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AN ANALOGUE OF THE LOGARITHMIC (u,v)-DERIVATIVE AND
ITS APPLICATION

R. Y. OSAULENKO

ABSTRACT. We study an analogue of the logarithmic (u, v)-derivative. The last one
has many interesting properties and good ways to calculate it. To show how it can be
used we apply it to a model class of nowhere monotone functions that are composition
of Salem function and nowhere differentiable functions.

1. INTRODUCTION

We are interested in continuous functions that are both singular (different from con-
stant, but have a derivative equal to zero, almost everywhere, in terms of Lebesgue mea-
sure) and nowhere monotone (don’t have any interval of monotonicity). Their theory is
poor enough and is exhausted by a few separate examples. It is possible to expand the
range of such objects by the superposition of singular and nowhere monotone functions.
In a model example of a pair of known simple representatives of the class of singular
functions and the class of nowhere monotone functions, we discuss the problems of a
detailed study of differential properties of complex functions and propose a new toolkit
for their study.

A singularly continuous Salem function, which depends on the parameter of g € (0;1),
is defined on [0; 1] by

0 k-1
(1) S(Z‘) =5 (AZI(I)QQ(ZL’).HO&”(I)...) =0191—a; +Z Akq1—ay H oy | = AngQ.‘.anu.’
k=2 j=1

where ¢1 = 1 — qo, OnGi-a, = Bans D2y, = 21 27"y, is the classical binary

representation of a number, a,, € A = {0, 1}.

For ¢ = 1/2, the function S(x) is linear and, for ¢ # 1/2, it is singularly continuous.
Its properties have been studied in [6].

For a given set of three parameters (go, g1, g2), where go+g1+92 = 1, go = g2 € (%, 1),
the function g on [0;1] is defined as

(2) g(x) =9 (Ail(m)ag(m)...an(w)...) = 6a1 + Z 6ak H Ga; | = AaGlaag.‘.a,,L...’
k=2 j=1

where 60 = 07 61 = 9o, 52 = 9o + g1, Ailazu,an“,

representation of a number, a,, € A3 = {0, 1,2}.
The function g is continuous on [0, 1], nowhere monotone, non-differentiable.
The object of our consideration is the continuous functions ¥ (z) = S(g(m)) and p(z) =

= > 3 "a, is a classical ternary

g(S (m)) Moreover, each of them on any segment of the domain of definition is a function
of unbounded variation, which ensures the existence of infinite levels of the function. It
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is clear that these functions have non-trivial local properties, a study of which requires
a use of nontraditional approaches. Note that even calculating the value of the function
at a given point is not easy, let alone calculating the actual derivative.

In the following four paragraphs we provide brief facts about the (u,v)-derivative
and its analogue, the logarithmic (u,v)-derivative and, accordingly, an analogue of the
logarithmic (u, v)-derivative, which provides the sought toolkit for these functions.

2. KEY CONCEPTS AND STATEMENTS

Let P be a set of pairs (u,v) of all infinitesimal functions at zero, such, that for each
pair there exists a number 6 > 0 such that for Yh € O we have u(h) # —v(h). Let

A:EZ;f(xo) i= f(zo+u(h)) — f(zo—v(h)), ASEZ;.’E =u(h) + v (h).

Definition 1. Let (u,v) € P. A finite or infinite limit (if it exists)
u(h
u AU @o) L flwou () = f(mo—v ()
(3) D¢ f(xo) = lim T = lim
h—0 AU h—0 u(h) +v(h)

v(h)
is called the (u,v)-derivative of the function f at the point z.

The first time the (u,v)-derivative was introduced in [7]. This concept is useful for
the tasks of uncovering uncertainties and establishing the fact of singularity and non-
differentiability.

The following structures are related to the (u,v)-derivative.

e Wen Chen has defined a fractal derivative as the limit limy, ¢ “(:})7;5’5) in [4, 3].

It is easy to show that limg, M;flm =t a@“ “tu(t) if t # 0, and is equal
to the fractal velocity [5] if ¢ = 0.
e In [2], the conformable fractional derivate was defined to be the limit T, (f)(t)=

1—a)_ @
i G ? (R VN casy to get that T, (f)(t) = t1=D8" ().

