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VIABILITY RESULT FOR HIGHER-ORDER FUNCTIONAL
DIFFERENTIAL INCLUSIONS

MYELKEBIR AITALIOUBRAHIM

ABSTRACT. We prove, in separable Banach spaces, the existence of viable solutions
for the following higher-order functional differential inclusion

=) (1) € F(t, T(t)z, 2V (¢), ...,z (¢)), a.e. on[0,7].
We consider the case when the right-hand side is nonconvex and the constraint is

moving.

JoBogurscs icHyBaHHs B cemapabenbHUX 0AHAXOBHX MIPOCTOPAX PO3B’SI3KIB HA
BChOMY iHTepBaJi 1 GYHKIIOHATBHO-TUMEPEHITIAIbHIX BKIIOYEeHb

=®)(t) € F(t, Tt)z, P (1), ...,a* =D (), a.e. on [0,7].

Posraspaersea BUnagoK HEOIMYKJIOl IPaBol JaCTHHH Ta PYXOMOTO OOMerKeHHH.

1. INTRODUCTION

Let E be a separable Banach space with a norm || - ||. For I a segment in R, we denote
by C(I, E) the Banach space of continuous functions from I to E equipped with the
norm ||z(+)[|eo = sup {||z(t)||;¢ € I} and W™!(I, E) the space of functions possessing
absolutely continuous derivatives up to order n — 1. For a a positive number, we put
Co = C([~a,0],F) and for any t € [0,7], 7 > 0, we define the operator T'(¢) from
C([—a, 7], E) to Cq with (T'(t)(z(.)))(s) == (T(t)x)(s) := z(t + s), Vs € [—a,0].

In this paper, we shall prove the existence of solutions to the following functional
differential inclusion:

c®(t) € F(t,T(t)x, 2N (t),...,2*=1(t)), a.e. on [0,7],
x(s) = ¢(s), for all s € [—a,0],

() ey, foralli=1,...,k—1, and for all t € [0, 7],
x(t) e C(t), Vtelo,7],

where F' and C are set-valued maps, ¢ € C,, ; C Eforalli=0,...,k—1and k > 1.

Existence of viability result for functional differential inclusions was first suggested
by Haddad [10, 11], when the right-hand side is upper semicontinuous with convex and
compact values, in finite dimensional vector space. This program of research on this
subject was studied by several authors under various assumptions. In this way we refer
the reader to [2, 4, 5, 9, 12] and the references therein.

Marco and Morillo, in [13], have established the existence of viable solutions, in finite-
dimensional vector space, to the following problem

(1.1)

{ z®)(t) € F(a(t), M (t),...,a*=(t)), a.e. on [0,7], (1.2)

x(t) € K, Vtel0,r],
where F' is upper semi-continuous set valued-map with compact convex values and K is
a set in E such that the graph of A%_l), defined below, is locally compact.
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Recently, in [1], Aitalioubrahim and Sajid have established the existence of viable
solutions to (1.1), without memory, in Banach space when C is fixed and F' is integrably
bounded, measurable with respect to the first argument and Lipschitz continuous with
respect to the third argument. In addition, they have considered the following tangential
condition:

1 k=lypi  pk=1 [tth
lzrg(l)rifﬁd :c—i—;?y +T/t F(s,z)ds, K | =0.

This work extends results which are presented in [1, 2, 3, 4, 5, 8, 12]. Indeed, we get
an existence result, in a separable Banach space, for higher-order functional differential
inclusions, with a constraint which depends on time. The right-hand side verifies the
weaker hypotheses. As is known, viability problems need tangential conditions. For the
problem (1.1), we shall use a tangency condition which is weaker than that used in [3].

The paper is organized as follows. In Section 2, we recall some preliminary facts that
we need in the sequel. In Section 3, we prove the existence of solutions for (1.1).

