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AN ANALOGUE OF THE LOGARITHMIC (u, v)-DERIVATIVE AND

ITS APPLICATION

R. Y. OSAULENKO

Abstract. We study an analogue of the logarithmic (u, v)-derivative. The last one
has many interesting properties and good ways to calculate it. To show how it can be

used we apply it to a model class of nowhere monotone functions that are composition
of Salem function and nowhere differentiable functions.

1. Introduction

We are interested in continuous functions that are both singular (different from con-
stant, but have a derivative equal to zero, almost everywhere, in terms of Lebesgue mea-
sure) and nowhere monotone (don’t have any interval of monotonicity). Their theory is
poor enough and is exhausted by a few separate examples. It is possible to expand the
range of such objects by the superposition of singular and nowhere monotone functions.
In a model example of a pair of known simple representatives of the class of singular
functions and the class of nowhere monotone functions, we discuss the problems of a
detailed study of differential properties of complex functions and propose a new toolkit
for their study.

A singularly continuous Salem function, which depends on the parameter of q0 ∈ (0; 1),
is defined on [0; 1] by

(1) S(x)=S
(

∆2
α1(x)α2(x)...αn(x)...

)
=α1q1−α1

+

∞∑
k=2

αkq1−αk

k−1∏
j=1

qαj

≡ ∆Q2
α1α2...αn...,

where q1 ≡ 1 − q0, αnq1−αn ≡ βαn , ∆2
α1α2...αn... =

∑∞
n=1 2−nαn is the classical binary

representation of a number, αn ∈ A2 = {0, 1}.
For q = 1/2, the function S(x) is linear and, for q 6= 1/2, it is singularly continuous.

Its properties have been studied in [6].
For a given set of three parameters (g0, g1, g2), where g0 +g1 +g2 = 1, g0 = g2 ∈

(
1
2 ; 1
)
,

the function g on [0; 1] is defined as

(2) g(x) = g
(

∆3
a1(x)a2(x)...an(x)...

)
= δa1

+

∞∑
k=2

δak ∞∏
j=1

gaj

 ≡ ∆G3
a1a2...an...,

where δ0 = 0, δ1 = g0, δ2 = g0 + g1, ∆3
a1a2...an... =

∑∞
n=1 3−nan is a classical ternary

representation of a number, an ∈ A3 = {0, 1, 2}.
The function g is continuous on [0, 1], nowhere monotone, non-differentiable.
The object of our consideration is the continuous functions ψ(x) = S

(
g(x)

)
and ϕ(x) =

g
(
S(x)

)
. Moreover, each of them on any segment of the domain of definition is a function

of unbounded variation, which ensures the existence of infinite levels of the function. It
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is clear that these functions have non-trivial local properties, a study of which requires
a use of nontraditional approaches. Note that even calculating the value of the function
at a given point is not easy, let alone calculating the actual derivative.

In the following four paragraphs we provide brief facts about the (u, v)-derivative
and its analogue, the logarithmic (u, v)-derivative and, accordingly, an analogue of the
logarithmic (u, v)-derivative, which provides the sought toolkit for these functions.

2. Key concepts and statements

Let P be a set of pairs (u, v) of all infinitesimal functions at zero, such, that for each
pair there exists a number δ > 0 such that for ∀h ∈ O∗δ we have u(h) 6= −v(h). Let

∆
u(h)
v(h)f(x0) := f

(
x0 + u(h)

)
− f

(
x0 − v (h)

)
, ∆

u(h)
v(h)x := u(h) + v (h).

Definition 1. Let (u, v) ∈ P. A finite or infinite limit (if it exists)

(3) Du
vf(x0) = lim

h→0

∆
u(h)
v(h)f(x0)

∆
u(h)
v(h)x

= lim
h→0

f
(
x0 + u (h)

)
− f

(
x0 − v (h)

)
u(h) + v(h)

is called the (u, v)-derivative of the function f at the point x0.

The first time the (u, v)-derivative was introduced in [7]. This concept is useful for
the tasks of uncovering uncertainties and establishing the fact of singularity and non-
differentiability.

The following structures are related to the (u, v)-derivative.

• Wen Chen has defined a fractal derivative as the limit limt1→t
u(t1)−u(t)
tα1−tα

in [4, 3].

