerate, the space {π(u)ξ : u ∈ AΦ(G), ξ ∈ H} is
dense in H. Thus, it follows that π̃(u)∗ = π̃(u) for all u ∈ BΦ(G). �

The following corollary is the converse of the above theorem.

Corollary 4.2. Let {π,H} be a ∗-representation of BΦ(G) such that π|AΦ
is non-

degenerate. Then, π̃|AΦ
= π and π is non-degenerate.

Proof. Let u ∈ BΦ(G) and v ∈ AΦ(G). Then

π(u)π|AΦ(v) = π(u)π(v) = π(uv) = π|AΦ(uv).

Thus, by Theorem 4.1, it follows that π̃|AΦ
= π. Again by Theorem 4.1, π̃|AΦ

is non-
degenerate and hence it follows that the representation π is non-degenerate. �

5. Application to ergodic sequences in AΦ(G)

In this section, we discuss an application of ergodic sequences. This section is also
motivated from [10] and [11].

Let

SΦ
B =

{
u ∈ BΦ(G) : ‖u‖BΦ = u(e) = 1

}
SΦ
A =

{
u ∈ AΦ(G) : ‖u‖AΦ = u(e) = 1

}
.

Before we proceed to the main result of this section, here we give an appropriate
definition.
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Definition 5.1. A sequence {un} ⊂ SΦ
B is said to be strongly (resp. weakly) ergodic if for

any non-degenerate ∗-representation {π,Hπ} of AΦ(G) the sequence {π̃(un)η} converges
strongly (resp. weakly) to an element of Hf , for every η ∈ H, where

Hf = {ξ ∈ H : π(u)ξ = ξ ∀ u ∈ SΦ
A}.

Our next theorem is the main result of this section.

Theorem 5.2. For a sequence {un} in SΦ
B , the following statements are equivalent:

(i) the sequence {un} is strongly ergodic.
(ii) the sequence {un} is weakly ergodic.

(iii) the sequence {un(x)} converges to 0 for every x ∈ G with x 6= e.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii). Fix x ∈ G with x 6= e. Define π : AΦ(G) → C as π(u) = u(x). Then

π defines a non-degenerate ∗-representation of AΦ(G) on C. By Theorem 4.1, the rep-
resentation {π,C} can be extended uniquely to a non-degenerate ∗-representation π̃ of
BΦ(G) on C such that π̃(u)z = u(x)z for all u ∈ BΦ(G). Since {un} is weakly ergodic
the set {Cf} is non-empty. In order to prove (iii) it is enough to show that the set Cf
consists only of the zero vector. Suppose to the contrary that there exists 0 6= z ∈ Cf .
Since G is Hausdorff, there exists an open set U containing e but not x. Let v denote the
function given by [14, Proposition 5.5], corresponding the open set U. Then v ∈ SΦ

A and
v(x)z = 0, which is a contradiction. Thus the set Cf consists only of the zero vector.
Hence (iii).

(iii) ⇒ (i). Let π be a non-degenerate ∗-representation of AΦ(G). By Corollary 3.4,
π is unitarily equivalent to the representation {πµ, L2(G, dµ)} for some positive measure
µ defined on G. So, without loss of generality, let us assume that π is of the form πµ for
some positive measure µ on G. Let π̃µ denote the extension of πµ from AΦ(G) to BΦ(G)
as in Theorem 4.1. Let f ∈ L2(G, dµ). We now claim that the sequence {π̃µ(un)(f)}
converges strongly. As L2(G, dµ) is complete, in order to prove the claim, it is enough
to show that the sequence {π̃µ(un)(f)} is Cauchy. Note that, for any n,m ∈ N,

|un(x)− um(x)|2|f(x)|2 ≤ 4|f(x)|2 a.e.
Thus, by dominated convergence theorem and by (iv), we have,

‖π̃µ(un)(f)− π̃µ(um)(f)‖22 =

∫
G

|π̃µ(un)(f)(x)− π̃µ(um)(f)(x)|2 dµ(x)

=

∫
G

|un(x)− um(x)|2|f(x)|2 dµ(x)

→ 0.