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

For measurability purpose, E (resp. 2 C E) is endowed with the o-algebra B(FE)
(resp. B(R)) of Borel subsets for the strong topology and [0, 1] is endowed with Lebesgue
measure and the c-algebra of Lebesgue measurable subsets. For x € EF and r > 0
let B(z,r) := {y € E;|ly —z|| < r} be the open ball centered at = with radius
r and B(x,r) be its closure and put B = B(0,1). For ¢(.) € C, let By(p(.),r) =
{v() € Cas lle(.) = ¥()|loo < 7} and let By((.),r) be its closure. For « € E and for
nonempty subsets A, B of E we denote d(z) or d(z, A) the real inf {|jy — z|l;y € A},
(A, B) :==sup {dp(z);z € A} and H(A, B) = max {e(4, B),e(B, A)}. A multifunction
is said to be measurable if its graph is measurable.

Let us recall the following Lemmas that will be used in the sequel.

Lemma 2.1. [14]Let G : [a,b] — 2F be a measurable multifunction and y(.) : [a,b] — E
a measurable function. Then for any positive measurable function 7(.) : [a,b] — RT,
there ezists a measurable selection g(.) of G such that for almost all t € [a, b]

lg@®) —y@®I < dy®),G®) +r(t).

Lemma 2.2. [6]Let < be a given preorder on the nonempty set B and let ¢ : B —
R U {+o0} be an increasing function. Suppose that each increasing sequence in B is
magorated in B. Then, for each xo € B, there exists x1 € B such that xg < x1 and

¢(z1) = o(x) if 11 2 .

The above function ¢, in [6], is supposed to be finite and bounded from above, but
this restriction can be removed by replacing ¢ by the function x — arctan ¢(z).

Before stating our main result, for any integer n > 1, we recall the tangent set of n—th
order denoted by A% (xo, 1, ...,2n—1) introduced by Marco and Murillo [13] as follows:

=0

n—1,,
n! ht h"
AP D) = E:liminf—d 3" T, + Sy K| =07
k(20,15 oo, Tno1) {ye o hn( Z_!:Jc—i—n!y ) 0}

For any set-valued map F, we denote Gr(F') its graph.
We shall use the following hypotheses throughout this paper.
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(H1) C :[0,1] — 2¥ is a set-valued map with closed graph, for i = 1,...,k — 1, Q; is
a nonempty open subset in F, such that for all ¢ € [0, 1],

k—1

C(t)x ] c Gr(AL )

i=1

and K : [0,1] — C, is a set-valued map defined by

K(t) = {p e w(0) e Ct)},
k=1
(H2) F : Gr(K) x [] % — 2% is a set-valued map with nonempty closed values
i=1
satisfying
(i) t — F(t,¢,21,...,25—1) is measurable,
(ii) There exists a function m(.) € L'([0,1],RT) such that for all ¢ € [0,1],
k

—1
P, € ’C(t) and (1’1, -~-,1'k—1)7 (yl, --7yk—1) S H Q;
=1

H(F(t7¢7$17 "'75Ek71)7F(t7¢7 Y1, "'7yk71)) S m(t) maX{H?ﬁ—QMooa 1<Izn<a]§(71 ||xz_yl||}7

(iii) There exist g(.),p(.),q1(.); -, qe—1(.) € L1([0,1],RT) such that for all ¢ €
k—1
[0,1], ¥ € K(¢) and (x1,..,2k-1) € [[
i=1

k-1
F(t, ¢, 21, ..., 1) ﬁB<0,g(t) +p0)[[¢lloo + Zqi(t)llxiH) # 0,

=1

(H3) (Tangential condition)For all measurable function v(.) : [0,1] — E, for all p >
k=1
0,t€0,1],% € K(t) and (x1,..,xx—1) € [] Qi thereexists f € S, ,(¢,x1,.., Tk—1)
i=1

K2

such that

k! — A B (¢4 h = s)R!
lim inf —— T — ; =
im in hkd<¢(0)+; Tk —|—/t =] f(s)ds,C(t + h) 0

where S, , (1, 1, .., zk—1) is the set of all f € L*([0,1], E) such that

k-1
f(s) € Fs, ¢, w1, wp1) ﬂB<0,g(S) +p(s)[¥llo + Z%(S)II%I)

i=1

and
1f(s) —v(s)|| < d(v(s), F(s,%,21,...,xx-1)) + p for all s € [0,1].