€
Given the design of the analogue of the (u,v)-derivative as the limit &:EZ; flx) =

Ouo) f(x)
Oy
the endpoints 2 + u(h) and = — v(h), and a pair of functions (u,v) € P+ (PT contains
all pairs of P satisfying the inequality u(h)-v(h) > 0 in certain punctured neighborhood
of zero). The usage of the analogue of the (u, v)-derivative allowed to show that there is
a model class of functions containing singular functions that have unbounded variation

on each segment from the domain of definition.

To simplify the study of compositions of functions, there was introduced a logarithmic
(u, v)-derivative.

Let a function f and a pair of functions (u,v) € P be given. Set the number (if it
exists) for fixed z¢ from the domain of definition of f,

lime ;0

limy,_q , where D:EZ; f(z) is oscillation of the function f on the segment with

s IlAf )| _ Il f (e + u(h) = £ (w0 = v(h)|
@ Sfleo) = lim = T~ I Ju() + v()] !

which will be called the logarithmic (u, v)-derivative of the function f at the point zg.
In [5] the fractal velocity of fractional order 0 < 8 < 1 was defined as

(5) A 1f](w) = i TEED )

Obviously £ f(x) is a number such that for all 8 < £5" f(x) we have v [f](z) = 0
and that, for all 8 > £ f(z), v} [f](z) = .
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Extending logarithmic (u, v)-derivative to vector functions we can see that the same
relation is obtained with the fractal gradient defined in [1] as

Tp—T
(6) VT =T(14a) lim R

xp—xq— Lo (.TB — Ia)a‘
3. AY AND IT PROPERTIES

Denote by P® = {(u,v) € P :u(h) > 0,Vh € O (u,v) }.
Let (u,v) € P*. We will use the following notation:
IO f(xo)
7 A f(wo) = 1 ACOA
@ v/ (o) Koo In Ouz

A proof of the following three propositions are based on this notation.
Proposition 1. We have Alf(zg) € ([0; +00) U {—o0}).

Proposition 2. The following conditions hold true:
o if f'(zo) € R\{O} then A f(zo) =1;
o if AUf(xo) < 1 then the function is non-differentiable at xo;
o if AUf(xzp) > 1 then DE(xp) = 0.

Proposition 3. Let for functions f, g and a pair of functions (u,v) € P* there exist an
infinitesimal sequence (hy,) such that u(hy)v(hy,) >0V € N.
The following conditions hold true:
o If Alf(xzg) > 0 then the function is continuous at xq;
o AVA = +o0 where A € R;
o [If the value of J(xo) = hmf(xo + h) — lim f(z¢ — h) is a non-zero real number

h—0
then AU f(zo) = 0;
o If J(zg) = oo then Al f(zo) = —o0.

Proposition 4. If a function f is continuous at xo then ALf(xo) = AY|f| (zo).

Proof. If there exists an (u,v)-neighborhood of xg (meaning an interval with endpoints
at the points xg + u(h), zo — v) such that f > 0, then from the equality |f| = f, we have
AYf(xo) = AY|f] (zo). On the other side, if f < 0, then from O f(zo) = O4(—1- f)(z0o)
we came to the equality.

Let in some (u,v)-neighborhood of the point z the function f have different signs.
Then the following inequality holds: 1014 f(zo) < 04 |f| (o) < 0Yf(xo). Taking into
account the equality 3004 f(zo) = 0! (1 f) (o),

(5 Gao) < W17 (o) < o)

M (5£) (o) _ WOy [f| (x0) _ IOy (o)
InOvz T InOx T In0Ovw
To get Al f(xo) = AY|f] (zo) we pass to limits in the last inequalities. O

Theorem 1. Let for f, g be continuous functions and a pair of functions (u,v) € P
there exist finite values AY f(xg) > 0 and ASg(zg) > 0. Then

(1) Ya € R\{0} and b € R satisfies the equality Al (a - f + b) (x ) = AUf(x0);

(2) if ALf(x0) # Alg(wo) then A (f +g) (o) = min {ALf (z0), Alg(ao)};

(3) if f(wo) = 0= g(wo) then AY(f - g)(z0) = Ay f(zo) + AVg ( 0);

In su u
(4) if f(zo) = 0 = g(xo) and limp_o Prcoytay) /(D90 = m exists
In(supycoy(ag) | (D] suP,coy sy 19(1)])

then the following conditions hold: AY(f - g)(zo) = m (AL f(zo) + AYg(xo));
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§- N f(xo), if flzo) =0
AV (o), if f(xo) #0

Proof. 1. Assume that OY (a - f +b) (x0) = |a|0y f(x0). Then according to the definition
we get AU (a- f+Db) (z0) = AL f(0).