It is easy to show that limt1→t
u(t1)−u(t)
tα1−tα

= t1−α

α Dt1−t
0 u(t) if t 6= 0, and is equal

to the fractal velocity [5] if t = 0.
• In [2], the conformable fractional derivate was defined to be the limit Tα(f)(t)=

limε→0
f(t+εt1−α)−f(t)

ε . It is easy to get that Tα(f)(t) = t1−αDht1α

0 f(t).

Given the design of the analogue of the (u, v)–derivative as the limit �u(h)
v(h)f(x) =

limh→0
�u(h)

v(h)
f(x)

�u(h)

v(h)
x

, where �u(h)
v(h)f(x) is oscillation of the function f on the segment with

the endpoints x + u(h) and x − v(h), and a pair of functions (u, v) ∈ P+ (P+ contains
all pairs of P satisfying the inequality u(h) · v(h) ≥ 0 in certain punctured neighborhood
of zero). The usage of the analogue of the (u, v)-derivative allowed to show that there is
a model class of functions containing singular functions that have unbounded variation
on each segment from the domain of definition.

To simplify the study of compositions of functions, there was introduced a logarithmic
(u, v)-derivative.

Let a function f and a pair of functions (u, v) ∈ P be given. Set the number (if it
exists) for fixed x0 from the domain of definition of f ,

(4) Lu
vf(x0) ≡ lim

h→0

ln |∆u
vf(x0)|

ln |∆u
vx|

= lim
h→0

ln
∣∣f(x0 + u(h)

)
− f

(
x0 − v(h)

)∣∣
ln |u(h) + v(h)|

,

which will be called the logarithmic (u, v)-derivative of the function f at the point x0.
In [5] the fractal velocity of fractional order 0 ≤ β ≤ 1 was defined as

(5) vβ±[f ](x) = lim
h→0

f(x+ h)− f(x)

±hβ
.

Obviously L±h0 f(x) is a number such that for all β < L±h0 f(x) we have vβ±[f ](x) = 0

and that, for all β > L±h0 f(x), vβ±[f ](x) =∞.
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Extending logarithmic (u, v)-derivative to vector functions we can see that the same
relation is obtained with the fractal gradient defined in [1] as

(6) 5T = Γ(1 + α) lim
xB−xa→L0

TB − TA
(xB − xa)α

.

3. Λu
v and it properties

Denote by P⊕ =
{

(u, v) ∈ P+ : u(h) ≥ 0,∀h ∈ O (u, v)
}

.
Let (u, v) ∈ P+. We will use the following notation:

(7) Λu
vf(x0) = lim

h→0

ln�u
vf(x0)

ln�u
vx

.

A proof of the following three propositions are based on this notation.

Proposition 1. We have Λu
vf(x0) ∈ ([0; +∞) ∪ {−∞}).

Proposition 2. The following conditions hold true:

• if f ′(x0) ∈ R\{0} then Λu
vf(x0) = 1;

• if Λu
vf(x0) < 1 then the function is non-differentiable at x0;

• if Λu
vf(x0) > 1 then Du

v(x0) = 0.

Proposition 3. Let for functions f , g and a pair of functions (u, v) ∈ P+ there exist an
infinitesimal sequence (hn) such that u(hn)v(hn) > 0 ∀ ∈ N.

The following conditions hold true:

• If Λu
vf(x0) > 0 then the function is continuous at x0;

• Λu
vA = +∞ where A ∈ R;

• If the value of J(x0) = lim
h→0

f(x0 + h)− lim
h→0

f(x0 − h) is a non-zero real number

then Λu
vf(x0) = 0;

• If J(x0) =∞ then Λu
vf(x0) = −∞.

Proposition 4. If a function f is continuous at x0 then Λu
vf(x0) = Λu

v |f | (x0).

Proof. If there exists an (u, v)-neighborhood of x0 (meaning an interval with endpoints
at the points x0 + u(h), x0− v) such that f ≥ 0, then from the equality |f | = f , we have
Λu
vf(x0) = Λu

v |f | (x0). On the other side, if f ≤ 0, then from �u
vf(x0) = �u

v(−1 · f)(x0)
we came to the equality.

