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ABSTRACT. Let T' = [Tj;] € Mimn(C) be accretive-dissipative, where T;; € M, (C)
fori,j =1,2,...,m. Let f be a function that is convex and increasing on [0, co) where

f(0) =0. Then
m2—m
<[l (==l

f (ZlTijlg) +f <Z|Tfi|2)‘
i<y i<j

Also, if f is concave and increasing on [0, co) where f(0) = 0, then

P ol (D)

Hexait T = T;j € Mynn(C), me T;; € My (C) mpu 4,5 = 1,2,...,m., — aKpeTUBHO-
AUCHUIIATUBHA ManHHH.

Hexait f - onykna dynkuis, ska 3pocrae Ha [0,00), ae
£(0) = 0. Tozi

f<§|T1j|2)+f<;j|Tfi|2)‘ <[l (= )|

Takoxk, gk f € yrayroio, 3pocrae Ha [0,00) i f(0) = 0, To
T2
()]sl (2]
i<j i<j

1. INTRODUCTION

< (2m? — 2m)

Let M, (C) be the algebra of all n x n complex matrices. A matrix T' € M,,,,(C) can
be partitioned as an m x m block matrix (m € {2,3,4,...})

T Tz - Tim
T Toy T

Tml Tm2 e Tmm
where T;; € ML, (C) for i,j =1,2,...,m.

A matrix T € M,,,,(C) with Cartesian decomposition T'= ReT + iIm T is said to be
accretive-dissipative if both ReT and Im T are positive semidefinite. We will represent
ReT and Im T in our work as

A A 0 Aim By1 Bz -+ Bim
- A, A ~ B, B
ReT =A= |12 722 and ImT = B = | P12 P22
){m e e Amm Bi’fm Bmm
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where Aij7 Bij € Mn(C) for ,7=1,2,...m.

A principal submatrix of a square matrix A is the matrix obtained by deleting any j
rows and the corresponding j columns.

On M,,(C), a norm |||-]|| satisfying the invariance property that |||[UAV||| = |||A||| for
every A, U,V € M, (C) where U,V are unitary is said to be unitarily invariant.

For A € M,,(C) and B € M,,,(C), the inequality |||A]|| < |||B||| means that

A oe...a0[| <|Blll,
where the direct sum A ® 0@ ... ® 0 is the matrix in M,,,(C) defined by

A 0 - 0
AP0D..H»0 = 0 0
0 -+ - 0

The Ky Fan k—norms [|-[| ;) (k = 1, ..., n) are the norms defined on M,,(C) by |[T| 4, =
k
> s;(1), k =1,...,n, where s1(T) > ... > s,(T) are the eigen values of the matrix

j=1
|T| = (T*T)'/? arranged in decreasing order. The Ky Fan dominance principle asserts
that, for every unitarily invariant norm, we have

A< (1Bl < [lAllg) < 1Bl for k=1,....;n. (1.2)

Let ¢ be the class of all functions f that are increasing and nonnegative on [0, c0) and
satisfies the condition: If x = (x1,x2,...,2,) and y = (y1, Y2, ..., Yn) are two decreasing
k k

sequences of nonnegative real numbers such that [[ z; < [] y; for £k =1,2,...,n, then
j=1 j=1

k k
I flz;) < II f(y;) for k=1,2,....n.
j=1 j=1

A nonnegative function f defined on [0,00) is called submultiplicative if f(mn) <
f(m)f(n) whenever m,n € [0,00).

In [6],[12],[15], and [16], a norm inequalities that compare T" with its diagonal blocks
have been given.

In [8], it has been shown that for an accretive-dissipative 2 x 2 block matrix T =