2. Let AUf(z9) = ¢, Alg(zo) = d, ¢ < d. In accordance to 00U f(zo) = (Ouz)°t™),
Ovg(zo) = (D\‘jx)dJr’B(h), where limy,_,0 a(h) = 0 = limy,_,o B(h).

From 04/ (70) = $up,, gt (F(12)—f (12)) we gt that T (7 + g) (o) < T4 o)+

ch(l’o) SO;

(5) if € >0, then we have AY |f|* (x¢) = {

0 (1 + ) (0) < In (04 (w0) + Tglao)) =

T/ +9) (@) _ In (Cuf(wo) + Ctglao))

InOdz - InOvx ~
_In (07 f (o) + By (o))
u > Vv \"
AL+ 9) (a0) = Jim 0L
In (1 + (Dcx)dfﬁﬁ(h)*a(h))
®  =lim [etam)+ o — ¢ = Nf(xo).

Since the values of the functions f and g at the point zy are equal to the zero, we
have that

OV1fl(xo) = sup [f(t)]— inf |f(t)] = sup [f(2)],

te®u(mo) t€OY(z0) te®u(x0)

OV lgl(mo) = sup [g(t)] — inf |g(t)] = sup [g(t)|.
€0y (o) €0y (o) te@u (z0)

Whereas sup;cep(eg) | (19(1)] < Subicap(ag) £ (1)] - Subscen(ay) l9(1)] then

9) AVIf - gl (zo) = AV[f(z0)| + AVlg(20)]-
Insup;cou(ay) |f(1)g(t)]
ln(supteeg(zo) |£(®)]-suPicou(ag) 19(t)]

4. If im0 ) = m then

Ay (fg) (o)
Insup;cgu(a,) 1. (1) g(t)] . In (SuPter(xo) |f()] - suPteou(a) \g(t)\)

= lim

h=0 InLz In (SUPte@g(zo) HGIE SUPtcou (o) \g(t)\)
. In SUPteou () |f(£)g(t)]
= lim
h—0

In (5P, oyry) [ £(8)] - SUPscoy(e) [9(0)])

In (suprcey o) L (8)] - SuPreesey) [9(0)1)

InOdz

X

- m(Agf(xo) + Agg(xo)).

5.1. Let us consider the case where f(zg) = 0.
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3
From supceu(a) If(t)]¢ = (Supt€®3(mo) \f(t)|> it follows that

NI I (x0) = EAVIfI(wo) = EAVf (o).
5.2. Let f(zg) = d # 0, and consider the function ¢(x) = |f(z)| — |f(x0)|. We have
A f(xo) = A fl(x0) = Ald(z0). Tt is obvious that

@) =1 = d€ (1 T ¢(d))§ 1 = gyt i ( <¢<dx>>> |

It is easy to show that Al (f - g) (zo) = Alf(zo) if exists such (u,v)-neighborhood of
xg such that 0 < m < [g(z)| < M < co. So, AY|f|¢(z0) = AYeh(xg) = AUf(p). O

In the previous theorem, item 2, the condition AYf(xzg) # Alg(zg) is sufficient to
ensure the equality Al (f + g) (o) = min {AY f(z0), Abg(xo)}.
Let f(x) = = — s(z) and g(z) = s(x) where Als(xzg) = so < 1. Using the previous

propositions we see that Alf(zg) = so, Abg(xo) = S0, AL (f +9g) (zg) = Al (x —s(x) +
s(x)) (z0)= Az = 1. So, in this case the equality A% (f + g) (z0) = min {A (o), A%(z0)}
doe not hold.

1, zeR\Q

Let g(z) = x(l - D(x)), f(@) = xD(x) where D(z) = {07 ceQ’ Then

f(0) = 0, g(0) = 0 and AYf(0) = 1, Alg(0) = 1. The product is f(x)g(xz) = 0.
So, AY(f - 9)(0) = +00 > Ay f(0) + Ayg(0).

4. PROPERTIES OF A f(zo)
Denote Af(xg) by Al f(xo).
Proposition 5. If Af(xg) > 0 then the function f is continuous at xg.
Proof. From the definition of Af(xq) we get OF f(x0) = |h|* @)+ Timy, o a(h) = 0.
Then limy, o 08 f(x0) = limy, ¢ || @) +a(h) = 0. So, f is continuous at . a
Lemma 1. If Af(xo) exists then for all pairs (u,v) € PT we have AYf(zo)= Af(xo).