Let in some (u, v)-neighborhood of the point x0 the function f have different signs.
Then the following inequality holds: 1

2�
u
vf(x0) ≤ �u

v |f | (x0) ≤ �u
vf(x0). Taking into

account the equality 1
2�

u
vf(x0) = �u

v

(
1
2f
)

(x0),

ln�u
v

(
1

2
f

)
(x0) ≤ ln�u

v |f | (x0) ≤ ln�u
vf(x0),

ln�u
v

(
1
2f
)

(x0)

ln�u
vx

≥ ln�u
v |f | (x0)

ln�u
vx

≥ ln�u
vf(x0)

ln�u
vx

.

To get Λu
vf(x0) = Λu

v |f | (x0) we pass to limits in the last inequalities. �

Theorem 1. Let for f , g be continuous functions and a pair of functions (u, v) ∈ P+

there exist finite values Λu
vf(x0) ≥ 0 and Λu

vg(x0) ≥ 0. Then

(1) ∀a ∈ R\{0} and b ∈ R satisfies the equality Λu
v (a · f + b) (x0) = Λu

vf(x0);
(2) if Λu

vf(x0) 6= Λu
vg(x0) then Λu

v (f + g) (x0) = min {Λu
vf(x0),Λu

vg(x0)};
(3) if f(x0) = 0 = g(x0) then Λu

v

(
f · g

)
(x0) ≥ Λu

vf(x0) + Λu
vg(x0);

(4) if f(x0) = 0 = g(x0) and limh→0
ln supt∈Θu

v(x0) |f(t)g(t)|

ln
(

supt∈Θu
v(x0) |f(t)|·supt∈Θu

v(x0) |g(t)|
) = m exists

then the following conditions hold: Λu
v

(
f · g

)
(x0) = m (Λu

vf(x0) + Λu
vg(x0));
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(5) if ξ > 0, then we have Λu
v |f |

ξ
(x0) =

{
ξ · Λu

vf(x0), if f(x0) = 0

Λu
vf(x0), if f(x0) 6= 0

.

Proof. 1. Assume that �u
v (a · f + b) (x0) = |a|�u

vf(x0). Then according to the definition
we get Λu

v (a · f + b) (x0) = Λu
vf(x0).

2. Let Λu
vf(x0) = c, Λu

vg(x0) = d, c < d. In accordance to �u
vf(x0) = (�u

vx)
c+α(h)

,

�u
vg(x0) = (�u

vx)
d+β(h)

, where limh→0 α(h) = 0 = limh→0 β(h).
From �u

vf(x0) = sup
t1,t2∈Θ

u(h)

v(h)
(x0)

(f(t1)−f(t2)) we get that �u
v (f + g) (x0) ≤ �u

vf(x0)+

�u
vg(x0). So,

ln�u
v

(
f + g

)
(x0) ≤ ln

(
�u

vf(x0) + �u
vg(x0)

)
⇒

�u
v

(
f + g

)
(x0)

ln�u
vx

≥
ln
(
�u

vf(x0) + �u
vg(x0)

)
ln�u

vx
⇒

Λu
v (f + g) (x0) ≥ lim

h→0

ln (�u
vf(x0) + �u

vg(x0))

ln�u
vx

(8) = lim
h→0

c+ α(h) +
ln
(

1 + (�u
vx)

d−c+β(h)−α(h)
)

ln�u
vx

 = c = Λu
vf(x0).

Since the values of the functions f and g at the point x0 are equal to the zero, we
have that

�u
v |f | (x0) = sup

t∈Θu
v(x0)

|f(t)| − inf
t∈Θu

v(x0)
|f(t)| = sup

t∈Θu
v(x0)

|f(t)|,

�u
v |g| (x0) = sup

t∈Θu
v(x0)

|g(t)| − inf
t∈Θu

v(x0)
|g(t)| = sup

t∈Θu
v(x0)

|g(t)|.

Whereas supt∈Θu
v(x0) |f(t)g(t)| ≤ supt∈Θu

v(x0) |f(t)| · supt∈Θu
v(x0) |g(t)| then

(9) Λu
v |f · g| (x0) ≥ Λu

v |f(x0)|+ Λu
v |g(x0)|.