[ T T } € My, (C), we have
Ml (miar) + 7 ()| < [} (i) ] (13
i) 5 s < | (25) | t
7 (172) + 7 (175, ) ||| < 107 @ITabIM P 117 @DV (15)
and
[ (maal?) + £ (1) ||| < 4l b ez, (1e)

where in the inequality (1.3) f is a function convex and increasing on [0, oo) with f(0) = 0,
in the inequality (1.4) f is a function concave and increasing on [0, 00) with f(0) = 0,
in the inequality (1.5) f € ( is submultiplicative convex function with f(0) = 0 and
p,q € (0,00) with 5 + 2 = 1, and in the inequality (1.6) f € ¢ is submultiplicative
concave function with f(0) =0 and p,q € (0, 00) with % + % =1.
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In this paper, some norm inequalities concerning with accretive-dissipative block ma-
trices in M;,,,,(C) (m € {2,3,4,...}) are given. In Section 2, some unitarily invariant
norm inequalities that compare the accretive-dissipative matrix T' to its off-diagonal
blocks, where T is partitioned as in (1.1) are derived. In Section 3, a unitarily invariant
norm inequalities for functions f € ( are presented. In Section 4, some results for a 2 x 2
accretive-dissipative block matrices are given.

2. SOME UNITARILY INVARIANT NORM INEQUALITIES

In this section, we give some unitarily invariant norm inequalities that compare the
accretive-dissipative matrix 7" to its off-diagonal blocks, where T is partitioned as in
(1.1). To start our work, we will use the following lemma (see [13]).

X B

Lemma 2.1. Let A = {B* v

] € My, (C) be positive semidefinite. Then

25;(B) < 5,(A)
forj=1,2,....n.
The following lemma can be shown easily depending on the inequality (1.2).

Lemma 2.2. Let X,Y € M,,(C) be positive semidefinite, and let f be a function that is
increasing and nonnegative on [0,00). If s;(X) < s;(Y) for j =1,2,...,n, then

HLFCONT < M-

The following lemma, which is essentially due to Fan and Hoffman [5], can be concluded
from Lemma 3.2 in [12] or Proposition II1.5.1 in [2, p. 73].

Lemma 2.3. Let T € M, (C) be accretive-dissipative. Then
sj(ReT) < s;(T) and s;(ImT) < s;(T)
forj=1,2,..,n.
Also, we need the following lemma (see [10, p. 149]) which is essential in our work.
Lemma 2.4. Let X € M,,(C) and let Y be a principal submatriz. Then
s;(Y) < s;(X)
forj=1,2,....,n.

In the following lemma, part (a) is an extension of Theorem 2.3 in [1] for n-tuples of
operators (see also [9, Theorem 1]), a stronger version of part (b) of the lemma can be
obtained by invoking an argument similar to that used in the proof of Proposition 4.1 in
[14]. For various Jensen type matrix inequalities, we refer to [3] and references therein.
Part (c¢) can be found in [11] and we can find part (d) in [4]. Henceforth, we assume that
every function is continuous.

Lemma 2.5. Let Ay,..., A, € M,,(C) be positive and let oy, ..., a, be positive real num-
n

bers such that > oj = 1. Then
=1

(a) |||f (é%‘&)’
negative on [0, 00).
0) ||| asf (4))

negative on [0, 00).

n

> o f (4)

j=1

(5

< for every function f that is convex and non-

< for every function f that is concave and non-
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(50
0.

for every function f that is convex and non-negative

f (f: A;
j=1

negative on [0, 00).

H for every function f that is concave and non-

Note that the the Fan (dominance and maximum) principles (see, e.g., [2, pp. 24, 93]
or [7, pp. 47, 82]) are essential in the proof of Lemma 2.5.
Our first main result in this section is the following theorem.

Theorem 2.6. Let T € M,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1), and let f be a function that is convex and increasing on [0,00) where f(0) = 0.

Sl |+ o (Sl )| < || ()| e

i<J i<J

Proof. Let C;; = {;” ;”] € My, (C), then C;; is a principal submatrix of T, it
ji +jj
follows that C}; is accretive-dissipative with Cartesian decomposition C;; = {jﬂ j” ] +
JJ
2 . . Using Lemma 2.1 and Lemma 2.2, we get that
Bij B
Mf(m —om) |Ay[? ‘H<H‘f( "™ (Re Cy;) )'H (2.2)
and )
s (e —zmoist) < | (=== ameur)l]|. o
Also, using Lemmas 2.2 and 2.3, we have
m? —m m? —m
I (2 mear)|= | (=en)l| e

b zmmen) <[l (Zzme]. s

Now,
IS Im P )+ S ) |H
1<j i<j
< |||/ Z<|Tij|2+‘T] ’ H| (by Lemma 2.5(c))
i<j

= [Ir (X <|Az‘j +iBy|* + | Aij — iBij\2> |||

1<j

i<j

= ||/ QZ(IAM|2+|BM|2) H‘
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< % f 4Z(|A”\ (42 |B”| lH (by Lemma 2.5(a))