Let g ∈ L2(G, dµ) denote the limit of the sequence {π̃µ(un)(f)}. Our next claim is that
g is a fixed point of πµ(u) for each u ∈ SΦ

A. Again, this is a consequence of the dominated
convergence theorem. �

6. Spectral subspaces

In this section, we study the spectral subspaces associated to a non-degenerate Banach
space representation of AΦ(G). Our main aim in this section is to prove Corollary 6.9.
Most of the ideas of this section are taken from [12].

Definition 6.1. Let T ∈ PMΨ(G). Then the support of T is defined as

supp(T ) = {x ∈ G : u ∈ AΦ(G), u(x) 6= 0⇒ u.T 6= 0}.

Here we recall some of the properties of the support of T in the form of a Lemma [7,
Pg. 101].
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Lemma 6.2.

(i) If T1, T2 ∈ PMΨ(G) then supp(T1 + T2) ⊆ supp(T1) ∪ supp(T2).
(ii) If u ∈ AΦ(G) and T ∈ PMΨ(G) then supp(u.T ) ⊆ supp(u) ∩ supp(T ).

(iii) If c ∈ C and T ∈ PMΨ(G) then supp(cT ) ⊆ supp(T ).
(iv) Let T ∈ PMΨ(G) and let E be a closed subset of G. If a net {Tα} ⊂ PMΨ(G)

converges weakly to T with supp(Tα) ⊂ E for all α, then supp(T ) ⊂ E.

Let X be a Banach space and let π be an algebra representation of AΦ(G) on X. For
ϕ ∈ X and x∗ ∈ X∗, define Tx∗,ϕ : AΦ(G)→ C as

〈u, Tx∗,ϕ〉 := 〈π(u)ϕ, x∗〉 ∀ u ∈ AΦ(G).

We say that the representation π is continuous if Tx∗,ϕ is a continuous linear functional
on AΦ(G) for each ϕ ∈ X and x∗ ∈ X∗. It follows from uniform boundedness principle
that the linear map π : AΦ(G)→ B(X) is norm continuous.

From now onwards, X will denote a Banach space and π an algebra representation of
AΦ(G) on X.

Let E be a closed subset of G. Define

XE := {ϕ ∈ X : supp(Tx∗,ϕ) ⊆ E ∀ x∗ ∈ X∗}.

Remark 6.3. An immediate consequence of the above definition is that, if E = G then
XE = X.

Lemma 6.4. The set XE is a closed π-invariant subspace of X.

Proof. Note that for any x∗ ∈ X∗, ϕ1, ϕ2 ∈ XE and α ∈ C, we have

Tx∗,ϕ1+αϕ2
= Tx∗,ϕ1

+ αTx∗,ϕ2
.

Thus, it follows from (i) and (iii) of Lemma 6.2 that XE is a linear space. Further,
closedness of XE is an immediate consequence of (iv) from Lemma 6.2. Again, note
that, for any u ∈ AΦ(G), ϕ ∈ X and x∗ ∈ X∗, we have Tx∗,π(u)ϕ = u.Tx∗,ϕ and hence
the invariance of XE under π follows from (ii) of Lemma 6.2. �

The subspace XE is called as the spectral subspace associated with the representation
π and the closed set E.

Lemma 6.5. Let π be a non-degenerate representation of AΦ(G).

(i) The space X∅ = {0}.
(ii) If {Ei} is an arbitrary collection of closed subsets of G, then X∩

i
Ei = ∩

i
XEi .

Proof. (i) is an easy consequence of the non-degeneracy of π, while (ii) is trivial. �

The following is an immediate corollary of Remark 6.3 and Lemma 6.5.

Corollary 6.6. There exists a smallest closed non-empty set E of G such that XE = X.