4. If limh→0
ln supt∈Θu

v(x0) |f(t)g(t)|

ln
(

supt∈Θu
v(x0) |f(t)|·supt∈Θu

v(x0) |g(t)|
) = m then

Λu
v (fg) (x0)

= lim
h→0

 ln supt∈Θu
v(x0) |f(t)g(t)|

ln�u
vx

·
ln
(

supt∈Θu
v(x0) |f(t)| · supt∈Θu

v(x0) |g(t)|
)

ln
(

supt∈Θu
v(x0) |f(t)| · supt∈Θu

v(x0) |g(t)|
)


= lim
h→0

 ln supt∈Θu
v(x0) |f(t)g(t)|

ln
(

supt∈Θu
v(x0) |f(t)| · supt∈Θu

v(x0) |g(t)|
)

×
ln
(

supt∈Θu
v(x0) |f(t)| · supt∈Θu

v(x0) |g(t)|
)

ln�u
vx


= m

(
Λu
vf(x0) + Λu

vg(x0)
)
.

5.1. Let us consider the case where f(x0) = 0.
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From supt∈Θu
v(x) |f(t)|ξ =

(
supt∈Θu

v(x0) |f(t)|
)ξ

it follows that

Λu
v |f |ξ(x0) = ξΛu

v |f |(x0) = ξΛu
vf(x0).

5.2. Let f(x0) = d 6= 0, and consider the function φ(x) = |f(x)| − |f(x0)|. We have
Λu
vf(x0) = Λu

v |f |(x0) = Λu
vφ(x0). It is obvious that

|f |ξ(x)− 1 = dξ
(

1 +
φ(x)

d

)ξ
− 1 = φ(x)dξ−1

∞∑
n=1

(
an

(
φ(x)

d

)n−1
)
.

It is easy to show that Λu
v (f · g) (x0) = Λu

vf(x0) if exists such (u, v)-neighborhood of
x0 such that 0 < m ≤ |g(x)| ≤M <∞. So, Λu

v |f |ξ(x0) = Λu
vψ(x0) = Λu

vf(x0). �

In the previous theorem, item 2, the condition Λu
vf(x0) 6= Λu

vg(x0) is sufficient to
ensure the equality Λu

v (f + g) (x0) = min {Λu
vf(x0),Λu

vg(x0)}.
Let f(x) = x − s(x) and g(x) = s(x) where Λu

vs(x0) = s0 < 1. Using the previous

propositions we see that Λu
vf(x0) = s0, Λu

vg(x0) = s0, Λu
v (f + g) (x0) = Λu

v

(
x − s(x) +

s(x)
)

(x0)= Λu
vx = 1. So, in this case the equality Λu

v (f + g) (x0) = min {Λu
vf(x0),Λu

vg(x0)}
doe not hold.

Let g(x) = x
(

1 − D(x)
)

, f(x) = xD(x) where D(x) =

{
1, x ∈ R\Q
0, x ∈ Q

. Then

f(0) = 0, g(0) = 0 and Λu
vf(0) = 1, Λu

vg(0) = 1. The product is f(x)g(x) = 0.
So, Λu

v(f · g)(0) = +∞ ≥ Λu
vf(0) + Λu

vg(0).

4. Properties of Λf(x0)

Denote Λf(x0) by Λh0f(x0).

Proposition 5. If Λf(x0) > 0 then the function f is continuous at x0.

Proof. From the definition of Λf(x0) we get �h0f(x0) = |h|Λf(x0)+α(h), limh→0 α(h) = 0.
Then limh→0 �h0f(x0) = limh→0 |h|Λf(x0)+α(h) = 0. So, f is continuous at x0. �

Lemma 1. If Λf(x0) exists then for all pairs (u, v) ∈ P+ we have Λu
vf(x0)= Λf(x0).

Proof. If Λf(x0) = −∞ then the function has an infinite ”jump” at the point x. So,
Λu
vf(x0) = −∞.
Next, without losing the generality, we will assume that (u, v) ∈ P⊕.
Let us show that in the case of existence of Λf(x0), the equality Λhhf(x0) = Λf(x0)

holds. Let σ(h) = max
{
�h0f(x0),�0

hf(x0)
}

. Then σ(h) ≤ �hhf(x0) ≤ 2σ(h). So,

lnσ(h)

ln |2h|
≥ �hhf(x0)

ln |2h|
≥ ln (2σ(h))

ln |2h|
.