< Slllf 43 (14F) w5017 rlax(mr) H‘

< o I (Cm? = 2m1agR) | +]|52 5 (@m — 2 1347)
(by Lemma 2.5(a))

<z 2 (Il (o 2 asP) [ [ (12 - 20 12

< oy (2 ) (25 2ame)

(by the inequalities (2.2) and (2.3))

2 m? —m 2
= memZ f(2|0ij>

’ (by the inequalities (2.4) and (2.5)).

i<j
So, we have
2 .12 2 -m 9
S|+ [ Sl ) || < e S | (2 )| o
i<j i<j M

Since Cj; is a principal submatrix of T), it can be inferred from Lemmas 2.4 and 2.2 that

T T

Now, the result follows from the inequalities (2.6) and (2.7). O

Note that the inequality (1.3) follows by taking m = 2 in the inequality (2.1). So, the
inequality (2.1) gives a generalization to the inequality (1.3).
Applications of Theorem 2.6 will be given in the following corollaries.

Corollary 2.7. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1), and let f be a function that is convex and increasing on [0,00) where f(0) = 0.

For all p > 2, we have
m2 —m\?/?
TP .
|f<< ") i
(2.8)

p/2 p/2

A Y | <

i<j 1<J

In particular, when m = 2, we have

11 (1T2f") + £ (AT52 P < 1L AT

Proof. The inequality (2.8) follows by applying the inequality (2.1) to the convex function
F(r?). o
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Corollary 2.8. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1). Then

(zmr)  (zhmr)

e i<j + e i<j — QIn S

Proof. The proof follows by applying the inequality (2.1) to the function f(t) = et —1
which is a convex function that is increasing on [0, 00) with f(0) = 0. O

(771.27771. \T|2)
e\ ? — I

Corollary 2.9. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1). Then

zmm) (z T ) m? m
Lamr), [ = H’e( FT) g (2.9)
Proof. Applying Corollary 2.8 to the Ky Fan k—norms, we have
(gmer)  (shmr) (225 )
e \t<J + e \i<J -2, 0®..®0 < |le\ 2 — Lo
(k)
(k)
for k =1,...,mn. Thus, for k =1,...,n, we have
(sme)  (smr)
e \'<’ + e \'<J ®0®...40 —2k
(k)
(zmee) ()
= e\’ + e \'<J -2, ®08..00
(k)
m2—7n
< |lel==mme) _p
(k)
m2—m |2
_ |l (=) g (2.10)
(k)

and for k =n +1,...,mn, we have

(_z_\W) (_Z.\T;; )
e \i<J + e \i<J DO0D...d0 -2k

(k)

<‘Z‘|Ti‘7‘|2> (Z, Tj; 2>
S e \i<i + e \i<J @0@@0 —2n
(k)
<‘Z_|Tij|2> <Z_ Ji 2>
— e \i<i +e i<J —2In @0@@0
(k)
m2—m 2
S 6( 2 il ) - Imn
(k)
m2—m 2
_ |l ()| g (2.11)
(k)
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From the inequalities (2.10) and (2.11), we have
12
(sme)  (smr)
e\’ + e \'<J ®06d...00
(k)

(55

IN

+k
(k)

e

J(EEITP) (2.12)

(k)
for k = 1,...,mn. Now, the inequality (2.9) follows from the inequality (2.12) and the Ky
Fan dominance principle. ([l

Our second main result in this section can be stated as follows.

