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UNIQUE SOLVABILITY OF A DIRICHLET PROBLEM FOR A
FRACTIONAL PARABOLIC EQUATION USING
ENERGY-INEQUALITY METHOD

BENAOUA ANTARAL2, OUSSAEIF TAKI-EDDINE!2, AND REZZOUG IMAD!:2

ABSTRACT. In this paper, we establish sufficient conditions for the existence and
uniqueness of the solution in fractional functional space for a class of initial boundary-
value problems for a class of partial fractional parabolic differential equations that
include a fractional derivative of Caputo. The results are established by the applica-
tion of the method based on a priori estimate ”energy inequality” and the density of
the range of the operator generated by the problem considered.

Bceranosieni foctarai yMOBH iCHYBaHHS Ta €GUHOCTI PO3B’I3KY 3 POOOBOrO (pyHK-
MIOHAJILHOTO TPOCTOPY JJIsi OJHOTO KJIACY IOYATKOBO-KPANHOBUX 3334 IS JESIKUX
npoboso-napabonivnux audepenniagabaux piBHSHB i3 ApoboBOIO moXimHOM KarmyTo.
PesysnbTaTéi OTPUMAHO ILISIXOM 3aCTOCYBAHHS METOAY €HEPreTHYHUX HEPIBHOCTEH.
JloBeieHa IIiabHICTH 00pa3y oneparTopa, 1o Biamoeigae 3amadi.

1. INTRODUCTION

Fractional differential equations (FDEs) are obtained by generalizing differential equa-
tions to an arbitrary order. Since fractional differential equations are used to model
complex phenomena, they play a crucial role in engineering, physics and applied math-
ematics. Therefore they have been generating increasing interest from engineers and
scientist in recent years. Since FDEs have memory, nonlocal relations in space and time,
complex phenomena can be modeled by using these equations. Due to this fact, materials
with memory and hereditary effects, through strongly anomalous media. Indeed, we can
find numerous applications in viscoelasticity, electro-chemistry, signal processing, control
theory, porous media, fluid flow, rheology, diffusive transport, electrical networks, elec-
tromagnetic theory and probability, signal processing, and many other physical processes
are diverse applications of FDEs [1 — 7].

Recently, there has been a significant development in fractional differential and partial
differential equations; see the monographs of Kilbas et al. [8], Miller and Ross [9], Samko
et al. [10] and the papers of Agarwal et al. [11], Anguraj A. and Karthikeyan P. [12],
Belmekki et al. [13], Daftardar-Gejji and Jafari [18], Furati and Tatar [25,26], Kaufmann
and Mboumi [27], Kilbas and Marzan [28], Yu and Gao [32], Oussaeif [33], and also the
general references in Baleanu et al. [34], and the references therein. However, many
phenomena can better be described by integral boundary conditions. Integral boundary
conditions are encountered in various applications such as population dynamics, blood
flow models, chemical engineering and cellular systems.

The study of existence and uniqueness, periodicity, asymptotic behavior, stability, and
methods of analytic and numerical solutions of fractional differential equations have been
studied extensively in a large cycle works. But there are not many works in the fractional
field of partial differential equation, this is due to the difficulty of applying classical
theories and methods to a field of farctional partial differential eqation. Motivated by
this, we conducted a detailed and thorough study in this field to see the behavior of the
solution to these problems using the classic energy estimat method. Then, the present
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paper is devoted to the study of initial-boundary value problem for a parabolic equation
with time-fractional derivative with Dirichlet condtion, which has not been studied so
far.

2. PRELIMINARIES AND FUNCTIONAL SPACES

Let © = [0,T] be a finite interval of the real numbers R and I'(-) denote the gamma
function. For any positive integer 0 < o < 1, the Caputo derivative are the Riemann
Liouville derivative are, respectively, defined as follows:Let T (.) denote the gamma func-
tion. For any positive integer 0 < a < 1, the Caputo derivative are the Riemann Liouville
derivative are, respectively, defined as follows:

(1) The left Caputo derivatives:

o o 1 L ou (x, 1) 1
Doy (z,t) == Ti—a) /0 e T dr. (2.1)

(2) The left Riemann-Liouville derivatives:

o . 1 o " u(x,T)
EDow (x,t) = Ti—a) a/o = T)adr. (2.2)

(3) The right Caputo derivatives:

C ma 1 /T ou(z,7) 1
Y D%z, t) = Ti—a e _t)adT.