To get Λf(x0) = Λhhf(x0) we pass to the limit in the last inequalities.

Let µ = µ(h) = max{u, v}. From �µ0f(x0) ≤ �u
vf(x0) ≤ �µµf(x0) and 1

2 ≤
∣∣∣ µ
u+v

∣∣∣ ≤ 1

we have that

ln�µ0f(x0) · ln�µ0x
ln�µ0x · ln�u

vx
≥ ln�u

vf(x0)

ln�u
vx

≥
ln�µµf(x0) · ln�µµx

ln�µµx · ln�u
vx

.

To get Λu
vf(x0) = Λf(x0) we pass to the limit at previous inequalities.

Let Λf(x) = +∞. Accordingly �h0f(x) = |h|α(h), limh→0 α(h) = +∞ then �u
vf(x)≤

2µmin{α(h),α(−h)}. So,

(10)
ln�u

vf(x)

ln�u
vx

≥ ln 2

ln (µ+ η)
+ min{α(h), α(−h)} lnµ

ln (µ+ η)
.
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To get Λu
vf(x) = +∞ we pass to the limit in (10). �

Theorem 2. If Λf(τ) ∈ R, Λg(x0) ∈ R exist, where τ = g(x0), then

Λ
(
f(g)

)
(x0) = Λf(τ) · Λg(x0).

Proof. From the definition of Λf(x0) we get

Λ
(
f(g)

)
(x0) = lim

h→0

ln�h0
(
f (g)

)
(x0)

ln�h0x
= lim
h→0

(
ln�h0

(
f (g)

)
(x0)

ln�h0g(x0)
· ln�h0g(x0)

ln�h0x

)
.

According to the definition let us consider
ln�h0 (f(g))(x0)

ln�h0 g(x0)
.

If x ∈ Θh
0 (x0) then g(x) ∈

[
inft∈Θh0 (x0) g(t); supt∈Θh0 (x0) g(t)

]
. Let u = u(h) =

supt∈Θh0 (x0) g(t) − g(x0), v = v(h) = g(x0) − inft∈Θh0 (x0) g(t). It is easy to see that

(u, v) ∈ P⊕. If τ = g(x0), then �h0g(x0) = �uvτ , �h0
(
f (g)

)
(x0) = �uvf(τ). So,

(11) Λ
(
f(g)

)
(x0) = lim

h→0

(
ln�uvf

(
τ
)

ln�uvτ

)
· lim
h→0

(
ln�h0g(x0)

ln�h0x

)
= Λf(τ) · Λg(x0).

�

Proposition 6. If Lf(x0) ≥ 0 exist, then Λf(x0) = Lf(x0).

Proof. Let Lf(x0) = c. Then
∣∣∆h

0f(x0)
∣∣ = |h|c+α(h)

, limh→0 α(h) = 0, f(x0 + h) =

f(x0) + s(h) |h|c+α(h)
where s(h) ∈ {±1}.

The exist a = a(h), b = b(h) such that f(x0 + a) = supt∈Θh0 (x0) f(t), f(x0 + b) =

= inft∈Θh0 (x0) f(t). So,

�h0f(x0) = f(x0 + a)− f(x0 + b) = s(a) |a|c+α(a) − s(b) |b|c+α(b) ≤ 2 |h|c+µ(h)
,

where µ(h) = min{α(a), α(b)}. Then

ln
∣∣∆h

0f(x0)
∣∣ ≤ �h0f(x0) ≤ ln 2 + (c+ µ(h)) ln |h|.

Using the equalities |∆h
0x| = |h| = �h0x we get

ln
∣∣∆h

0f(x0)
∣∣

ln |∆h
0x|

≥ ln�h0f(x0)

ln�h0x
≥ ln 2

ln |h|
+ (c+ µ(h))

ln |h|
ln |h|

.

Let us pass to the limit in last inequalities (for h→ 0),

(12) Lf(x0) ≥ Λf(x0) ≥ Lf(x0)⇒ Λf(x0) = Lf(x0).

�

Theorem 3. Let (ln; rn) be a pair of infinitesimal sequences such that ln < ln+1 <

x0 < rn+1 < rn for all n ∈ N and limn→∞
ln(rn+1−x0)
ln(rn−x0) = 1 = limn→∞

ln(x0−ln+1)
ln(x0−ln) .