Theorem 2.10. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1), and let f be a function that is concave and increasing on [0, 00) where f(0) = 0.
Then

2
P[] e ()| < ent-am) | (FF)| e

1<j i<j

Tii Ty

Proof. Let Cj; = l:Tji T,

] € My, (C), then Cy; is a principal submatrix of T, it
Ay Aij]

follows that C}; is accretive-dissipative with Cartesian decomposition C;; = { Ar AT
ij i

i Bff By . Using Lemma 2.1 and Lemma 2.2, we get that
B! Bjj

(14| = | (Besez (2.14)
4
and
Jlr Gl < [ (=) 223
And by Lemma 2.2 and Lemma 2.3, we have
H’f (W)H’< f(W)H‘ (2.16)
and H’f(W)'H< ‘f<|0¢j|2>‘|’. -
4 - 4
Now,
P |+ | P |H

i<j i<j

= |||/ Z\Aij+i3zj|2 +f Z|Aij—i3ij|2

i<j i<j
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> (|Aw + ZB’le +|Aij — ’BZJ|

1<J

IA
I\

f

5 I (by Lemma 2.5(b))

= 2|||7 | X (140F +1B4P) H‘

i<j

IA
I\

i<j

Zf (|Aij\2 + \B¢j|2> || (by Lemma 2.5(d))

%

f (|Aij\2 + \BijIQ)H)

™

7 (14P) + 7 (1B ||| by Lemma 2.5(a))
P2 s Q)]
() oo o ()|

1<J
by the inequalities (2.14) and (2.15))

gl (=)

i<j

%

f

%

(by the inequalities (2.16) and (2.17)).

So, we have

(2.18)

TR EFA DOl F Tl XSS f(“?)

1<j 1<j i<j

Since C}; is a principal submatrix of 7, it can be inferred from Lemmas 2.4 and 2.2 that

|Ciy” 7)°
< . 2.1
|||f ( s <l (1 (219)
Now, the result follows from the inequalities (2.18) and (2.19). O

Note that the inequality (1.4) follows by taking m = 2 in the inequality (2.13). So,
the inequality (2.13) gives a generalization to the inequality (1.4).

Corollary 2.11. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1) and let f be a function that is concave and increasing on [0, 00) where f(0) = 0.
For all 0 < p <2, we have

p/2 p/2
) L2 2 IT\”
F Tl +F {2217 < (2m® —2m) |||
i<j i<j
(2.20)
In particular, when m = 2, we have

1 (Tal?) + £ (1T 7) 1] < 4

()l

Proof. The inequality (2.20) follows by applying the inequality (2.13) to the concave
function f(tP/?). O
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Corollary 2.12. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1). Then

1/2 1/2

og [ [T, + 1|+t | [ |75

i<j i<j

+In

< (2m? — 2m) ||llog (IT| + 21 1nn) — (108 2) Lnl|| -

Proof. The proof follows by taking p = 1 and applying the inequality (2.20) to the
function f(t) = log(t 4+ 1) which is a concave and increasing function on [0,0c0) and
satisfies that f(0) = 0. O

The following corollary can be obtained by applying Theorems 2.6 and 2.10 to the
function f(t) = t#/2.

Corollary 2.13. Let T € M,,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1). Then

p/2 p/2 /2
2 .12 m2 —m\? »
PLCE S D4 < (=) WP for alip =2
1<j 1<j
and
p/2 p/2 )
2 w12 m°—m
> 1T + 1|75 < i TP forallo<p<2.
i<j i<j

3. UNITARILY INVARIANT NORM INEQUALITIES INVOLVING A SPECIAL CLASS OF
FUNCTIONS

In this section, we give unitarily invariant norm inequalities including functions belongs
to the class (.
We start this section with the following lemma (see [8]).

X B
B* Y
submultiplicative function. If p and q are positive real numbers with zl) + % =1, then

Lemma 3.1. Let A = [ ] € My, (C) be positive semidefinite, and let f € ¢ be

([ras® ||| < meecom» g (3.1)

Our first result in this section is the following theorem.

Theorem 3.2. Let T € M,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1), and let f € ¢ be a function that is conver and submultiplicative and satisfies
that f(0) = 0. If p,q > 0 satisfying % + % =1, then

1<j i<j

2 1/p
< o 2 (|l (Ve =zmim) |
me—=mi=

A+ (S mp H|

(Ve =z ). @2
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. Ay Ayl Bi; By . . . )
Proof. Since { Az, Ajj:| and [Bi*j Bjj:| are positive semidefinite matrices, and by
Lemma 3.1, we have

7 (2 = 2m 14,57)
(\/ 2m?2 — 2mAii) ‘ Ha

v
: (3.3)