Remark 2.3. We should point out that, if F' satisfies the condition (H2), the set
Syp(, 21, ..., xx—1) is nonempty. Indeed, by Theorem II1.40 and Theorem IIL.41 in
[7]

k—1
te F(t, @1, wp-1) ﬂB<0,9(t) + ()¢ lloo + ) Qi(t)H%‘I)

=1

is measurable. Hence, by Lemma 2.1, there exists f € S, ,(¢, 21, .., Zp—1).

In the next section, we shall prove the following result.
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Theorem 2.4. If assumptions (H1)-(H3) are satisfied, then for all ¢ € K(0) and
k=1

(21, .,25—1) € [I Qu, there exist T > 0 and a map z(.) € C([—a,7], E) N W™L([0,7], E)
i=1

such that x(.) is a solution of (1.1).

k=1
In all the paper, fix ¢ € £(0) and (21, ...,25—1) € ] €. There exists » > 0 such that

i=1

Qf :=B(w;,5) CQ;foralli =1,...,k— 1. Set also zg = ¢(0) and Q) := B(xo, §). For

€ > 0 put

n(e) = sup {P €10,e]: flo(tr) —p(t)|| < eif |t1 —t2 < P}- (2.3)
3. PROOF OF THE MAIN RESULT
Let 7,7 > 0 be such that
b [ Rd
o ZO il + @+ g(t) + p() (Iello + ) + 302y @) (2]l +7) | dt <

and fo tydt < 1.
Put

(3.4)

1 r
=i f{ ) "o a 71}
T=inf {71, 7 277(2)

Forall 0 < € < aand v(.) € L1([0,1], E), set B(e,v(.)) the set of all 4—tuple (f,z,0,u)q
where d €]0,7], f(.),u(.) € L'([0,d], E), z(.) : [~a,d] — E is a continuous mapping and
6(.) : [0,d] — [0,d] is a step function such that

()ﬂﬂ=;ﬂ;z+f$ﬁw(u)+ﬂ)MHﬁMHemdh
(i) f(t) € F(t,T(0()z, M (0(1)), ... a*~D(0(1))), u(t) € eB, 0 < t—0(t) < 3n(5),
z(0(t)) € C(0(t)) and T'(0(t))x € Ba(p,r) for all ¢ € [0, d];
(iii) z(d) € C(d), T(d)x € Ba(p, )andm(z()EQlforaHO<z<k—1andt€[Od]
4

(iv) I[If( ) —v@®)l < d(v(t), F(t.T(O0)z, D (0(1)), .., o* D (6t )))) +eforallte

sz () — gy — f(T)dTH < et for all t € [0,d].

Proposition 3.1. If assumptions (H1)-(H3) are satisfied, then for all 0 < ¢ < a, and
v(.) € LY([0,1], E), there ezists at least one (f,z,0,u), € B(e,v(.)).

Proof. Let 0 < e < a and v(.) € L'([0,1], E) be fixed. Put
z(t) = o(t), Vt € [—a,0].
By the tangential condition, there exist fo € Sy.-(¢, x1, ..., x5—1) and hg €]0,inf{r, 1n(£)}],

such that
=1y g
(Z‘) o[ %;>)ﬁmwﬁ%0s
0
C(

ho) such that

k—1

l\D\m

Then there exists yy €

<e.

hi ho ho — g)k—1
Fk / ((Ok—i)! fo(s)ds

=0
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Set
k=14 h k—1
k! ho ° (hg —$)
- _ O — ~ 7 ds |.
ug B (yo ; pd /0 = 1)1 fo(s)ds
We get
k=1, h k—1
RSU N " (ho — 5)
Yo = ; sz + HUO =+ /0 Wf()(s)ds

Set dy = ho, up(s) = ug and

k—1 4 +k t (t - s)kq
l’o(t) = ; ﬁxl + HUO +/0 Wfo(s)ds, Vit € [07d0]