Proof. If Af(xg) = —oo then the function has an infinite ”jump” at the point x. So,
A f (o) = —oo0.
Next, without losing the generality, we will assume that (u,v) € P9.
Let us show that in the case of existence of Af(z¢), the equality A7 f(zg) = Af(xo)
holds. Let o(h) = max {00} f(20), ) f(x0) }. Then o(h) < O f(z0) < 20(h). So,
Ino(h) S Ok f(xo) S In (20(h))
In|2h| = In|2h] — In|2h]
To get Af(zo) = A} f(zo) we pass to the limit in the last inequalities.
Let p = p(h) = max{u,v}. From Of f(zo) < O f(x0) < O f(z0) and 5 <
we have that

©

ey <1

InOf f(xo) - InOf z - In 0¥ f(zq) < In 0O f(zo) - In O
InOfz -InOYz = WO — WO -InOlz
To get Al f(xo) = Af(zo) we pass to the limit at previous inequalities.
Let Af(z) = +o0o. Accordingly 04 f(z) = |h|*"), limy o a(h) = +oo then O f(x)<
2 min{a(h),a(fh)}' So
K )
Iny In2 1
nth /() > = —&—min{a(h),a(—h)}i.
In vz In(u+mn) In (g +n)

(10)
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To get Al f(z) = 400 we pass to the limit in (10). O
Theorem 2. If Af(r) € R, Ag(zg) € R exist, where 7 = g(xo), then
( ) AQ(IO)
Proof. From the definition of A f(zg) we get
lnDh( ) . <lnD8(f (g))(:lco) . 1ang(a;0)> .
h—0

A(f(9))(wo) = lim

h—0 In Ok In % g(zo) In Ot

In 05 (£(9)) (wo)

InOhg(zo) -~

If + € OF(xg) then g(x) € [infteeg,(xo)g(t);supteeg(xo)g(t)]. Let u = u(h) =
SUP;eo (z0) 9(t) — 9(20), v = v(h) = g(z0) — infycon(a,) 9(t). It is easy to see that
(u,v) € PP If 7 = g(xo), then O g(xo) = O%7, O (f (9)) (zo) = O%f(7). So,

1) A(f() () = lim (Mf()> i (280 ) gt

h—0 InOur In O

According to the definition let us consider

Proposition 6. If £f(xg) > 0 exist, then Af(xg) = L£f (o).

Proof. Let £f(x9) = c. Then |A} f(zo)| = b)) imy o a(h) = 0, f(zo + h) =
Flzo) + s(h) [B°T*"™ where s(h) € {£1}.

The exist a = a(h), b = b(h) such that f(zo + a) = supicen (4, f(t), (2o +b) =
= infte@g(xg) f(t). So,

O (w0) = f(wo +a) = f(wo +) = s(a) [af " = s(b) o T < 2|7,
where p(h) = min{a(a), a(b)}. Then
In |Af f(x0)| < O f(z0) <2+ (e + p(h)) In ).
Using the equalities |Alz| = |h| = Ohz we get

In [ALf(zo)| _ InOf f(x0) _ In2 In Al
> > h .
Ak = ke S mja R

Let us pass to the limit in last inequalities (for h — 0),

(12) Lf(zo) = Af(zo) = Lf(x0) = Af(20) = £f (o).
O

Theorem 3. Let (I,;7,) be a pair of infinitesimal sequences such that 1, < l,41 <

g < Tpy1 < Ty for all n € N and lim,_,o 71115122“_;3) =1 = limy»o 71%?;0_31)

For Af(xzo) to exist it is necessary and sufficient that the limits lim, o w,
Inljgo l"f(zo)

T(zo=1,) exist and be equal. If they exist, they are equal.

lim,, 0

In Op™ ™0 (o)

In(r, —x0)

Proof. If Af(xp) exists (finite or infinite) then lim,,
Af(zo).

It is easy to observe that for positive h < ug there exists n = n(h) such that u, 1< h <

exists and equals

. Inun :
Uy, where u, =1, — 2. Since Ofz = a and lim,_,¢ -5 M =1, it is easy to show that
Inwpn41 . Inu
limy, o =55 =1 = limp0 572
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On the other side, Oy *" f(z0) < O f(20) < 0§ f(x0). Then
In O™ f(wo) S In 02 £ () S In OO05™ f (o)
In Dgx " In Dgx ~ In Dga:

In Og™ ™0 (o) In ‘:lg'f(l‘g)
In Dg"’wow In Dgz

The other case is proved by similarly. O

(13)

To get limy, 4 oo and limp_,04 we pass to the limit in (13).