79 (\/ 2m?2 — QmAJj) ’

and

[£ (@m* —2m) 1B5P) |
<} (vam==zm)|| [l (Vo =zmm) || (0

Now,
P(E}Eﬁ>+f<2]ﬁf)
i<j 1<y
%ZWW+@W)
1<J
(Z (\Aij +iBij|* + |Aij — iBij|2 ) H|
1<J

:W
fmpan)

<

(by Lemma 2.5(c))

s% f(Z(|A ))+f(4z(|3| )H‘ (by Lemma 2.5(a))
Az ze)
_mQ_m( 2m2—2m |A|) (2m2—2m |B|) )

(by Lemma 2. 5( ))
< = 2o (17 (e = 2 14 ) | [ (12 20 1) )

S;Z( [1[£7 (V2m? — 2mA;; )H|1/I;p|||fq(v2m2 2mAH)|H1/qu )
meem 1177 (Vam® —2mBg) ||| [[ |7 (V2m? = 2mBy; )|
(by the inequalities (3.3) and (3.4))
< e (U tmm Tl o )
m==mi g\ (1 (Vem? = 2mAg) [ + (|| £ (vVam® = 2mBy;) [[])

(by Holder’s inequality)
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(o= + )l/px

_ 5| Ul ez

m? —m ( ||| £ (V2m2 = 2mRe Tjj) ||| + >1/q
|[|£9 (V2m? = 2mIm Tjj) |||

Since the matrices T;; are accretive-dissipative for ¢ = 1,..,m, it follows from Lemmas
2.2 and 2.3 that

(3.5)

I (vm=smen)|| < [l (amm]| oo
H Vi (\/ 2m? — 2mImTii) H < H 1P (\/ 2m?2 — 2m \TMDH‘ (3.7)
H f (\/2m2 - 2mReTii) H < H f (\/2m2 “om |T|)m (3.8)
" ()| < | (|| 69
Now, the result follows from the inequalities (3.5)-(3.9). O

Note that the inequality (1.5) follows by taking m = 2 in the inequality (3.2). So, the
inequality (3.2) gives a generalization to the inequality (1.5).

Theorem 3.3. Let T € M,,,,(C) be a partitioned accretive-dissipative matriz as given
in (1.1), and let f € ¢ be a function that is concave and submultiplicative and satisfying
that f(0) = 0. If p,q > 0 satisfying % + % =1, then

le STl |+ ST || = 42 (I Az e (zhie)
i<j

i<j 1<j
(3.10)
Proof.
.2
PP |+ (D175
1<j 1<j
= (D2 1Ay +iByl* | +f (D 1Ay —iByl®
1<J 1<j
> (|Az‘j +iBy|* + Ay — Z'Bz‘j|2)
< 2l|f [ =2 5 (by Lemma 2.5(b))

= 20|f Z(|A1j|2+|B¢j|2) H‘

1<J
< 2|||3 7 (J4ul + Byl H (by Lemma 2.5(d))
1<J
< 23l (ar+ )|
i<j
<

23 |[[# (1s?) + £ (1B5F) || oy Lemma 2.5(a)
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< 232 ([llr Qaa)l] + [l G

< 22(\”# I I A+ 17 Bl 1L (Bl
- (by Lemma 3.1)

<23 (U A+ L7 Ba)lID'” Q1L (Al + £ (Bi)I DY)
- (by Hoélder’s inequality)

<23 (U7 Azl -+ 1177 AZaDIDY? QL ATDI+ L7 (TDID )
7 (by Lemmas 2.2 and 2.3)

< a3 (I ATahIM? Wt (Tl ) -

i<j
O

Note that the inequality (1.6) follows by taking m = 2 in the inequality (3.10). So,
the inequality (3.10) gives a generalization to the inequality (1.6).

4. SOME RESULTS FOR 2 X 2 BLOCK MATRICES

In this section, our results consider the case when T partitioned as in (1.1) with m = 2.
Our first result in this section is the following theorem.

Theorem 4.1. Let T € My, (C) be a partitioned accretive-dissipative matriz as given in
(1.1), and let f be a function that is increasing on [0,00) with f(0) =0 such that f(\/t)
1s conver Then

ILf (Tial + \T5) + £ (T2l = 1T DI < ||| (V21T ||| (4.1)
Proof. Let g(t) = f(v/t),t € [0,00). Then g is an increasing convex function on [0, c0).