(4) The right Riemann-Liouville derivatives:

R e -1 8/T w(z,T)
PP = a5 ) ot

Many authors think that the Caputo’s version is more natural because it allows the
handling of inhomogeneous initial conditions in a easier way. Then the two definitions
(2.1) and (2.2) are linked by the following relationship, which can be verified by a direct
calculation:

u (z,0)

"Dfu(t) = D) +

(2.3)

Definition 2.1. [37] For any real o > 0 and finite interval [a, b] of the real axis R,, we
define the semi-norm:

2
‘uﬁH”(Q) = ||RD?U||L2(Q)’

and norm:

1
2

2 2
lull e ey 3= (Il ) + o) (2.4)
we then define 'Hg () as the closure of C§° (Q) with respect to the norm [l e (2 -

Definition 2.2. [37] For any real o > 0, we define the semi-norm:

- 2
|u|2HU(Sl) = H?D U’HLQ(Q)’

and norm:
1
3

2 2
el ey = (Il gy + 0l ) (2.5)

we then define #HZ (Q) as the closure of C§° () with respect to the norm ||'HTHU(Q) .



218 BENAOUA ANTARA, OUSSAEIF TAKI-EDDINE, AND REZZOUG IMAD

Definition 2.3. For any real o > 0, we define the semi-norm:

o R 1/2
] _ (#*Dfu, D “)L2(Q)
cH7(Q) cos (o)
and norm:
2 2
el gy = (el 3oy + el o )2

Lemma 2.4. [36,37] For any real 0 € Ry, if u € '"H*(Q) and v € C§° (Q), then
( *D7u(t), v(t)r2(0) = (u(t), FD70(t))12(0)-
Lemma 2.5. [36,37] For0 <o <2,0#1,u€ HO%(Q)7 ona:
Epow(t) = BDF "DZu(t).
Lemma 2.6. [36,37] For 0 € Ry, 0 # n+ %, the semi- norms Il 7o), [-r o () and
|-le () are equivalent. Then we pose
lerre @) = Hrare @) = Hepe o) -

Lemma 2.7. [36,37] For any real ¢ > 0, the space THS (Q) with respect to the norm
(2.5) is complete.

Definition 2.8. We denote by Ly (0,7, L (0,1)) := Lo (Q) the space of functions which
are square integrable in the Bochner sense, with the scalar product

T
(u>w)L2(O,T,L2(O,1)) = /0 ((u,-), (w, '))L2(0,1) dt. (2.6)

Since the space Ly (0,1) is a Hilbert space, it can be shown that Ly (0,7, Ly (0,1)) is a
Hilbert space as well. Let C°° (0,7) denote th space of infinitely diffrentiable functions
on (0,T) and C§° (0,T) denote th space of infinitely diffrentiable functions with compact
support in (0,7).

3. STATEMENT OF PROBLEM

In the rectangular domain @ = (0,d) x (0,T), with d,T < oo and 0 < « < 1, we shall
study the existence and uniqueness of solutions v = u(x,t) to the following fractional
parabolic problem :

“Dyu(w,t) - & (a(w,t) 25E2) +ble, u(z, ) = fla,t)  in @

u(x,0) = p() vz € (0,d), - (P)
u(0,t) = u(d,t) =0 vt € (0,7T).
We consider the following fractional parabolic equation of the type:
o 0 ou ~
Lu = CDtu—% <a8x> +bu = f,

with the initial condition :

lu = u(z,0) = ¢ (x), Ve (0,d),
and Dirichlet condition :

u(0,t) =u(d,t) =0, Vte (0,T).