Remark that, for all : =0, ...,k — 1

k—1—i 5 t k—1—i
)y _ L /(t—s)
We deduce that
g (t) = il
k—1—i ho k—1
< hollill + / (a+905) + POl + 3 ()il ) ds
j=1 i=1
ho  k—1—i k—1
= | (X Byl +o+ g(s) + p)leloe + 3 i)l ) ds
j=1 =1
;
< o
-2

then xéi)(t) € Q forall i =0,...,k — 1 and for all t € [0,d]. Also, for all ¢ € [0, do]

x(()k_l)(t) — Tp_1 — /Ot fo(s)ds

< et.

Now, let s € [—a,0]. If s < —dy, we have
1T (do)x(s) — ¢ (s)]| = [lx(s + do) = (s)]| = lle(s + do) — @(s)l| <7
5). If s > —dp, one has

(s +do) — @(s)]|

)
because dy < 2n(

1T (do)x(s) — ()]l

< le(s + do) — ()] + lle(s) — £ (0)]
< 543

because |s| < $n(%) and z(s + do) € Qf. From the above, we conclude that T'(do)z €

B, (¢, r). Next, set 0y(t) = 0 for all t € [0, dp]. It is clair that (fo, zo, 0o, u0)d, € Ble,v(.)).
Hence B(e,v(.)) # 0. Now, consider the following preorder:

(fi, 21,01, u1)a, = (f2, 22,02, u2)q,
& dy <da, f1 = foljo,a,)> T1 = T2lj0,d,]5 1 = O2]0,d,), U1 = U2

[0,d1]

and let ¢ : B(e,v(.)) — R be the function defined by ¢((f,x,0,u)q) = d for all
(f,z,0,u)q € B(e,v(.)). By definition, ¢ is increasing on B(e, v(.)). On the other hand, if
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((fi,xi, Hi,ui)di) is an increasing sequence in B(e,v(.)), we construct a majorant of
ieN

((fuxi?é?i,ui)di) S follows:

d= hfndu f(t) = fi(ﬂ) a(t) = Hi(t)a u(t) = ui(t)v vt e [Ovdz]
and

Zt?‘z b [ + s, ve € 0.,

We claim that (f,z,0,u)q € B(e,v(.)). Indeed, for all + € N, we have z(d;) = z;(d;) €
C(d;). Since the graph of C is closed, we conclude that z(d) € C(d). By the same
argument, we get (V) (d) € Q) for all 0 <4 < k — 1. The other assertions are obvious.

Next, for applying Lemma 2.2, we need the following Claim.

Claim 3.2. For all (f,x,0,u)a € B(e,v(.)) with d < T, there exists (f,Z,0,u); €
B(e,v(.)) such that (f,x,0,u)q =< (f,%,0,0)g and ¢((f,x,0,u)q) < ¢((f,Z,0,u)).

Proof. Let (f,z,0,u)q e B(E v(.)) with d < 7. For T(d)x € K(d) and
(zM(d), ...,a*=V(d)) € HQZ, by the tangential condition, there exist f €

Sy (T(d)z, 2V (), ..., x*~ 1)( )) and h €]0,inf{r — d, $7(%)}], such that

klpi d+h(d+h_8)k71~ .
(Z“ /d (/f_mf@)ds,c‘(dm)) <.

Then there exists y; € C(d + h) such that

k=144 d+h k—1
k! h i d+h—s ~
ren = X Saa) - [ ST s <
i=0
Set
k-1, d+h 1
k! h (d+h—s) -
-~ _ =) _
1=0
We have
k—1
i hk d+h (d—|— h ) 1
(1) ©
n=y (d)+k!u1+/d Gy s
=0
Next, set d = d + h,
k—1 i t k-1
z(t) = 2 TR (d)+ T + AT f(s)ds
for all t € [d, d]. We define f, z, 4 and 6 as follows:
ft)=f@t), z(t) = 2(t), 6(t) = 6(t), a(t) = u(t), forall t € [0,d]
and

f@) = f@), z(t) = 2(t), O(t) = d, a(t) = uy, for all t €]d,d).
We can easily show that, for all ¢ € [0, d]
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and for ¢ =0, ...,k — 1, one has