For Λf(x0) to exist it is necessary and sufficient that the limits limn→∞
ln�rn−x0

0 f(x0)
ln(rn−x0) ,

limn→∞
ln�0

x0−ln
f(x0)

ln(x0−ln) exist and be equal. If they exist, they are equal.

Proof. If Λf(x0) exists (finite or infinite) then limn→∞
ln�rn−x0

0 f(x0)
ln(rn−x0) exists and equals

Λf(x0).
It is easy to observe that for positive h ≤ u0 there exists n = n(h) such that un+1<h≤

un, where un ≡ rn − x0. Since �a0x = a and limh→0
lnun+1

lnun
= 1, it is easy to show that

limh→0
lnun+1

lnh = 1 = limh→0
lnun
lnh .
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On the other side, �un+1

0 f(x0) ≤ �h0f(x0) ≤ �un0 f(x0). Then

(13)
ln�un+1

0 f(x0)

ln�h0x
≥ ln�h0f(x0)

ln�h0x
≥ ln�un0 f(x0)

ln�h0x
.

To get limn→+∞
ln�rn−x0

0 f(x0)

ln�rn−x0
0 x

and limh→0+
ln�h0 f(x0)

ln�h0x
we pass to the limit in (13).

The other case is proved by similarly. �

Next, for simplicity, we will write �rn−x0

x0−ln f(x0) = �
[ln,rn]

f(x0).

Lemma 2. Let (ln, rn) and
(
l̃n, r̃n

)
be given pairs of infinitesimal sequences such that

the following conditions are satisfied:

(1) ln ≤ x0 < rn, x0 < l̃n < r̃n;

(2) limn→∞ ln = x0 = limn→∞ rn, limn→∞ l̃n = x0 = limn→∞ r̃n;

(3)
[
l̃n; r̃n

]
⊂ [x0; rn] ⊂ [ln; rn], for all n ∈ N;

(4) limn→∞
ln �

[ln;rn]
f(x0)

ln �
[l̃n;r̃n]

f(x0) = 1, limn→∞
ln(rn−ln)

ln(r̃n−l̃n)
= 1, limn→∞

ln(rn−ln)
ln(rn+1−ln+1) = 1.

The value of the right-hand side limit Λf(x0) and limn→∞
ln �

[ln,rn]
f(x0)

ln(rn−ln) exist simultane-

ously.

Proof. It is obvious that

(14) �
[ln,rn]

f(x0) ≥ �
[x0,rn]

f(x0) ≥ �
[l̃n,r̃n]

f(x0); rn − ln ≥ rn − x0 ≥ r̃n − l̃n.

Using the conditions of the theorem we have

(15) lim
n→∞

ln �
[ln,rn]

f(x0)

ln �
[l̃n,r̃n]

f(x0)
= lim
n→∞

ln �
[x0,rn]

f(x0)

ln �
[ln,rn]

f(x0)
= lim
n→∞

ln �
[x0,rn]

f(x0)

ln �
[l̃n,r̃n]

f(x0)
= 1,

(16) lim
n→∞

ln (rn − ln)

ln
(
r̃n − l̃n

) = lim
n→∞

ln (rn − x0)

ln (rn − ln)
= lim
n→∞

ln (rn − x0)

ln
(
r̃n − l̃n

)1.

According to the Theorem 3 we obtain

(17) lim
h→0+

ln�h0f(x0)

ln�h0x
= lim
n→∞

ln �
[x0,rn]

f(x0)

ln (rn − x0)
= lim
n→∞

ln �
[ln,rn]

f(x0)

ln (rn − ln)
.

�

Lemma 3. Let (ln, rn) and
(
l̃n, r̃n

)
be given pairs of infinitesimal sequences such that

the following conditions are satisfied:

(1) ln ≤ x0 < rn, l̃n < r̃n < x0;

(2) limn→∞ ln = x0 = limn→∞ rn, limn→∞ l̃n = x0 = limn→∞ r̃n;

(3)
[
l̃n, r̃n

]
⊂ [ln;x0] ⊂ [ln, rn] for all n ∈ N;

(4) limn→∞
ln �

[ln,rn]
f(x0)

ln �
[l̃n,r̃n]

f(x0) = 1, limn→∞
ln(rn−ln)

ln(r̃n−l̃n)
= 1, limn→∞

ln(rn−ln)
ln(rn+1−ln+1) = 1.