Next, for simplicity, we will write )" 77 f(z9) = [ ]f(xo).
nyT'n
Lemma 2. Let (I,,,7,) and Zn,fn) be given pairs of infinitesimal sequences such that
the following conditions are satisfied:
(1) Iy <zp <1, 29 < I, < Tns

(3) [Zn;fn} C [zo;10] C [ln;ra], for alln € N;
In O f(zo)

. [ln;rn] : In(rn—In _ 3 In(rp—Iln .
(4) hmn*)oo W = ]_, hmn*)OO ﬁ = 1; hmnﬁoo m =1.
In O f(zo)

The value of the right-hand side limit Af(xo) and lim, % exist simultane-
ously.
Proof. Tt is obvious that
(14) O f(xo) Z g f(!E(]) 2 ~|:| f(x()); Tn—anTn—ﬁozfn—le

[ln,7n] [z0,77] [ln,7n]

Using the conditions of the theorem we have
In O f(xo) In 0O f(zo) In 0O f(zo)

(15) lim gy el gy el

n—ooln O f(zg) n—ooln ’ U ]f(xo) noooln O f(zg)

ln;fn ns>T'n ln/”:n

1 n — ln . 1 n - .
(16) i 2n = ln) g =) 0 = 20)
e In ('Fn - ln) n—oo In (Tn - l") nree In (’Fn - ln)

According to the Theorem 3 we obtain

In O T In O T

. lanf(Io) T [Io,’l‘n}f( O) T [Z7L7Tn]f( 0)

(17) lm ———~=1lm ——— = lim ———.
h—0+  InOfx n—oo In (r, — o) n—oo In(ry — )

O

Lemma 3. Let (I,,,7,) and Zn,fn) be given pairs of infinitesimal sequences such that
the following conditions are satisfied:

(1) In <20 < Ty Iy < Tn < To;

(2) limy—yoo ln = xo = My o0 70, limy o0 Iy = xo = limy, o0 7p;

(3) {lmfn} C [ln; o) C [ln, 1] for allm € N;
In 0O f(zo)

: [l 7] _ : In(rp—ln) _ : In(rp—ln) _
(4) Mmoo 5 45 gy = b Mmoo @y = L oo i S0y = 1
m O f(wo)
The value of the left-hand side limit Af(xzo) and lim, o % exist simultane-

ously.
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5. PROPERTIES OF A} f(zg)

Lemma 4. Let there be given a strictly descending infinitesimal sequence of pairs of
.. . InTp41
positive real numbers (o) such that lim,

Int, ~—

In order for the limit Al f(zq) to ewist, it is necessary and sufficient that the limit

. InO7n . .
limy, 00 nlnfm"iffn(io) existed. If they exist, then they are equal.

In 077 f (o)
In7"

Let n = n(h) be such that 7,41 < h < 7,,. Then we have the following:

Proof. From existence of AZ f(zo) we have that the limit lim,_, also exists.

O+t f(xo) < Of f(wo) < O f (o),

Tn+1

IO f(2o) - IOt i - In O f (20) R Lini flzo) - Oz
mO7z - InOhe T Oz T WmOFz Wm0

(18)

In D:Zﬁ (z0) In 07 f(xo)

lim ——=t2 =2 > AR > i
i In Ontie ~ nf(wo) 2 i50  In Oz
. e el 1s g . .
So, if the limit lim,, % exists, then there exists Al f(zo), and they are
equal. O

Note that from the inequality (18) we have the following:

7 U7 — InO} In 07 In (%
19) T ORS00 o mBif(m) -y WORS(ze) o DR ()
n—oo In0x h—0 lnDZ;U nooo In0zx h—0 lnDZx

Theorem 4. Let there be given a sequence of pairs of real numbers (l,,,ry,) such that
limy, o0 ln= xg = lim,,—,00 7. In addition, we assume that 1, <41 < xg < Thi1 < Ty
for alln € N and

(20) i BmaAT =00 2o =l g i1 = lia)
n—oo In min {T’n — o, To — ln} n—oo  In (Tn — ln)
In O f(zo)

[lnirn]

B Y (o e and AZf(xo) exist or not simultaneously. If they exist, they

Then lim,, o
are equal.

Proof. Let up, =1y — Zo, Vp = To — bp, o, = min {t,, v}, 9 = max {un, vy }.