Then for all ¢ € [0, d]

g F D) -z — tis S
(t) - 25 /Of()d < et
and by (3.4)
12 (1) =
k17t g c?<(;_s)k—1—z B B
< | X G | )+ s
k—1—i d -
<3 gyl + [ ()] +17(5) s
& it
< (M”%HMW() p()|T(0 H+Zqz )Z(0(s))]])ds
d k-1 k—1
sl + a+ () + () (lollow + )+ 3 ai(s)llll + 1) ) ds
3=0 i=1

IN
N3 C\
/N

<

then () (t) € Q) for alli = 0,...,k — 1 and t € [0,d]. Now, let s € [~a,0]. If s < —d, we
have
IT(@)z(s) = ()] = [l2(s +d) = p(s)ll
= lle(s +d) —e(s)ll

r

IN

If s > —d, one has

IT(d)z(s) — ¢ (s)ll |1Z(s + d) — (s)]
12(s + d) = (0l + ll(s) — @(0)]]

r

IAIA

Hence T(d)x € Ba(p,r). Finally, we conclude that (f,#,0,4) € B(e,v(.)), (f z,0,u)q =
(f»x eu) and ¢((f,{1,‘ 9“‘) )<¢((f7i'79,ﬂ)g).

Now, we are ready to complete the proof of Proposition 3.1. From Lemma 2.2, there
exists (f,x 0,u)q € B(e,v(.)) such that ¢((f,z,0,u)q) = ¢((f,Z,0,u)7) and (f,z,0,u)q <
(f,z,0,u); for all (f,:i’ 0,u)g € B(e,v(.)). Moreover, if ¢((f,x,9,u)d) < 7, by the last
Claim, there exists (f E,Q_ u)g; € B(e,v(.)) such that (f,z,0,u)q < (f,,0,u); and
O((f,2,0,u)q) < ¢((f,7,0,a)z). Hence ¢((f,x,0,u)q) = 7. The proof is complete. O

Now we are prepared to prove our Theorem 2.4. Let (¢,,),>1 be a strictly decreasing
sequence of positive scalars such that 0 < &, < a for all n > 1 and ZZOZI en < o00.In
view of Proposition 3.1, we can define inductively sequences (f,(.))n>1 C L([0,7], E),
(@n())n>1 C C([—a, 7], E), and (0,(.))n>1,C S([0, 7], [0, 7]) where S([0, 7], [0, 7]) denotes
the space of step functions from [0, 7] into [0, 7] such that

O
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D(0.(1))),

€ WhI((0,7], B), folt) € F(t,T(0n(t)n, a8 (0n(t)), ..zt~
(¢,7) and 0 < ¢ — 6, (t) < +n(=+) for all

;) :
Tn(0n(t)) € C(0n(t)), T(0n(t))zn € B,

(2) 2,(7) € C(7), T(T)xn € Balp,r) and 2 (t) € Qi for i = 0,....k — 1 and all
t€[0,7[ and x,, = ¢ on [—a,0];

(3)
1 frra(8) = fu(®)]
< d(falt), F(ETOnp1(0)Tns1, 240y (Bri1 (8)), coos 20y (B (1)) + st

for all ¢ € [0, 7;
(4) ‘xn V) -z — ) fn(T)dTH < et for all t € [0, 7).

Let us denote the modulus continuity of a function v defined on interval I of R by

w(w, I e) i=sup {[(t) — b(s)lis.t € [, s~ t|<ef,=>0.