The value of the left-hand side limit Λf(x0) and limn→∞
ln �

[ln,rn]
f(x0)

ln(rn−ln) exist simultane-

ously.
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5. Properties of Λhhf(x0)

Lemma 4. Let there be given a strictly descending infinitesimal sequence of pairs of

positive real numbers (τ0) such that limn→∞
ln τn+1

ln τn
= 1.

In order for the limit Λhhf(x0) to exist, it is necessary and sufficient that the limit

limn→∞
ln�τnτnf(x0)

ln�τnτnx
existed. If they exist, then they are equal.

Proof. From existence of Λhhf(x0) we have that the limit limn→∞
ln�τnτnf(x0)

ln�τnτnx
also exists.

Let n = n(h) be such that τn+1 < h ≤ τn. Then we have the following:

�τn+1
τn+1

f(x0) ≤ �hhf(x0) ≤ �τnτnf(x0),

(18)
ln�τn+1

τn+1f(x0) · ln�τn+1
τn+1x

ln�τn+1
τn+1x · ln�hhx

≥ ln�hhf(x0)

ln�hhx
≥

ln�τnτnf(x0) · ln�τnτnx

ln�τnτnx · ln�hhx
,

lim
h→0

ln�τn+1
τn+1f(x0)

ln�τn+1
τn+1x

≥ Λhhf(x0) ≥ lim
h→0

ln�τnτnf(x0)

ln�τnτnx
.

So, if the limit limn→∞
ln�τnτnf(x0)

ln�τnτnx
exists, then there exists Λhhf(x0), and they are

equal. �

Note that from the inequality (18) we have the following:

(19) lim
n→∞

ln�τnτnf(x0)

ln�τnτnx
= lim
h→0

ln�hhf(x0)

ln�hhx
, lim
n→∞

ln�τnτnf(x0)

ln�τnτnx
= lim
h→0

ln�hhf(x0)

ln�hhx
.

Theorem 4. Let there be given a sequence of pairs of real numbers (ln, rn) such that
limn→∞ ln= x0 = limn→∞ rn. In addition, we assume that ln < ln+1 < x0 < rn+1 < rn
for all n ∈ N and

(20) lim
n→∞

ln max {rn − x0, x0 − ln}
ln min {rn − x0, x0 − ln}

= 1 = lim
n→∞

ln (rn+1 − ln+1)

ln (rn − ln)
.

Then limn→∞
ln �

[ln;rn]
f(x0)

ln(rn−ln) and Λhhf(x0) exist or not simultaneously. If they exist, they

are equal.

Proof. Let un = rn − x0, vn = x0 − ln, µn = min {un, vn}, ηn = max {un, vn}.
Let us show that under the given conditions, limn→∞

lnµn+1

lnµn
= 1 = limn→∞

ln ηn+1

ln ηn
.

Indeed,

1 = lim
n→∞

ln (rn+1 − ln+1)

ln (rn − ln)
= lim
n→∞

ln ηn+1 + ln
(

1 + µn+1

ηn+1

)
ln ηn + ln

(
1 + µn

ηn

) = lim
n→∞

ln ηn+1

ln ηn
.

From limn→∞
ln max{rn−x0,x0−ln}
ln min{rn−x0,x0−ln} = limn→∞

ln ηn
lnµn

= 1 we get limn→∞
lnµn+1

lnµn
= 1.

Consider the inequality

�µnµnf(x0) ≤ �unvn f(x0) ≤ �ηnηnf(x0),

(21)
ln�µnµnf(x0)

ln�unvn x
≥

ln�unvn f(x0)

ln�unvn x
≥

ln�ηnηnf(x0)

ln�unvn x
.

Passing to the limit we get
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lim
n→∞

ln�µnµnf(x0)

ln�unvn x
≥ lim
n→∞

ln�unvn f(x0)

ln�unvn x
≥ lim
n→∞

ln�ηnηnf(x0)

ln�unvn x
,

lim
n→∞

ln�µnµnf(x0)

ln�unvn x
≥ lim
n→∞

ln�unvn f(x0)

ln�unvn x
≥ lim
n→∞

ln�ηnηnf(x0)

ln�unvn x
.