Let us show that under the given conditions, lim, . h} r’l‘;“ =1 =lim,e 11; ;7;-%—1.
Indeed,
Hnt1
. In(rpgn —lny1) . i1 +1n (1 + nn+1) . Inmpga
1= lim ——— = = lim — lim )
n—oo In (Tn - ln) n—oo 1, N + In (1 + %> n—oo In Mn
From lim Inmas{r, ~20.20=ln} _ Jjp, . — 1 we get lim Inpnss _
N—=00 Inmin{r, —zo,z0—ln} n—=0 Inp, g n—00 TInp,

Consider the inequality
One f(zo) < Oyr fzo) < O f(20),

In (K~ In Oy~ In 3777
(21) n an{(xo) Z n vnf(xo) Z n Urzq{(xo)
Inyrz InOyra Inyrz

Passing to the limit we get
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— InO* f(x N o . In0O f(x
lim 7“"7{( 0) > lim 2, J1T0) U"I(xo) > lim 777"{( 0)
n—oo InOyrx n—oo InUyrx n—oo Inlyra

In Ot f (o) i In 00y~ f (o) > lm In Dng(xo)

)

By Lemma 4 and by the equality (19) we have

(22) i i f(@e) oG (o) _ e U f(20)
n—oo Inly"x h—0 In DZx n—oo In DZZ% ’
. o P D) O ()
noe MOprz  ph0 WOz e WOz
T Ol f(zo) _ 7 IOy f(wo) . InOMf(zo) _ . WmOy" f(zo)
In other words, nh_}rr;(}#ﬁgﬁ0 = nh_}n(;W and nh—%r; 7111?];;:1:0 = nh—%lom

In Oy . .
nm’JD"ifn(?) we obtain the fact of existence of A f (o).

O

Therefore, from existence of lim,,

In maX{Dgf($0)§|:’2f($0)} holds true
0 In [h] :

Lemma 5. The identity AZf(:cO) = limy,_,

Proof. Since
max {005 f(z0); Of f(20)} < T f (o) < 2max{T3g f(xo); O} f (o)},
we have

In max{08 f(20); 00 f(20)} _ O} f(wo) _ In (2max{0G f(w0); 03} £ (z0)})
2 + In [A] “ 2+ nh = In2 + In |

Passing to the limit in the latter inequality, we get the necessary statement. ([l

5.1. A study of differential properties of the functions v and ¢. This section
presents results of a study of the functions ¢ and ¢, which were specified in the intro-
duction.

The following three statements hold true.

Proposition 7. For almost all numbers in the segment [0;1] the equality AS(x)=
—Inlaoll=g0)) poygs.

To calculate the right-hand side value of AS(zo) with 29 € E Lemma 2 can be
applied, where [,, = A? = A2 I, = A2 F

ajas...ap, (0)? T'n ajog...ap, (1) " ajog...ap, 1(0)? Tn = Tn,
where P, is the position number of the first digit of the n-th pair of digits (00) in the
binary representation of the number zg.

To calculate the left-hand side value of Af(xg) with zy € F5 we can use lemma 3,

where [,, = AZWQWQP 0y Tn = A2 I, = Iy, Tn = A2 where

ajaz...ap, (1)’ "M ajag...ap,0(1)’
P, is the position number of the first digit of the n-th pair of digits (11) in the binary
representation of the number z.

Proposition 8. For all x € [0;1] estimate 25?;; > Ag(z) > inl—flog holds true.

To calculate an estimate for the value of Ag(xg), where z¢p € E3 we use theorem 4,
where [,, = Ailm”aP (o) n = Ailag...ap 2) where P, is the position number of the
n-th digit 1 in the ter;iary representation of the number Q-

Taking into account the inequality Ag(z) > Alg(z), the following statement is obvious.

Corollary 1. If W > 1, then the function ¢ — is singular.
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Corollary 2. If ln(29°7211)r;l;§g°2(17q0)) < 1, then the function p is non-differentiable almost
everywhere.

Corollary 3. If the function ¢ is a singular function of unbounded variation, then gy €
.3-V5 3+5.
€ (0, 5 )U( 5 ,1).
Using geometric probabilities it can be shown that with an arbitrary choice of the
parameters p and ¢ from the unit interval with probability ~ 43.98% we obtain a singular
function (at the same time ~ 2.49% are singular functions of unbounded variation),

~ 28% are non-differentiable almost everywhere and the same percentage requires for an
additional study.
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