In the rest, we need the following claim

Claim 3.3. (a) Foralli=1,..,k and t € [0, 7]

28O < Nawill + -+ laer—r ]| +7 +a,
(b) Foralli=0,..,k—1

W@ (10,7, 50(5) < enlllznill o+ llonall +7+0),
(©) @@aia().[~a,01, gn(F)) <
(d) For allt € [0,7]

max {IT(9n( Nan = T(On 1) 2n11) oo, max 1 (B (1)) — wﬁ)(ﬂn(t))llw}

< @),
€nd + | max 12521 () = 20 (lloos

where 6 = 1+ ||z1]| + ... + ||zg—1]| + 7 + @
Proof. (a) By induction, for ¢ = 1, by (4) and (3.4), we have for all ¢ € [0, 7]

t t
L I R A R ey O
0 0
t
< et ol + [ 15a)ldr
0
< at el

+/OT<g<> p()|T (0, xnnmzqz )2 >>||>

< at ol

- k—1
-/ <g<s> () (el + 1)+ 3 ()i + r>>ds

a+ ||lzpll +r

IN



()

(d)
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Then, (a) is satisfied for ¢ = 1. Let now [ > 2 assume that (a) is satisfied for any
i=1,...,1. We have for ¢ € [0, 7]
t
[ et s
0

lzk_il] + .. + [|lzp1]| + 7+ a

IN

lz =170 () = 2D 0)]

N

Then
lz* =D @) < Nlepmimi ]l + llzpoill + oo + 2ol + 7 + a.

Hence (a) is satisfied for i = + 1.
Let t,t' € [0,7] with ¢ < t’. By (a) for i =0,...,k — 1, we have

[ it

(t = ) (Jziall+ o+ x| + 7+ a)

IN

21 (1) — 230, ()]

IN

Then w(z), (), [0, 7], 1n(&)) < sn(HxH_lH F ot el —l—r—l—a) for all i =
0.,k —1.
Let ¢,t € [—a,0] with ¢t < . We have
[Zn+1(t) = 2 ()| = ll(t) — ()]
€

Then by (2.3) one has w(z,41(.), [—a, 0], 3n(
For ¢ € [0, 7], we have

NS
S~—
S~—
IN
s

1T (0n+1(t)Tn+1 — T(0n(t))Znllo

12 (0 (t)) = 2301 Bs1 (1)
(6

= sup |[znp1(Bni1(t) +5) = 2n(0n(t) + 5|

s€[—a,0]
< S i Gsa (1) 5) s () + )
S o2 (0a6) +9) = a0ult) +9)]
S ezl [t iGN+ sw e (® -~ )
< wlnia (), [0, 30(Z) + wlansa (0, 0,7, 5(52)
+lnsa () = 2n0lle

/\

< 2t en(llaall + o+ il + 7+ ) + 20110 = 20 (oo
<end+ max o ()~ 20l

On the other hand, one has for all ¢ € [0, 7] and for all i =0, ...,k — 1,

w(t) = D @nr (DI 4 2 B (8) = 2,31 (Onss (1))
< (@D (0,10, 51 + +Hald @uir (1)) — 201 (B2 ()]

< en(llisall + o+ lzwoall + 7+ a) + 1200) = 20, Ollo

< ||a:()

<end ot max [a() = 2} Ol
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Thus

(1) _ () < (1) (1)
s (a2 (60.(0) = o1 Guia ()] € 200+ max [20(0) = 21 (Ol

Hence the assertion (d) is proved. O
Now, from (1), (3) and the last claim, we deduce for all ¢ € [0, 7]
[fns1(t) = Fu(®)]]
< H(F(T(00n(0)@0, 20 0n(t)), -2 (0n(1))),

F(tT (O ()1, 201 (Bs1 (1)), 25 (041 (1)) ) + i

< m(t) maX{IIT(9n( Natn = T(Ont1(t))2n11) oo,

max |y} (Gn1 (1) - xﬁf)(t?n(t))lloo} +én

1<i<k—1
(@) i
< m(t)end +m(t) max o () = o0l +2nin (35)
On the other hand, we have for i =0,....k — 1,
k=1 5 t k—1—i
I (t—s)
Gt ], ot ) o
Then
[ERMOEESIO]
(t—s)k 1—1i
< 2 _ _
< / 1= 1 a1 () = wn )+ 1o (5) = (o)l ) ds
t
<25t [ (o) = fuls)lds
0
t
<2, + 5n6/ m(s)ds
0
(i '
e [l () - () / ls)ds + / (s)ds
Sen(3+6)+ max Hx Hoo/ m(
0<i<k
Thus
&) (Y _ () < n(3+9)
S [0, 0) = () oo < 22 (36)
where L = fo s)ds. Therefore we have for all ¢ =0, ...,k — 1, and for n <m