By Lemma 4 and by the equality (19) we have

(22) lim
n→∞

ln�µnµnf(x0)

ln�unvn x
= lim
h→0

ln�hhf(x0)

ln�hhx
= lim
n→∞

ln�ηnηnf(x0)

ln�ηnηnx
,

(23) lim
n→∞

ln�µnµnf(x0)

ln�unvn x
= lim
h→0

ln�hhf(x0)

ln�hhx
= lim
n→∞

ln�ηnηnf(x0)

ln�ηnηnx
.

In other words, lim
n→∞

ln�hhf(x0)

ln�hhx
= lim
n→∞

ln�unvn f(x0)

ln�unvn x
and lim

n→∞

ln�hhf(x0)

ln�hhx
= lim
n→∞

ln�unvn f(x0)

ln�unvn x
.

Therefore, from existence of limn→∞
ln�unvn f(x0)

ln�unvn x
we obtain the fact of existence of Λhhf(x0).

�

Lemma 5. The identity Λhhf(x0) = limh→0
ln max{�h0 f(x0);�0

hf(x0)}
ln |h| holds true.

Proof. Since

max{�h0f(x0);�0
hf(x0)} ≤ �hhf(x0) ≤ 2 max{�h0f(x0);�0

hf(x0)},

we have

ln max{�h0f(x0);�0
hf(x0)}

ln 2 + ln |h|
≥ ln�hhf(x0)

ln 2 + ln |h|
≥

ln
(
2 max{�h0f(x0);�0

hf(x0)}
)

ln 2 + ln |h|
.

Passing to the limit in the latter inequality, we get the necessary statement. �

5.1. A study of differential properties of the functions ψ and ϕ. This section
presents results of a study of the functions ψ and ϕ, which were specified in the intro-
duction.

The following three statements hold true.

Proposition 7. For almost all numbers in the segment [0; 1] the equality ΛS(x) =

− ln(q0(1−q0))
2 ln 2 holds.

To calculate the right-hand side value of ΛS(x0) with x0 ∈ E2 Lemma 2 can be

applied, where ln = ∆2
α1α2...αPn (0), rn = ∆2

α1α2...αPn (1), l̃n = ∆2
α1α2...αPn1(0), r̃n = rn,

where Pn is the position number of the first digit of the n-th pair of digits (00) in the
binary representation of the number x0.

To calculate the left-hand side value of Λf(x0) with x0 ∈ E2 we can use lemma 3,

where ln = ∆2
α1α2...αPn (0), rn = ∆2

α1α2...αPn (1), l̃n = ln, r̃n = ∆2
α1α2...αPn0(1), where

Pn is the position number of the first digit of the n-th pair of digits (11) in the binary
representation of the number x0.

Proposition 8. For all x ∈ [0; 1] estimate 2g0−1
− ln 3 ≥ Λg(x) ≥ ln g0

− ln 3 holds true.

To calculate an estimate for the value of Λg(x0), where x0 ∈ E3 we use theorem 4,
where ln = ∆3

α1α2...αPn (0), rn = ∆3
α1α2...αPn (2), where Pn is the position number of the

n-th digit 1 in the ternary representation of the number x0.
Taking into account the inequality Λg(x) ≥ Λhhg(x), the following statement is obvious.

Corollary 1. If ln g0·ln(q0(1−q0))
2 ln 3·ln 2 > 1, then the function ϕ – is singular.
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Corollary 2. If ln(2g0−1)·ln(q0(1−q0))
2 ln 3·ln 2 < 1, then the function ϕ is non-differentiable almost

everywhere.

Corollary 3. If the function ϕ is a singular function of unbounded variation, then q0 ∈
∈
(

0; 3−
√

5
6

)⋃(
3+
√

5
6 ; 1

)
.

Using geometric probabilities it can be shown that with an arbitrary choice of the
parameters p and q from the unit interval with probability ≈ 43.98% we obtain a singular
function (at the same time ≈ 2.49% are singular functions of unbounded variation),
≈ 28% are non-differentiable almost everywhere and the same percentage requires for an
additional study.
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