Proposition 6.7. Let K1 and K2 be disjoint compact subsets of G. Then XK1∪K2
=

XK1
⊕XK2

.

Proof. The proof of this follows exactly as given in [12, Proposition 2 (iii)]. �

Theorem 6.8. Let π be a non-degenerate representation of AΦ(G) such that the only
spectral subspaces are the trivial subspaces. Then there exists x ∈ G such that X{x} = X.

Proof. Choose a smallest non-empty closed set E such that XE = X, which is possible
by Corollary 6.6. Suppose there exists x, y ∈ E such that x 6= y. As G is locally compact
and Hausdorff, there exists an open set U and a compact set K such that x ∈ U ⊂ K
and y /∈ K. Since AΦ(G) is regular, there exists u ∈ AΦ(G) such that u = 1 on U and
supp(u) ⊂ K.
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Let v ∈ AΦ(G) be arbitrary. Let v1 = v − uv and v2 = uv so that v = v1 + v2. Let
V = {z ∈ G : v1(z) 6= 0}. The choice of u tells us that x /∈ V . Again, using the regularity
of AΦ(G), choose a function w ∈ AΦ(G) such that w = 1 on some open set W containing
x and supp(w) ∩ V = ∅. Further, it is clear that v1w = 0.

We now claim that π(v) = 0. Let ϕ ∈ X and x∗ ∈ X∗. If z ∈ W, then w(z) = 1
and hence Tx∗,π(v1w)ϕ = 0 as Tx∗,π(v1w)ϕ = w.Tx∗,π(v1)ϕ. Thus supp(Tx∗,π(v1)ϕ) ⊂ W c.
Therefore, using the non-degeneracy of π, it follows that, if π(v1)ϕ 6= 0 then XW c = X
and hence, by the choice of the set E, it follows that E is a subset of W c. On the
other hand, x /∈W c and x ∈ E and hence E is not a subset of W c. Therefore, π(v1) = 0.
Similarly, one can show that π(v2) = 0. Thus π(v) = 0. Since v is arbitrary, it follows that
π(v) = 0 for all v ∈ AΦ(G), which is a contradiction. Thus the set E is a singleton. �

Corollary 6.9. Let π be a non-degenerate representation of AΦ(G) such that the only
spectral subspaces are the trivial subspaces. Then π is a character.

Proof. By Theorem 6.8, there exists x ∈ G such that X{x} = X, i.e.,

supp(Tx∗,ϕ) ⊂ {x}
for all ϕ ∈ X and x∗ ∈ X∗. As singletons are sets of spectral synthesis for AΦ(G) [14,
Theorem 3.6 (i)], it follows that

(6.1) Tx∗,ϕ = cδx

for some c ∈ C. Let u ∈ AΦ(G) such that u(x) = 1. Then

(6.2) c = c〈u, δx〉 = 〈u, cδx〉 = 〈u, Tx∗,ϕ〉 = 〈π(u)ϕ, x∗〉.
We now claim that π is a character. Let v ∈ AΦ(G). Then, for ϕ ∈ X and x∗ ∈ X∗,

we have

〈π(v)ϕ, x∗〉 =〈v, Tx∗,ϕ〉 = 〈v, cδx〉 (by (6.1))

=c〈v, δx〉 = 〈π(u)ϕ, x∗〉〈v, δx〉 (by (6.2))

=v(x)〈π(u)ϕ, x∗〉 = 〈v(x)π(u)ϕ, x∗〉.

Since ϕ and x∗ are arbitrary, it follows that π(v) = u(x)π(u). Now

π(u) = u(x)π(u) = u2(x)π(u) = π(u2) = π(u)2,

i.e., π(u) is a projection. As π is non-degenerate, it follows that π(u) is the identity
operator I on X. Thus

π(v) = v(x)I ∀ v ∈ AΦ(G),

i.e., π is a character. �
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4. P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92

(1964) 181-236.
5. G. B. Folland, A course in abstract harmonic analysis, CRC Press, 1995.
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