Where a, b, fand @ are known functions.
We shall assume that the function ¢ satisfies a compatibility conditions, i.e.,

©(0) = ¢(d) = 0.
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And the functions a, b verify:

0 < ao<alz,t) <ay,
0 < bo<bx,t) <by.
Now, we shall introduce a new function :
v(z,t) = u(z,t) — U(x) = u(x,t) =v(x,t) + U(z),

where

So, we get

Dyv(a,t) — & (a(x,1) 2520 ) + bz, o, 1) = Fla,t) - Lo(x) = fla,t) in Q,
v(z,0)=0  Vz e (0,d),
v(0,t) = v(d,t) =0 vt e (0,7).

Such that
C Doy, ) — a% (a (a,1) avg;, “) + b, ola, t) = f(a.1) (3.7)
with the initial condition
v =v(z,0) =0, Vze (0,d), (3.8)
the boundary condition of Dirichlet type
v(0,t) = v(d,t) =0, Vte (0,T) (3.9)

where

o) = Flat) + - (ate )02 ) < ba)ea).

4. ESTIMATION A PRIORI

The method used here is one of the most efficient functional analysis methods and
important techniques for solving partial differential equations with integral conditions,
which has been successfully used in investigating the existence, uniqueness, and con-
tinuous dependence of the solutions of PDE’s, the so-called a priori estimate method or
the energy-inequality method. This method is essentially based on the construction of
multiplicators for each specific given problem, which provides the a priori estimate from
which it is possible to establish the solvability of the posed problem. More precisely,
the proof is based on an energy inequality and the density of the range of the operator
generated by the abstract formulation of the stated problem, so to investigated the posed
problem, we introduce the needed function spaces. In this paper, we prove the existence
and the uniqueness for solution of the problem (3.1) — (3.3) as a solution of the operator
equation

Lv=F, (4.10)
Where L = (£,f), with domain of difinition B consisting of functions v € L?(Q), such
that v, ¢ D¢, % € L?(Q) and v satisfies the condition (3.3).

The operator L is considered from B to F, where B is the Banach space consisting of

all functions v(x,t) having a finite norm

2 2
v = D2v ’
Iol = |08 o[, . o

and F is the Hilbert space consisting of all elements F = (f,0) for which the norm
L?(Q) is finite.

ol + | 22
) @ |
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Theorem 4.1. For any function u € B, we have the inequality
ol < kLol 2 o) (4.11)
where k is a positive constant independent of v.
Proof. Multiplying the equation (3.1) by the following function:
Muv = v(z,t),
and integrating over @ = (0,d) x (0,7, we get

/ Lv - Mudxdt
Q

— [ Doty vzt — | 2 (a0 225D (e, dzat
/, 3 (e 522)

Q €T
+/ b(x,t) - v*(x, t)dzdt
Q

:/ f(z,t) - v(z, t)dxdt.
Q

As v(z,0) = 0, we have “ Dfv(z,t) = BD¢v(x,t), so by applying Lemmas 1,2 et 3, we
find

/ CDev(z,t).v(z, t)drdt
Q

= (“Dpv(a,t),v(z, 1) 12(0)

= (CDt% CD,:%v(ac7 t),v(z,t))2() (According to Lemma 2)
=( CDt%v(x, t),“D%v(x, 1)) L2 Q) (According to Lemma 1)

o 2 . -
= cos (§7r> |v|CH%(Q) (According to Definition 3)

then, according to Lemma 3, we get that
C Ha « 2 ~ « 2
/Q Div(zx, t).v(x, t)dxdt = cos (§w> |v|CH%(Q) & cos (§w> |U|ZH%(Q)

a 2
- (35) [0

L2(Q)
By integration by parts over (0,d) we get

/Q % <a (z,%) 8”((;;’ t)> v(, t)dadt
- /OT /Od % <a (1) aug;, t>> v(z, t)dzdt

:_/O o (x,1) a“gi’t)v(x,t) :::dt+/Qa(x,t) (a“g;’“>2dxdt

:/Qa(x,t) (avg;’t)>2dxdt.