; ; 340~
[2() =2 (e < 1-1 Z €j
ji=n

So the sequence {xsf)(.)}fle for i =0, ...,k — 1, is a Cauchy sequence, then it converges
uniformly on [0, 7] to a function z;(.). Since all functions x,(.) agree with ¢ on [—a, 0],
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we can obviously say that x,,(.) converges uniformly to zo(.) on [—a, 7], if we extend zo(.)
in such a way that zo(.) = ¢ on [—a,0]. Also, by (c) and the following inequality

[£n(0n(t)) = 20()l < N2n(0n(t)) = 2 (D)l + l2n(t) = 20|,

we deduce that z,(6,(.)) converges uniformly to zo(.) on [0, 7]. By construction, we have
2D(t) € QO for every ¢ € [0,7], then z(t) € QO for all t € [0,7] and i = 0,....k — 1,
In addition, since x,(0,(t)) € C(0,(t)) for every t € [0,7] and since the graph of C is
closed, we get x(t) € C(t) for all t € [0, 7].
Now, we return to the relation (3.5). By the relation (3.6) we get

[t (t) = fu (D)l
346

This implies (as above) that {f,(t)}52, is a Cauchy sequence and (f,(t)), converges to
f(t). Further, since

1@ < g(t) + @) ([l + +Zqz (il + ),

by (4) and by the dominated convergence theorem

¢ ¢
aca(t) = Jim 200 = lim (4 [ fals)ds) = o+ [ F)ds
Hence Z,_1(t) = f(t). Also the relation
2D (t) = —i—/ 2 (s)ds, fori=0,....k—1
0
yields
¢
zi(t) = x; +/ ziv1(s)ds for i =0,..., k — 1.
0

Thus 2;(t) = zi+1(¢) for all i = 0,...,k — 1 and ¢t € [0, 7]. In addition, by (2.3) and (b),

we have

170 (t)zn = T(O)Tnllo = _asgqu [#r (0n(t) + 5) — 2n(t + )|
< wlam a7, 50(2)
< wlp, [0, 0] 5(E) +wlem, 0,7, 5(52)
< el ol +r+a)
< &,0

Hence || T'(0,(t))zn — T(t)xn||co converges to 0 as n — +o00. Therefore, since the uniform
convergence of z,(.) to zo(.) on [—a, 7] implies that T'(t)z,, converges to T(t)zo uniformly
on [—a,0], we deduce that

T(0,,(t))x, converges to T(t)zg in C,. (3.7)
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Now, observe that by (1),
d(f(t), F(ﬁ, T(t)Z(), Z1 (t), ceey Zkfl(t»)

< H| F(t,T(0n(t))xn, 2D (0n (1)), .. 2t~ (0(1)))),

F(t,T(t)z0, 21(1), -, 261 (1)) | + £ (£) = fu(®)]

< m(t) max § [T (O (0)an = T(0)z0) |oes | max (a8 (00(1)) = (1)

+ (@) = (@B

Since the last term converges to 0, we get f(t) € F(t,T(t)zo,21(t), ..., 2xk—1(t)) a.e on

[0,

)
7]. Finally, set z(t) = zo(t) for all ¢ € [—a,7]. For all i =0, ...,k and all ¢t € [0, 7], we

have (9 (t) = z;(t). Hence

2 ® () = 21,(t) = z_1(t) = f(t) € F(t, T(t)z, 2V (), ..., 2%V (t)) a.e on [0, 7].

Also we have z(t) € C(t) and 2D (t) € Q;, on [0, 7], for all s = 1,....k — 1.
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