Since T = A+iB with A = Ail Az and B = Bil Buz are positive semidefinite,
Afy Az Biy, Ba

it follows from Lemma 2.1 and Lemma 2.2 that

e =Yl (2 me )} ana o Crenaf) ] < [ Czamrlf

Also, using Lemmas 2.2 and 2.3, we have

oot | = o )| v o comr) | = o ) 0

|||f(|T1z| +IT50) + £ (152l = [T
= ||s (4mal + 1m50%) + g (17221 = 1751 |
< o (T2l + 1T ) + 1722l = 1T50P) ||| (by Lemma 2.5(0))
= l|s (21meP +21mP) ||
= o1t a1mat)|

< 5 lllo (8140) + o (8132 || (by Lemma 2.5(a))
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< glls (1) ]|+ 5l (1)
< % H‘g (2 (Re T)2> ‘ H + % ‘Hg (2 (ImT)Q)m (by the inequalities (4.2))
< m g (2 |T|2) ‘ H (by the inequalities (4.3))

s C2m] ]

The following example asserts that the convexity of the function f(1/t) given in The-
orem 4.1 is essential and can not be replaced by f(t) to be convex.

Example 4.2. Consider T = A+iB = | ' 77 2 | Thend=| ' 7| and
0 1414 -7 1
B = } 1 are positive semidefinite matrices. Take f(t) = ¢, then for the spectral

norm ||-||, the right hand side of the inequality (4.1) equals 4 and the left hand side of

the inequality (4.1) equals v/8 +4v/3, but 4 £ /8 + 4/3.
The following corollary gives an application on Theorem 4.1.

Corollary 4.3. Let T € My, (C) be a partitioned accretive-dissipative matrix as given
in (1.1). Then

(1 Tae| + T3P + [ Trz| = T3 P < 2272 ([[|T1°N] - for all p > 2.

Proof. The proof follows by applying the inequality (4.1) to the function f(¢t) = t?,p >
2. O

Our second result in this section is given in the following theorem.

Theorem 4.4. Let T € My, (C) be a partitioned accretive-dissipative matriz as given in
(1.1), and let f be a function that is increasing on [0,00) with f(0) = 0 such that f(\/t)
is concave Then

. . |7
117 (Tial + 17520 + £ iriad 70001 < 4 | (1) || (1.4
V2
Proof. Let g(t) = f(v/t),t € [0,00). Then g is a concave and increasing function on
[0, 00).

Since T'= A+iB with A = {All A1z

Afy Az
using Lemma 2.1 and Lemma 2.2, we get that

oermatl <o ()

Also, using Lemmas 2.2 and 2.3, we have

(= ()

nd |[lo (215:2F°) | <
Now,

(ImT)?
(57
1f (I Tua| + 51 ) + f ([ Ta2] = T3 (D]

= |l (el + 125007 + g (1720] = 15002) ||

} and B = [Bll 312} are positive semidefinite,

Biy Baa
ImT)?
()]
(4.5)

2
()] oo

and <




214 FADI ALRIMAWI, MOHAMMAD AL-KHLYLEH, AND FUAD A. ABUSHAHEEN

. N2 . 112
(T2l + 175, ))” + [[Tho| — |75, ]
2

= 2|||o (1mel + 175 |
= 2 g(2|A12|2+2|B12|2)’H

lo rawr)|[| «[o (2152}

(ReT)? H‘+ , (Im T)?
2

H‘ (by Lemma 2.5(b))

IN
[N}
~—

IN
DO

5 ‘H (by the inequalities (4.5))

IN

T2
4\l|g % H‘ (by the inequalities (4.6))

- @l

We conclude this paper by the following corollary.

Corollary 4.5. Let T € My, (C) be partitioned accretive-dissipative matriz as given in
(1.1). Then

(1 Tr2| +1T52)) + | Trzl = | T5l[Pll] < 22722 T7)]] - for all 0 <p < 2.

Proof. The proof follows by applying the inequality (4.4) to the function f(t) = 7,0 <
p < 2. O
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