By using the Cauchy inequality with ¢, for € < 2by; and becaude of the equivalent of the
semi-norms |.|: 7o oy and |.|c o (), there is a positive constant m such that

M| e @) S Hepa(g) -
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So, we have

m ||ZH“(Q) - ‘CH“(Q)’
which gives that

C na _ o 2 « 2
/Q Div(z, t).v(x, t)dxdt = cos (2 ) |U|CH2 (@) = ™M cos (Ew) |U|ZH% @

= eos (5m) [°Dle],

5 2
+ao/ (81}(x,t)> dxdt + bo/ v? (x, t)dxdt
L2(Q) Q or Q

c ov(zx,t) 2
< Div(z,t).v(z, t)dedt + | a(z,t) | ———= | dzdt

+ / b(x, t)v? (x, t)dxdt
Q

L2(Q)
Hence, we get

m? cos ( ) HCD2

1
<= / ) dadt + & / lo(,0)? dadt.
2e Jg 2 Jo

5 2
+/ ap <av(x7t)> d:rdt+/ (bof 7> (z,t)dxdt
L2Q)  Jg Oz
/ (z,1)|* dadt.

So, we obtain

mzcos< )HCDz‘

As all the temes are positive, we have

|[“pév

2
+ [[vllz2(g)
L*(Q)

2
@ H@x
1

1 171Z2 ) -
2¢ \ min {ag, m?cos (§7), (bo — )} H@

<

Finally, it follows that

@2
0z || -

a 2
|*pd]

il

2 2
+ v <Clf ;
o o el < Clf

with

C= 2% (mm{ao,m%osl(‘; )+ (bo = 5)}> |

Therefore, we obtain that
vl < E||Lv|p, where k= /C.

Hence the uniqueness of the solution. O

Remark 4.2. This inequality||v||5; < k|| Lv||r is gives the uniqueness of the solution,
indeed.
Let v1; and vy two solutions, so
{ LUl =F

Lvy = F :>L(1)1—112)=0
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then
[vi = v2ll g S k[0]lp = [[v1 —v2llp SO=v1 —v2 =0

which gives the uniqueness of the solution.
Proposition 4.3. The operator L from B to F admits a closure.

Proof. Let (vn), ey C D (L) a sequence such that

v, = 0 in B, (4.12)
and
Lv, — F dans F, (4.13)
it must be shown that
f=o.
The convergence of v,, toward 0 in B entails that
v, = 0 in (C(Q)) . (4.14)

As the continuity of the fractional derivation and the derivation of the first order (as a
particular case of the fractional derivative) of (C§°(Q))" in (C§°(Q))’, then (4.8) implies

Lu, — 0 in (C°(Q)) . (4.15)
On the other hand the convergence of Lv,, to f in F = L?(Q) implies that
Lu, — f in (C°(Q)). (4.16)

By virtue of the uniqueness of the limit in (C§°(Q))’, we conclude from (4.9) and (4.10)
that

~
Il
o

Hence, the operator L is closable. O

Definition 4.4. Let L the closure of L and D(L) the definition domain of L. The
solution of the equation
Lv=F
is called generalized strong solution of the problem (3.1) — (3.3).
Theorem 1 is valid for a generalized strong solution, ie we have the following inequality:

ol g < k|| Lv|,, Vve D). (4.17)
Consequently, this last inequality entails the following corollaries:

Corollary 4.5. The strong solution of the problem (3.1) — (3.3) is unique, if it exists
and depends continuously on f € F.

Corollary 4.6. The range R(L) of the operator L is equal to the closure R(L) of R(L).

Proof. Let z € R(L), then there exists a Cauchy sequence (z,), in F' consists of the
elements of the set R(L) such that

lim z, = z.
n—-+o0o

So there is a corresponding sequence (v,,),, C D(L) such that
Lv, = z,.
From the estimate (4.2), we obtain

lvp —vgll g < k|| Lvy — Lug|| , — 0, lorsque p,q — +o0.
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We can deduce that (vy,),, is a Cauchy sequence in B, so there is v € B:

lim v, =v in B.
n—-+o0o

By virtue of the denition of L (liinn_,JrOQ v, =0 in B if imy, 4 o0 Loy, = limy—yy 00 25, =
2, 80 lim,, 1 o, Lv, = z and as L is closed so Lv = z), the function v verify that

ve D(L), Lv=-z.
thus 2z € R(L), then

R(L) c R(T).

So we conclude here that R(L) is closed because it is complete (any complete subspace
of a metric space (not necessarily complete) is closed).

It remains to show the opposite inclusion.

Let z € R(L), then there is a sequence of (z,), in F consists of the elements of the
set R(L) such that

lim 2z, = z.
n——+o0o

where z € R(L), because R(L) is closed subset of a complete space F, then R(L) is
complete. B
So there is a corresponding sequence (v,),, C D(L) such that

Lv, = 2.
From the estimate (4.11), we obtain
lvp —vgll g < K vap —quHF — 0, if p,g = +oc.
We can deduce that (v,),, is a Cauchy sequence in B, so there is v € B:

lim v, =v in B.
n—-+4oo

Once more, there is a corresponding sequence (L (vy,)),, € R(L) such that
Lv,, = Lv, over R(L),Vn.

Then
lim Lv, =z,
n—-+4oo

Consequently z € R(L),and then we conclude that

R(L) C R(L). O

5. EXISTENCE OF SOLUTION

To show the existance of solutions, we prove that R(L) is dense in F for all u € B
and for arbitrary F = (f,0) € F.

Theorem 5.1. For w € L?(Q) and for all v € B, we have
/ Lv - wdzdt = 0, (5.18)
Q

then w vanishes almost everywhere in Q, this implies that the problem (3.1)—(3.3) admits
a unique solution.
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Proof. The idea of the proof of the theorem is choose w € R(L)* (exactly w € R(L)* C
L?(Q)) and for all v € B, we have and demonstrate that R(L)L = {0} which give
R(L) = F.

The scalar product of F' is defined by

(Lo, W)p = / Lv-wdzdt, where W = (w,0) € D(L). (5.19)
Q
The equality (5.1) can be written as follows:
[ (eoeuten = 5 (alen 250 ) 4 btatuten) - wle iz =0 520
0 Oz Ox

where “Dv, 22 v € L?(Q), with v satisfies the boundary conditions of (3.3). From

b 81‘7

(5.3), we get the equality

/ [CD?v(x,t).w(m, t) — 9 (a (z,t) 81}(33,16)) w(z,t) + b(z, t)v(z, t).w(z, t)} dzdt =0
(5.21)

And from the equality (5.4), we give the function w in terms of v as follows:
w=v, w(z,0)=0; (5.22)

then w € L*(Q).
Replacing w in (5.4) by its representation (5.5) and integrating by parts each term of
(5.4) and by taking the condition of v, we obtain

2
/ Cva(x,t).v(Jc,t)dxdt—t—/ b(x,t)vz(x,t)dmdt—F/ a(x,t) (81}(33,15)) dxdt = 0.
Q Q Q Ox

(5.23)
According to Lemma 1,2,3 and definition 3, follow the same steps in the previous section,
we have that (5.6) becomes

m? cos (%77) /Q (CDt%v(a:, t))2 dxdt
ov(x,t)

2
+/ b(a:,t)v2(x,t)dzdt+/ a(x,t)( ) dxdt < 0.

So, we obtian

o |2
m? cos (gﬂ) HCD?U‘ +/ b(x, t)v?(z, t)dxdt
2 L*(Q) Q

2
< —/ a(z,t) (61}(3:,15)) dzdt
Q 81'
2
< 7%/ <8v(:c,t)> dedt
Q aJI
<0,
then )
2 o oX 2 %1 2
m~ cos <§7r) H D/ v’ L20) +bo [[vl|72¢g) <0,
Hence

||UHL2(Q) =0
And thus v = 0 in Q which gives w = 0 in Q. So R(L)* = {0}. This proves Theorem 2.

So R(L) = F. O
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